xref: /linux/arch/powerpc/sysdev/xive/common.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016,2017 IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive: " fmt
7 
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 
23 #include <asm/prom.h>
24 #include <asm/io.h>
25 #include <asm/smp.h>
26 #include <asm/machdep.h>
27 #include <asm/irq.h>
28 #include <asm/errno.h>
29 #include <asm/xive.h>
30 #include <asm/xive-regs.h>
31 #include <asm/xmon.h>
32 
33 #include "xive-internal.h"
34 
35 #undef DEBUG_FLUSH
36 #undef DEBUG_ALL
37 
38 #ifdef DEBUG_ALL
39 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
40 					 smp_processor_id(), ## __VA_ARGS__)
41 #else
42 #define DBG_VERBOSE(fmt...)	do { } while(0)
43 #endif
44 
45 bool __xive_enabled;
46 EXPORT_SYMBOL_GPL(__xive_enabled);
47 bool xive_cmdline_disabled;
48 
49 /* We use only one priority for now */
50 static u8 xive_irq_priority;
51 
52 /* TIMA exported to KVM */
53 void __iomem *xive_tima;
54 EXPORT_SYMBOL_GPL(xive_tima);
55 u32 xive_tima_offset;
56 
57 /* Backend ops */
58 static const struct xive_ops *xive_ops;
59 
60 /* Our global interrupt domain */
61 static struct irq_domain *xive_irq_domain;
62 
63 #ifdef CONFIG_SMP
64 /* The IPIs all use the same logical irq number */
65 static u32 xive_ipi_irq;
66 #endif
67 
68 /* Xive state for each CPU */
69 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
70 
71 /*
72  * A "disabled" interrupt should never fire, to catch problems
73  * we set its logical number to this
74  */
75 #define XIVE_BAD_IRQ		0x7fffffff
76 #define XIVE_MAX_IRQ		(XIVE_BAD_IRQ - 1)
77 
78 /* An invalid CPU target */
79 #define XIVE_INVALID_TARGET	(-1)
80 
81 /*
82  * Read the next entry in a queue, return its content if it's valid
83  * or 0 if there is no new entry.
84  *
85  * The queue pointer is moved forward unless "just_peek" is set
86  */
87 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
88 {
89 	u32 cur;
90 
91 	if (!q->qpage)
92 		return 0;
93 	cur = be32_to_cpup(q->qpage + q->idx);
94 
95 	/* Check valid bit (31) vs current toggle polarity */
96 	if ((cur >> 31) == q->toggle)
97 		return 0;
98 
99 	/* If consuming from the queue ... */
100 	if (!just_peek) {
101 		/* Next entry */
102 		q->idx = (q->idx + 1) & q->msk;
103 
104 		/* Wrap around: flip valid toggle */
105 		if (q->idx == 0)
106 			q->toggle ^= 1;
107 	}
108 	/* Mask out the valid bit (31) */
109 	return cur & 0x7fffffff;
110 }
111 
112 /*
113  * Scans all the queue that may have interrupts in them
114  * (based on "pending_prio") in priority order until an
115  * interrupt is found or all the queues are empty.
116  *
117  * Then updates the CPPR (Current Processor Priority
118  * Register) based on the most favored interrupt found
119  * (0xff if none) and return what was found (0 if none).
120  *
121  * If just_peek is set, return the most favored pending
122  * interrupt if any but don't update the queue pointers.
123  *
124  * Note: This function can operate generically on any number
125  * of queues (up to 8). The current implementation of the XIVE
126  * driver only uses a single queue however.
127  *
128  * Note2: This will also "flush" "the pending_count" of a queue
129  * into the "count" when that queue is observed to be empty.
130  * This is used to keep track of the amount of interrupts
131  * targetting a queue. When an interrupt is moved away from
132  * a queue, we only decrement that queue count once the queue
133  * has been observed empty to avoid races.
134  */
135 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
136 {
137 	u32 irq = 0;
138 	u8 prio = 0;
139 
140 	/* Find highest pending priority */
141 	while (xc->pending_prio != 0) {
142 		struct xive_q *q;
143 
144 		prio = ffs(xc->pending_prio) - 1;
145 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
146 
147 		/* Try to fetch */
148 		irq = xive_read_eq(&xc->queue[prio], just_peek);
149 
150 		/* Found something ? That's it */
151 		if (irq) {
152 			if (just_peek || irq_to_desc(irq))
153 				break;
154 			/*
155 			 * We should never get here; if we do then we must
156 			 * have failed to synchronize the interrupt properly
157 			 * when shutting it down.
