xref: /linux/arch/riscv/include/asm/bitops.h (revision 5fe164fb0e6e31dbcbb4b706fd76bc578e5af4c6)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_BITOPS_H
7 #define _ASM_RISCV_BITOPS_H
8 
9 #ifndef _LINUX_BITOPS_H
10 #error "Only <linux/bitops.h> can be included directly"
11 #endif /* _LINUX_BITOPS_H */
12 
13 #include <linux/compiler.h>
14 #include <linux/irqflags.h>
15 #include <asm/barrier.h>
16 #include <asm/bitsperlong.h>
17 
18 #if !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE)
19 #include <asm-generic/bitops/__ffs.h>
20 #include <asm-generic/bitops/__fls.h>
21 #include <asm-generic/bitops/ffs.h>
22 #include <asm-generic/bitops/fls.h>
23 
24 #else
25 #define __HAVE_ARCH___FFS
26 #define __HAVE_ARCH___FLS
27 #define __HAVE_ARCH_FFS
28 #define __HAVE_ARCH_FLS
29 
30 #include <asm-generic/bitops/__ffs.h>
31 #include <asm-generic/bitops/__fls.h>
32 #include <asm-generic/bitops/ffs.h>
33 #include <asm-generic/bitops/fls.h>
34 
35 #include <asm/alternative-macros.h>
36 #include <asm/hwcap.h>
37 
38 #if (BITS_PER_LONG == 64)
39 #define CTZW	"ctzw "
40 #define CLZW	"clzw "
41 #elif (BITS_PER_LONG == 32)
42 #define CTZW	"ctz "
43 #define CLZW	"clz "
44 #else
45 #error "Unexpected BITS_PER_LONG"
46 #endif
47 
48 static __always_inline unsigned long variable__ffs(unsigned long word)
49 {
50 	asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
51 				      RISCV_ISA_EXT_ZBB, 1)
52 			  : : : : legacy);
53 
54 	asm volatile (".option push\n"
55 		      ".option arch,+zbb\n"
56 		      "ctz %0, %1\n"
57 		      ".option pop\n"
58 		      : "=r" (word) : "r" (word) :);
59 
60 	return word;
61 
62 legacy:
63 	return generic___ffs(word);
64 }
65 
66 /**
67  * __ffs - find first set bit in a long word
68  * @word: The word to search
69  *
70  * Undefined if no set bit exists, so code should check against 0 first.
71  */
72 #define __ffs(word)				\
73 	(__builtin_constant_p(word) ?		\
74 	 (unsigned long)__builtin_ctzl(word) :	\
75 	 variable__ffs(word))
76 
77 static __always_inline unsigned long variable__fls(unsigned long word)
78 {
79 	asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
80 				      RISCV_ISA_EXT_ZBB, 1)
81 			  : : : : legacy);
82 
83 	asm volatile (".option push\n"
84 		      ".option arch,+zbb\n"
85 		      "clz %0, %1\n"
86 		      ".option pop\n"
87 		      : "=r" (word) : "r" (word) :);
88 
89 	return BITS_PER_LONG - 1 - word;
90 
91 legacy:
92 	return generic___fls(word);
93 }
94 
95 /**
96  * __fls - find last set bit in a long word
97  * @word: the word to search
98  *
99  * Undefined if no set bit exists, so code should check against 0 first.
100  */
101 #define __fls(word)							\
102 	(__builtin_constant_p(word) ?					\
103 	 (unsigned long)(BITS_PER_LONG - 1 - __builtin_clzl(word)) :	\
104 	 variable__fls(word))
105 
106 static __always_inline int variable_ffs(int x)
107 {
108 	asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
109 				      RISCV_ISA_EXT_ZBB, 1)
110 			  : : : : legacy);
111 
112 	if (!x)
113 		return 0;
114 
115 	asm volatile (".option push\n"
116 		      ".option arch,+zbb\n"
117 		      CTZW "%0, %1\n"
118 		      ".option pop\n"
119 		      : "=r" (x) : "r" (x) :);
120 
121 	return x + 1;
122 
123 legacy:
124 	return generic_ffs(x);
125 }
126 
127 /**
128  * ffs - find first set bit in a word
129  * @x: the word to search
130  *
131  * This is defined the same way as the libc and compiler builtin ffs routines.