158 			 */
159 			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
160 				irq);
161 			WARN_ON(1);
162 			continue;
163 		}
164 
165 		/* Clear pending bits */
166 		xc->pending_prio &= ~(1 << prio);
167 
168 		/*
169 		 * Check if the queue count needs adjusting due to
170 		 * interrupts being moved away. See description of
171 		 * xive_dec_target_count()
172 		 */
173 		q = &xc->queue[prio];
174 		if (atomic_read(&q->pending_count)) {
175 			int p = atomic_xchg(&q->pending_count, 0);
176 			if (p) {
177 				WARN_ON(p > atomic_read(&q->count));
178 				atomic_sub(p, &q->count);
179 			}
180 		}
181 	}
182 
183 	/* If nothing was found, set CPPR to 0xff */
184 	if (irq == 0)
185 		prio = 0xff;
186 
187 	/* Update HW CPPR to match if necessary */
188 	if (prio != xc->cppr) {
189 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
190 		xc->cppr = prio;
191 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
192 	}
193 
194 	return irq;
195 }
196 
197 /*
198  * This is used to perform the magic loads from an ESB
199  * described in xive.h
200  */
201 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
202 {
203 	u64 val;
204 
205 	/* Handle HW errata */
206 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
207 		offset |= offset << 4;
208 
209 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
210 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
211 	else
212 		val = in_be64(xd->eoi_mmio + offset);
213 
214 	return (u8)val;
215 }
216 
217 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
218 {
219 	/* Handle HW errata */
220 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
221 		offset |= offset << 4;
222 
223 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
224 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
225 	else
226 		out_be64(xd->eoi_mmio + offset, data);
227 }
228 
229 #ifdef CONFIG_XMON
230 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
231 {
232 	u32 i0, i1, idx;
233 
234 	if (!q->qpage)
235 		return;
236 	idx = q->idx;
237 	i0 = be32_to_cpup(q->qpage + idx);
238 	idx = (idx + 1) & q->msk;
239 	i1 = be32_to_cpup(q->qpage + idx);
240 	xmon_printf("  %s Q T=%d %08x %08x ...\n", name,
241 		    q->toggle, i0, i1);
242 }
243 
244 notrace void xmon_xive_do_dump(int cpu)
245 {
246 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
247 
248 	xmon_printf("XIVE state for CPU %d:\n", cpu);
249 	xmon_printf("  pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
250 	xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
251 #ifdef CONFIG_SMP
252 	{
253 		u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
254 		xmon_printf("  IPI state: %x:%c%c\n", xc->hw_ipi,
255 			val & XIVE_ESB_VAL_P ? 'P' : 'p',
256 			val & XIVE_ESB_VAL_Q ? 'Q' : 'q');
257 	}
258 #endif
259 }
260 #endif /* CONFIG_XMON */
261 
262 static unsigned int xive_get_irq(void)
263 {
264 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
265 	u32 irq;
266 
267 	/*
268 	 * This can be called either as a result of a HW interrupt or
269 	 * as a "replay" because EOI decided there was still something
270 	 * in one of the queues.
271 	 *
272 	 * First we perform an ACK cycle in order to update our mask
273 	 * of pending priorities. This will also have the effect of
274 	 * updating the CPPR to the most favored pending interrupts.
275 	 *
276 	 * In the future, if we have a way to differentiate a first
277 	 * entry (on HW interrupt) from a replay triggered by EOI,
278 	 * we could skip this on replays unless we soft-mask tells us
279 	 * that a new HW interrupt occurred.
280 	 */
281 	xive_ops->update_pending(xc);
282 
283 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
284 
285 	/* Scan our queue(s) for interrupts */
286 	irq = xive_scan_interrupts(xc, false);
287 
288 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
289 	    irq, xc->pending_prio);
290 
291 	/* Return pending interrupt if any */
292 	if (irq == XIVE_BAD_IRQ)
293 		return 0;
294 	return irq;
295 }
296 
297 /*
298  * After EOI'ing an interrupt, we need to re-check the queue
299  * to see if another interrupt is pending since multiple
300  * interrupts can coalesce into a single notification to the
301  * CPU.
302  *
303  * If we find that there is indeed more in there, we call
304  * force_external_irq_replay() to make Linux synthetize an
305  * external interrupt on the next call to local_irq_restore().
306  */
307 static void xive_do_queue_eoi(struct xive_cpu *xc)
308 {
309 	if (xive_scan_interrupts(xc, true) != 0) {
310 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
311 		force_external_irq_replay();
312 	}
313 }
314 
315 /*
316  * EOI an interrupt at the source. There are several methods
317  * to do this depending on the HW version and source type
318  */
319 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
320 {
321 	xd->stale_p = false;
322 	/* If the XIVE supports the new "store EOI facility, use it */
323 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
324 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
325 	else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
326 		/*
327 		 * The FW told us to call it. This happens for some
328 		 * interrupt sources that need additional HW whacking
329 		 * beyond the ESB manipulation. For example LPC interrupts
330 		 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
331 		 * itself. The Firmware will take care of it.
332 		 */
333 		if (WARN_ON_ONCE(!xive_ops->eoi))
334 			return;
335 		xive_ops->eoi(hw_irq);
336 	} else {
337 		u8 eoi_val;
338 
339 		/*
340 		 * Otherwise for EOI, we use the special MMIO that does
341 		 * a clear of both P and Q and returns the old Q,
342 		 * except for LSIs where we use the "EOI cycle" special
343 		 * load.
344 		 *
345 		 * This allows us to then do a re-trigger if Q was set
346 		 * rather than synthesizing an interrupt in software
347 		 *
348 		 * For LSIs the HW EOI cycle is used rather than PQ bits,
349 		 * as they are automatically re-triggred in HW when still
350 		 * pending.
351 		 */
352 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
353 			xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
354 		else {
355 			eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
356 			DBG_VERBOSE("eoi_val=%x\n", eoi_val);
357 
358 			/* Re-trigger if needed */
359 			if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
360 				out_be64(xd->trig_mmio, 0);
361 		}
362 	}
363 }
364 
365 /* irq_chip eoi callback, called with irq descriptor lock held */
366 static void xive_irq_eoi(struct irq_data *d)
367 {
368 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
369 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
370 
371 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
372 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
373 
374 	/*
375 	 * EOI the source if it hasn't been disabled and hasn't
376 	 * been passed-through to a KVM guest
377 	 */
378 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
379 	    !(xd->flags & XIVE_IRQ_NO_EOI))
380 		xive_do_source_eoi(irqd_to_hwirq(d), xd);
381 	else
382 		xd->stale_p = true;
383 
384 	/*
385 	 * Clear saved_p to indicate that it's no longer occupying
386 	 * a queue slot on the target queue
387 	 */
388 	xd->saved_p = false;
389 
390 	/* Check for more work in the queue */
391 	xive_do_queue_eoi(xc);
392 }
393 
394 /*
395  * Helper used to mask and unmask an interrupt source. This
396  * is only called for normal interrupts that do not require
397  * masking/unmasking via firmware.
398  */
399 static void xive_do_source_set_mask(struct xive_irq_data *xd,
400 				    bool mask)
401 {
402 	u64 val;
403 
404 	/*
405 	 * If the interrupt had P set, it may be in a queue.
406 	 *
407 	 * We need to make sure we don't re-enable it until it
408 	 * has been fetched from that queue and EOId. We keep
409 	 * a copy of that P state and use it to restore the
410 	 * ESB accordingly on unmask.
411 	 */
412 	if (mask) {
413 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
414 		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
415 			xd->saved_p = true;
416 		xd->stale_p = false;
417 	} else if (xd->saved_p) {
418 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
419 		xd->saved_p = false;
420 	} else {
421 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
422 		xd->stale_p = false;
423 	}
424 }
425 
426 /*
427  * Try to chose "cpu" as a new interrupt target. Increments
428  * the queue accounting for that target if it's not already
429  * full.
430  */
431 static bool xive_try_pick_target(int cpu)
432 {
433 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
434 	struct xive_q *q = &xc->queue[xive_irq_priority];
435 	int max;
436 
437 	/*
438 	 * Calculate max number of interrupts in that queue.
439 	 *
440 	 * We leave a gap of 1 just in case...
441 	 */
442 	max = (q->msk + 1) - 1;
443 	return !!atomic_add_unless(&q->count, 1, max);
444 }
445 
446 /*
447  * Un-account an interrupt for a target CPU. We don't directly
448  * decrement q->count since the interrupt might still be present
449  * in the queue.
450  *
451  * Instead increment a separate counter "pending_count" which
452  * will be substracted from "count" later when that CPU observes
453  * the queue to be empty.
454  */
455 static void xive_dec_target_count(int cpu)
456 {
457 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
458 	struct xive_q *q = &xc->queue[xive_irq_priority];
459 
460 	if (WARN_ON(cpu < 0 || !xc)) {
461 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
462 		return;
463 	}
464 
465 	/*
466 	 * We increment the "pending count" which will be used
467 	 * to decrement the target queue count whenever it's next
468 	 * processed and found empty. This ensure that we don't
469 	 * decrement while we still have the interrupt there
470 	 * occupying a slot.
471 	 */
472 	atomic_inc(&q->pending_count);
473 }
474 
475 /* Find a tentative CPU target in a CPU mask */
476 static int xive_find_target_in_mask(const struct cpumask *mask,
477 				    unsigned int fuzz)
478 {
479 	int cpu, first, num, i;
480 
481 	/* Pick up a starting point CPU in the mask based on  fuzz */
482 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
483 	first = fuzz % num;
484 
485 	/* Locate it */
486 	cpu = cpumask_first(mask);
487 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
488 		cpu = cpumask_next(cpu, mask);
489 
490 	/* Sanity check */
491 	if (WARN_ON(cpu >= nr_cpu_ids))
492 		cpu = cpumask_first(cpu_online_mask);
493 
494 	/* Remember first one to handle wrap-around */
495 	first = cpu;
496 
497 	/*
498 	 * Now go through the entire mask until we find a valid
499 	 * target.