132  *
133  * ffs(value) returns 0 if value is 0 or the position of the first set bit if
134  * value is nonzero. The first (least significant) bit is at position 1.
135  */
136 #define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x))
137 
138 static __always_inline int variable_fls(unsigned int x)
139 {
140 	asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
141 				      RISCV_ISA_EXT_ZBB, 1)
142 			  : : : : legacy);
143 
144 	if (!x)
145 		return 0;
146 
147 	asm volatile (".option push\n"
148 		      ".option arch,+zbb\n"
149 		      CLZW "%0, %1\n"
150 		      ".option pop\n"
151 		      : "=r" (x) : "r" (x) :);
152 
153 	return 32 - x;
154 
155 legacy:
156 	return generic_fls(x);
157 }
158 
159 /**
160  * fls - find last set bit in a word
161  * @x: the word to search
162  *
163  * This is defined in a similar way as ffs, but returns the position of the most
164  * significant set bit.
165  *
166  * fls(value) returns 0 if value is 0 or the position of the last set bit if
167  * value is nonzero. The last (most significant) bit is at position 32.
168  */
169 #define fls(x)							\
170 ({								\
171 	typeof(x) x_ = (x);					\
172 	__builtin_constant_p(x_) ?				\
173 	 ((x_ != 0) ? (32 - __builtin_clz(x_)) : 0)		\
174 	 :							\
175 	 variable_fls(x_);					\
176 })
177 
178 #endif /* !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE) */
179 
180 #include <asm-generic/bitops/ffz.h>
181 #include <asm-generic/bitops/fls64.h>
182 #include <asm-generic/bitops/sched.h>
183 
184 #include <asm/arch_hweight.h>
185 
186 #include <asm-generic/bitops/const_hweight.h>
187 
188 #if (BITS_PER_LONG == 64)
189 #define __AMO(op)	"amo" #op ".d"
190 #elif (BITS_PER_LONG == 32)
191 #define __AMO(op)	"amo" #op ".w"
192 #else
193 #error "Unexpected BITS_PER_LONG"
194 #endif
195 
196 #define __test_and_op_bit_ord(op, mod, nr, addr, ord)		\
197 ({								\
198 	unsigned long __res, __mask;				\
199 	__mask = BIT_MASK(nr);					\
200 	__asm__ __volatile__ (					\
201 		__AMO(op) #ord " %0, %2, %1"			\
202 		: "=r" (__res), "+A" (addr[BIT_WORD(nr)])	\
203 		: "r" (mod(__mask))				\
204 		: "memory");					\
205 	((__res & __mask) != 0);				\
206 })
207 
208 #define __op_bit_ord(op, mod, nr, addr, ord)			\
209 	__asm__ __volatile__ (					\
210 		__AMO(op) #ord " zero, %1, %0"			\
211 		: "+A" (addr[BIT_WORD(nr)])			\
212 		: "r" (mod(BIT_MASK(nr)))			\
213 		: "memory");
214 
215 #define __test_and_op_bit(op, mod, nr, addr) 			\
216 	__test_and_op_bit_ord(op, mod, nr, addr, .aqrl)
217 #define __op_bit(op, mod, nr, addr)				\
218 	__op_bit_ord(op, mod, nr, addr, )
219 
220 /* Bitmask modifiers */
221 #define __NOP(x)	(x)
222 #define __NOT(x)	(~(x))
223 
224 /**
225  * test_and_set_bit - Set a bit and return its old value
226  * @nr: Bit to set
227  * @addr: Address to count from
228  *
229  * This operation may be reordered on other architectures than x86.
230  */
231 static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
232 {
233 	return __test_and_op_bit(or, __NOP, nr, addr);
234 }
235 
236 /**
237  * test_and_clear_bit - Clear a bit and return its old value
238  * @nr: Bit to clear
239  * @addr: Address to count from
240  *
241  * This operation can be reordered on other architectures other than x86.
242  */
243 static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
244 {
245 	return __test_and_op_bit(and, __NOT, nr, addr);
246 }
247 
248 /**
249  * test_and_change_bit - Change a bit and return its old value
250  * @nr: Bit to change
251  * @addr: Address to count from
252  *
253  * This operation is atomic and cannot be reordered.
254  * It also implies a memory barrier.