500 	 */
501 	do {
502 		/*
503 		 * We re-check online as the fallback case passes us
504 		 * an untested affinity mask
505 		 */
506 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
507 			return cpu;
508 		cpu = cpumask_next(cpu, mask);
509 		/* Wrap around */
510 		if (cpu >= nr_cpu_ids)
511 			cpu = cpumask_first(mask);
512 	} while (cpu != first);
513 
514 	return -1;
515 }
516 
517 /*
518  * Pick a target CPU for an interrupt. This is done at
519  * startup or if the affinity is changed in a way that
520  * invalidates the current target.
521  */
522 static int xive_pick_irq_target(struct irq_data *d,
523 				const struct cpumask *affinity)
524 {
525 	static unsigned int fuzz;
526 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
527 	cpumask_var_t mask;
528 	int cpu = -1;
529 
530 	/*
531 	 * If we have chip IDs, first we try to build a mask of
532 	 * CPUs matching the CPU and find a target in there
533 	 */
534 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
535 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
536 		/* Build a mask of matching chip IDs */
537 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
538 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
539 			if (xc->chip_id == xd->src_chip)
540 				cpumask_set_cpu(cpu, mask);
541 		}
542 		/* Try to find a target */
543 		if (cpumask_empty(mask))
544 			cpu = -1;
545 		else
546 			cpu = xive_find_target_in_mask(mask, fuzz++);
547 		free_cpumask_var(mask);
548 		if (cpu >= 0)
549 			return cpu;
550 		fuzz--;
551 	}
552 
553 	/* No chip IDs, fallback to using the affinity mask */
554 	return xive_find_target_in_mask(affinity, fuzz++);
555 }
556 
557 static unsigned int xive_irq_startup(struct irq_data *d)
558 {
559 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
560 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
561 	int target, rc;
562 
563 	xd->saved_p = false;
564 	xd->stale_p = false;
565 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
566 		 d->irq, hw_irq, d);
567 
568 #ifdef CONFIG_PCI_MSI
569 	/*
570 	 * The generic MSI code returns with the interrupt disabled on the
571 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
572 	 * at that level, so we do it here by hand.
573 	 */
574 	if (irq_data_get_msi_desc(d))
575 		pci_msi_unmask_irq(d);
576 #endif
577 
578 	/* Pick a target */
579 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
580 	if (target == XIVE_INVALID_TARGET) {
581 		/* Try again breaking affinity */
582 		target = xive_pick_irq_target(d, cpu_online_mask);
583 		if (target == XIVE_INVALID_TARGET)
584 			return -ENXIO;
585 		pr_warn("irq %d started with broken affinity\n", d->irq);
586 	}
587 
588 	/* Sanity check */
589 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
590 		    target >= nr_cpu_ids))
591 		target = smp_processor_id();
592 
593 	xd->target = target;
594 
595 	/*
596 	 * Configure the logical number to be the Linux IRQ number
597 	 * and set the target queue
598 	 */
599 	rc = xive_ops->configure_irq(hw_irq,
600 				     get_hard_smp_processor_id(target),
601 				     xive_irq_priority, d->irq);
602 	if (rc)
603 		return rc;
604 
605 	/* Unmask the ESB */
606 	xive_do_source_set_mask(xd, false);
607 
608 	return 0;
609 }
610 
611 /* called with irq descriptor lock held */
612 static void xive_irq_shutdown(struct irq_data *d)
613 {
614 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
615 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
616 
617 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
618 		 d->irq, hw_irq, d);
619 
620 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
621 		return;
622 
623 	/* Mask the interrupt at the source */
624 	xive_do_source_set_mask(xd, true);
625 
626 	/*
627 	 * Mask the interrupt in HW in the IVT/EAS and set the number
628 	 * to be the "bad" IRQ number
629 	 */
630 	xive_ops->configure_irq(hw_irq,
631 				get_hard_smp_processor_id(xd->target),
632 				0xff, XIVE_BAD_IRQ);
633 
634 	xive_dec_target_count(xd->target);
635 	xd->target = XIVE_INVALID_TARGET;
636 }
637 
638 static void xive_irq_unmask(struct irq_data *d)
639 {
640 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
641 
642 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
643 
644 	/*
645 	 * This is a workaround for PCI LSI problems on P9, for
646 	 * these, we call FW to set the mask. The problems might
647 	 * be fixed by P9 DD2.0, if that is the case, firmware
648 	 * will no longer set that flag.
649 	 */
650 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
651 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
652 		xive_ops->configure_irq(hw_irq,
653 					get_hard_smp_processor_id(xd->target),
654 					xive_irq_priority, d->irq);
655 		return;
656 	}
657 
658 	xive_do_source_set_mask(xd, false);
659 }
660 
661 static void xive_irq_mask(struct irq_data *d)
662 {
663 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
664 
665 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
666 
667 	/*
668 	 * This is a workaround for PCI LSI problems on P9, for
669 	 * these, we call OPAL to set the mask. The problems might
670 	 * be fixed by P9 DD2.0, if that is the case, firmware
671 	 * will no longer set that flag.
672 	 */
673 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
674 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
675 		xive_ops->configure_irq(hw_irq,
676 					get_hard_smp_processor_id(xd->target),
677 					0xff, d->irq);
678 		return;
679 	}
680 
681 	xive_do_source_set_mask(xd, true);
682 }
683 
684 static int xive_irq_set_affinity(struct irq_data *d,
685 				 const struct cpumask *cpumask,
686 				 bool force)
687 {
688 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
689 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
690 	u32 target, old_target;
691 	int rc = 0;
692 
693 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
694 
695 	/* Is this valid ? */
696 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
697 		return -EINVAL;
698 
699 	/* Don't do anything if the interrupt isn't started */
700 	if (!irqd_is_started(d))
701 		return IRQ_SET_MASK_OK;
702 
703 	/*
704 	 * If existing target is already in the new mask, and is
705 	 * online then do nothing.
706 	 */
707 	if (xd->target != XIVE_INVALID_TARGET &&
708 	    cpu_online(xd->target) &&
709 	    cpumask_test_cpu(xd->target, cpumask))
710 		return IRQ_SET_MASK_OK;
711 
712 	/* Pick a new target */
713 	target = xive_pick_irq_target(d, cpumask);
714 
715 	/* No target found */
716 	if (target == XIVE_INVALID_TARGET)
717 		return -ENXIO;
718 
719 	/* Sanity check */
720 	if (WARN_ON(target >= nr_cpu_ids))
721 		target = smp_processor_id();
722 
723 	old_target = xd->target;
724 
725 	/*
726 	 * Only configure the irq if it's not currently passed-through to
727 	 * a KVM guest
728 	 */
729 	if (!irqd_is_forwarded_to_vcpu(d))
730 		rc = xive_ops->configure_irq(hw_irq,
731 					     get_hard_smp_processor_id(target),
732 					     xive_irq_priority, d->irq);
733 	if (rc < 0) {
734 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
735 		return rc;
736 	}
737 
738 	pr_devel("  target: 0x%x\n", target);
739 	xd->target = target;
740 
741 	/* Give up previous target */
742 	if (old_target != XIVE_INVALID_TARGET)
743 	    xive_dec_target_count(old_target);
744 
745 	return IRQ_SET_MASK_OK;
746 }
747 
748 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
749 {
750 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
751 
752 	/*
753 	 * We only support these. This has really no effect other than setting
754 	 * the corresponding descriptor bits mind you but those will in turn
755 	 * affect the resend function when re-enabling an edge interrupt.
756 	 *
757 	 * Set set the default to edge as explained in map().
758 	 */
759 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
760 		flow_type = IRQ_TYPE_EDGE_RISING;
761 
762 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
763 	    flow_type != IRQ_TYPE_LEVEL_LOW)
764 		return -EINVAL;
765 
766 	irqd_set_trigger_type(d, flow_type);
767 
768 	/*
769 	 * Double check it matches what the FW thinks
770 	 *
771 	 * NOTE: We don't know yet if the PAPR interface will provide
772 	 * the LSI vs MSI information apart from the device-tree so
773 	 * this check might have to move into an optional backend call
774 	 * that is specific to the native backend
775 	 */
776 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
777 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
778 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
779 			d->irq, (u32)irqd_to_hwirq(d),
780 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
781 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
782 	}
783 
784 	return IRQ_SET_MASK_OK_NOCOPY;
785 }
786 
787 static int xive_irq_retrigger(struct irq_data *d)
788 {
789 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
790 
791 	/* This should be only for MSIs */
792 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
793 		return 0;
794 
795 	/*
796 	 * To perform a retrigger, we first set the PQ bits to
797 	 * 11, then perform an EOI.
798 	 */
799 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
800 
801 	/*
802 	 * Note: We pass "0" to the hw_irq argument in order to
803 	 * avoid calling into the backend EOI code which we don't
804 	 * want to do in the case of a re-trigger. Backends typically
805 	 * only do EOI for LSIs anyway.
806 	 */
807 	xive_do_source_eoi(0, xd);
808 
809 	return 1;
810 }
811 
812 /*
813  * Caller holds the irq descriptor lock, so this won't be called
814  * concurrently with xive_get_irqchip_state on the same interrupt.