255  */
256 static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
257 {
258 	return __test_and_op_bit(xor, __NOP, nr, addr);
259 }
260 
261 /**
262  * set_bit - Atomically set a bit in memory
263  * @nr: the bit to set
264  * @addr: the address to start counting from
265  *
266  * Note: there are no guarantees that this function will not be reordered
267  * on non x86 architectures, so if you are writing portable code,
268  * make sure not to rely on its reordering guarantees.
269  *
270  * Note that @nr may be almost arbitrarily large; this function is not
271  * restricted to acting on a single-word quantity.
272  */
273 static inline void set_bit(int nr, volatile unsigned long *addr)
274 {
275 	__op_bit(or, __NOP, nr, addr);
276 }
277 
278 /**
279  * clear_bit - Clears a bit in memory
280  * @nr: Bit to clear
281  * @addr: Address to start counting from
282  *
283  * Note: there are no guarantees that this function will not be reordered
284  * on non x86 architectures, so if you are writing portable code,
285  * make sure not to rely on its reordering guarantees.
286  */
287 static inline void clear_bit(int nr, volatile unsigned long *addr)
288 {
289 	__op_bit(and, __NOT, nr, addr);
290 }
291 
292 /**
293  * change_bit - Toggle a bit in memory
294  * @nr: Bit to change
295  * @addr: Address to start counting from
296  *
297  * change_bit()  may be reordered on other architectures than x86.
298  * Note that @nr may be almost arbitrarily large; this function is not
299  * restricted to acting on a single-word quantity.
300  */
301 static inline void change_bit(int nr, volatile unsigned long *addr)
302 {
303 	__op_bit(xor, __NOP, nr, addr);
304 }
305 
306 /**
307  * test_and_set_bit_lock - Set a bit and return its old value, for lock
308  * @nr: Bit to set
309  * @addr: Address to count from
310  *
311  * This operation is atomic and provides acquire barrier semantics.
312  * It can be used to implement bit locks.
313  */
314 static inline int test_and_set_bit_lock(
315 	unsigned long nr, volatile unsigned long *addr)
316 {
317 	return __test_and_op_bit_ord(or, __NOP, nr, addr, .aq);
318 }
319 
320 /**
321  * clear_bit_unlock - Clear a bit in memory, for unlock
322  * @nr: the bit to set
323  * @addr: the address to start counting from
324  *
325  * This operation is atomic and provides release barrier semantics.
326  */
327 static inline void clear_bit_unlock(
328 	unsigned long nr, volatile unsigned long *addr)
329 {
330 	__op_bit_ord(and, __NOT, nr, addr, .rl);
331 }
332 
333 /**
334  * __clear_bit_unlock - Clear a bit in memory, for unlock
335  * @nr: the bit to set
336  * @addr: the address to start counting from
337  *
338  * This operation is like clear_bit_unlock, however it is not atomic.
339  * It does provide release barrier semantics so it can be used to unlock
340  * a bit lock, however it would only be used if no other CPU can modify
341  * any bits in the memory until the lock is released (a good example is
342  * if the bit lock itself protects access to the other bits in the word).
343  *
344  * On RISC-V systems there seems to be no benefit to taking advantage of the
345  * non-atomic property here: it's a lot more instructions and we still have to
346  * provide release semantics anyway.
347  */
348 static inline void __clear_bit_unlock(
349 	unsigned long nr, volatile unsigned long *addr)
350 {
351 	clear_bit_unlock(nr, addr);
352 }
353 
354 static inline bool xor_unlock_is_negative_byte(unsigned long mask,
355 		volatile unsigned long *addr)
356 {
357 	unsigned long res;
358 	__asm__ __volatile__ (
359 		__AMO(xor) ".rl %0, %2, %1"
360 		: "=r" (res), "+A" (*addr)
361 		: "r" (__NOP(mask))
362 		: "memory");
363 	return (res & BIT(7)) != 0;
364 }
365 
366 #undef __test_and_op_bit
367 #undef __op_bit
368 #undef __NOP
369 #undef __NOT
370 #undef __AMO
371 
372 #include <asm-generic/bitops/non-atomic.h>
373 #include <asm-generic/bitops/le.h>
374 #include <asm-generic/bitops/ext2-atomic.h>
375 
376 #endif /* _ASM_RISCV_BITOPS_H */
377