815  */
816 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
817 {
818 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
819 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
820 	int rc;
821 	u8 pq;
822 
823 	/*
824 	 * We only support this on interrupts that do not require
825 	 * firmware calls for masking and unmasking
826 	 */
827 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
828 		return -EIO;
829 
830 	/*
831 	 * This is called by KVM with state non-NULL for enabling
832 	 * pass-through or NULL for disabling it
833 	 */
834 	if (state) {
835 		irqd_set_forwarded_to_vcpu(d);
836 
837 		/* Set it to PQ=10 state to prevent further sends */
838 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
839 		if (!xd->stale_p) {
840 			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
841 			xd->stale_p = !xd->saved_p;
842 		}
843 
844 		/* No target ? nothing to do */
845 		if (xd->target == XIVE_INVALID_TARGET) {
846 			/*
847 			 * An untargetted interrupt should have been
848 			 * also masked at the source
849 			 */
850 			WARN_ON(xd->saved_p);
851 
852 			return 0;
853 		}
854 
855 		/*
856 		 * If P was set, adjust state to PQ=11 to indicate
857 		 * that a resend is needed for the interrupt to reach
858 		 * the guest. Also remember the value of P.
859 		 *
860 		 * This also tells us that it's in flight to a host queue
861 		 * or has already been fetched but hasn't been EOIed yet
862 		 * by the host. This it's potentially using up a host
863 		 * queue slot. This is important to know because as long
864 		 * as this is the case, we must not hard-unmask it when
865 		 * "returning" that interrupt to the host.
866 		 *
867 		 * This saved_p is cleared by the host EOI, when we know
868 		 * for sure the queue slot is no longer in use.
869 		 */
870 		if (xd->saved_p) {
871 			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
872 
873 			/*
874 			 * Sync the XIVE source HW to ensure the interrupt
875 			 * has gone through the EAS before we change its
876 			 * target to the guest. That should guarantee us
877 			 * that we *will* eventually get an EOI for it on
878 			 * the host. Otherwise there would be a small window
879 			 * for P to be seen here but the interrupt going
880 			 * to the guest queue.
881 			 */
882 			if (xive_ops->sync_source)
883 				xive_ops->sync_source(hw_irq);
884 		}
885 	} else {
886 		irqd_clr_forwarded_to_vcpu(d);
887 
888 		/* No host target ? hard mask and return */
889 		if (xd->target == XIVE_INVALID_TARGET) {
890 			xive_do_source_set_mask(xd, true);
891 			return 0;
892 		}
893 
894 		/*
895 		 * Sync the XIVE source HW to ensure the interrupt
896 		 * has gone through the EAS before we change its
897 		 * target to the host.
898 		 */
899 		if (xive_ops->sync_source)
900 			xive_ops->sync_source(hw_irq);
901 
902 		/*
903 		 * By convention we are called with the interrupt in
904 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
905 		 * have latched in Q whether there's a pending HW
906 		 * interrupt or not.
907 		 *
908 		 * First reconfigure the target.
909 		 */
910 		rc = xive_ops->configure_irq(hw_irq,
911 					     get_hard_smp_processor_id(xd->target),
912 					     xive_irq_priority, d->irq);
913 		if (rc)
914 			return rc;
915 
916 		/*
917 		 * Then if saved_p is not set, effectively re-enable the
918 		 * interrupt with an EOI. If it is set, we know there is
919 		 * still a message in a host queue somewhere that will be
920 		 * EOId eventually.
921 		 *
922 		 * Note: We don't check irqd_irq_disabled(). Effectively,
923 		 * we *will* let the irq get through even if masked if the
924 		 * HW is still firing it in order to deal with the whole
925 		 * saved_p business properly. If the interrupt triggers
926 		 * while masked, the generic code will re-mask it anyway.
927 		 */
928 		if (!xd->saved_p)
929 			xive_do_source_eoi(hw_irq, xd);
930 
931 	}
932 	return 0;
933 }
934 
935 /* Called with irq descriptor lock held. */
936 static int xive_get_irqchip_state(struct irq_data *data,
937 				  enum irqchip_irq_state which, bool *state)
938 {
939 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
940 
941 	switch (which) {
942 	case IRQCHIP_STATE_ACTIVE:
943 		*state = !xd->stale_p &&
944 			 (xd->saved_p ||
945 			  !!(xive_esb_read(xd, XIVE_ESB_GET) & XIVE_ESB_VAL_P));
946 		return 0;
947 	default:
948 		return -EINVAL;
949 	}
950 }
951 
952 static struct irq_chip xive_irq_chip = {
953 	.name = "XIVE-IRQ",
954 	.irq_startup = xive_irq_startup,
955 	.irq_shutdown = xive_irq_shutdown,
956 	.irq_eoi = xive_irq_eoi,
957 	.irq_mask = xive_irq_mask,
958 	.irq_unmask = xive_irq_unmask,
959 	.irq_set_affinity = xive_irq_set_affinity,
960 	.irq_set_type = xive_irq_set_type,
961 	.irq_retrigger = xive_irq_retrigger,
962 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
963 	.irq_get_irqchip_state = xive_get_irqchip_state,
964 };
965 
966 bool is_xive_irq(struct irq_chip *chip)
967 {
968 	return chip == &xive_irq_chip;
969 }
970 EXPORT_SYMBOL_GPL(is_xive_irq);
971 
972 void xive_cleanup_irq_data(struct xive_irq_data *xd)
973 {
974 	if (xd->eoi_mmio) {
975 		iounmap(xd->eoi_mmio);
976 		if (xd->eoi_mmio == xd->trig_mmio)
977 			xd->trig_mmio = NULL;
978 		xd->eoi_mmio = NULL;
979 	}
980 	if (xd->trig_mmio) {
981 		iounmap(xd->trig_mmio);
982 		xd->trig_mmio = NULL;
983 	}
984 }
985 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
986 
987 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
988 {
989 	struct xive_irq_data *xd;
990 	int rc;
991 
992 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
993 	if (!xd)
994 		return -ENOMEM;
995 	rc = xive_ops->populate_irq_data(hw, xd);
996 	if (rc) {
997 		kfree(xd);
998 		return rc;
999 	}
1000 	xd->target = XIVE_INVALID_TARGET;
1001 	irq_set_handler_data(virq, xd);
1002 
1003 	return 0;
1004 }
1005 
1006 static void xive_irq_free_data(unsigned int virq)
1007 {
1008 	struct xive_irq_data *xd = irq_get_handler_data(virq);
1009 
1010 	if (!xd)
1011 		return;
1012 	irq_set_handler_data(virq, NULL);
1013 	xive_cleanup_irq_data(xd);
1014 	kfree(xd);
1015 }
1016 
1017 #ifdef CONFIG_SMP
1018 
1019 static void xive_cause_ipi(int cpu)
1020 {
1021 	struct xive_cpu *xc;
1022 	struct xive_irq_data *xd;
1023 
1024 	xc = per_cpu(xive_cpu, cpu);
1025 
1026 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1027 		    smp_processor_id(), cpu, xc->hw_ipi);
1028 
1029 	xd = &xc->ipi_data;
1030 	if (WARN_ON(!xd->trig_mmio))
1031 		return;
1032 	out_be64(xd->trig_mmio, 0);
1033 }
1034 
1035 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1036 {
1037 	return smp_ipi_demux();
1038 }
1039 
1040 static void xive_ipi_eoi(struct irq_data *d)
1041 {
1042 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1043 
1044 	/* Handle possible race with unplug and drop stale IPIs */
1045 	if (!xc)
1046 		return;
1047 
1048 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1049 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1050 
1051 	xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1052 	xive_do_queue_eoi(xc);
1053 }
1054 
1055 static void xive_ipi_do_nothing(struct irq_data *d)
1056 {
1057 	/*
1058 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1059 	 * has to exist for the struct irq_chip.
1060 	 */
1061 }
1062 
1063 static struct irq_chip xive_ipi_chip = {
1064 	.name = "XIVE-IPI",
1065 	.irq_eoi = xive_ipi_eoi,
1066 	.irq_mask = xive_ipi_do_nothing,
1067 	.irq_unmask = xive_ipi_do_nothing,
1068 };
1069 
1070 static void __init xive_request_ipi(void)
1071 {
1072 	unsigned int virq;
1073 
1074 	/*
1075 	 * Initialization failed, move on, we might manage to
1076 	 * reach the point where we display our errors before
1077 	 * the system falls appart
1078 	 */
1079 	if (!xive_irq_domain)
1080 		return;
1081 
1082 	/* Initialize it */
1083 	virq = irq_create_mapping(xive_irq_domain, 0);
1084 	xive_ipi_irq = virq;
1085 
1086 	WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1087 			    IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1088 }
1089 
1090 static int xive_setup_cpu_ipi(unsigned int cpu)
1091 {
1092 	struct xive_cpu *xc;
1093 	int rc;
1094 
1095 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1096 
1097 	xc = per_cpu(xive_cpu, cpu);
1098 
1099 	/* Check if we are already setup */
1100 	if (xc->hw_ipi != 0)
1101 		return 0;
1102 
1103 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1104 	if (xive_ops->get_ipi(cpu, xc))
1105 		return -EIO;
1106 
1107 	/*
1108 	 * Populate the IRQ data in the xive_cpu structure and
1109 	 * configure the HW / enable the IPIs.
1110 	 */
1111 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1112 	if (rc) {
1113 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1114 		return -EIO;
1115 	}
1116 	rc = xive_ops->configure_irq(xc->hw_ipi,
1117 				     get_hard_smp_processor_id(cpu),
1118 				     xive_irq_priority, xive_ipi_irq);
1119 	if (rc) {
1120 		pr_err("Failed to map IPI CPU %d\n", cpu);
1121 		return -EIO;
1122 	}
1123 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1124 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1125 
1126 	/* Unmask it */
1127 	xive_do_source_set_mask(&xc->ipi_data, false);
1128 
1129 	return 0;
1130 }
1131 
1132 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1133 {
1134 	/* Disable the IPI and free the IRQ data */
1135 
1136 	/* Already cleaned up ? */
1137 	if (xc->hw_ipi == 0)
1138 		return;
1139 
1140 	/* Mask the IPI */
1141 	xive_do_source_set_mask(&xc->ipi_data, true);
1142 
1143 	/*
1144 	 * Note: We don't call xive_cleanup_irq_data() to free
1145 	 * the mappings as this is called from an IPI on kexec
1146 	 * which is not a safe environment to call iounmap()
1147 	 */
1148 
1149 	/* Deconfigure/mask in the backend */
1150 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1151 				0xff, xive_ipi_irq);
1152 
1153 	/* Free the IPIs in the backend */
1154 	xive_ops->put_ipi(cpu, xc);
1155 }
1156 
1157 void __init xive_smp_probe(void)
1158 {
1159 	smp_ops->cause_ipi = xive_cause_ipi;
1160 
1161 	/* Register the IPI */
1162 	xive_request_ipi();
1163 
1164 	/* Allocate and setup IPI for the boot CPU */
1165 	xive_setup_cpu_ipi(smp_processor_id());
1166 }
1167 
1168 #endif /* CONFIG_SMP */
1169 
1170 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1171 			       irq_hw_number_t hw)
1172 {
1173 	int rc;
1174 
1175 	/*
1176 	 * Mark interrupts as edge sensitive by default so that resend
1177 	 * actually works. Will fix that up below if needed.
1178 	 */
1179 	irq_clear_status_flags(virq, IRQ_LEVEL);
1180 
1181 #ifdef CONFIG_SMP
1182 	/* IPIs are special and come up with HW number 0 */
1183 	if (hw == 0) {
1184 		/*
1185 		 * IPIs are marked per-cpu. We use separate HW interrupts under
1186 		 * the hood but associated with the same "linux" interrupt
1187 		 */
1188 		irq_set_chip_and_handler(virq, &xive_ipi_chip,
1189 					 handle_percpu_irq);
1190 		return 0;
1191 	}
1192 #endif
1193 
1194 	rc = xive_irq_alloc_data(virq, hw);
1195 	if (rc)
1196 		return rc;
1197 
1198 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1199 
1200 	return 0;
1201 }
1202 
1203 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1204 {
1205 	struct irq_data *data = irq_get_irq_data(virq);
1206 	unsigned int hw_irq;
1207 
1208 	/* XXX Assign BAD number */
1209 	if (!data)
1210 		return;
1211 	hw_irq = (unsigned int)irqd_to_hwirq(data);
1212 	if (hw_irq)
1213 		xive_irq_free_data(virq);
1214 }
1215 
1216 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1217 				 const u32 *intspec, unsigned int intsize,
1218 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1219 
1220 {
1221 	*out_hwirq = intspec[0];
1222 
1223 	/*
1224 	 * If intsize is at least 2, we look for the type in the second cell,
1225 	 * we assume the LSB indicates a level interrupt.
1226 	 */
1227 	if (intsize > 1) {
1228 		if (intspec[1] & 1)
1229 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1230 		else
1231 			*out_flags = IRQ_TYPE_EDGE_RISING;
1232 	} else
1233 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1234 
1235 	return 0;
1236 }
1237 
1238 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1239 				 enum irq_domain_bus_token bus_token)
1240 {
1241 	return xive_ops->match(node);
1242 }
1243 
1244 static const struct irq_domain_ops xive_irq_domain_ops = {
1245 	.match = xive_irq_domain_match,
1246 	.map = xive_irq_domain_map,
1247 	.unmap = xive_irq_domain_unmap,
1248 	.xlate = xive_irq_domain_xlate,
1249 };
1250 
1251 static void __init xive_init_host(void)
1252 {
1253 	xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1254 					       &xive_irq_domain_ops, NULL);
1255 	if (WARN_ON(xive_irq_domain == NULL))
1256 		return;
1257 	irq_set_default_host(xive_irq_domain);
1258 }
1259 
1260 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1261 {
1262 	if (xc->queue[xive_irq_priority].qpage)
1263 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1264 }
1265 
1266 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1267 {
1268 	int rc = 0;
1269 
1270 	/* We setup 1 queues for now with a 64k page */
1271 	if (!xc->queue[xive_irq_priority].qpage)
1272 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1273 
1274 	return rc;
1275 }
1276 
1277 static int xive_prepare_cpu(unsigned int cpu)
1278 {
1279 	struct xive_cpu *xc;
1280 
1281 	xc = per_cpu(xive_cpu, cpu);
1282 	if (!xc) {
1283 		struct device_node *np;
1284 
1285 		xc = kzalloc_node(sizeof(struct xive_cpu),
1286 				  GFP_KERNEL, cpu_to_node(cpu));
1287 		if (!xc)
1288 			return -ENOMEM;
1289 		np = of_get_cpu_node(cpu, NULL);
1290 		if (np)
1291 			xc->chip_id = of_get_ibm_chip_id(np);
1292 		of_node_put(np);
1293 
1294 		per_cpu(xive_cpu, cpu) = xc;
1295 	}
1296 
1297 	/* Setup EQs if not already */
1298 	return xive_setup_cpu_queues(cpu, xc);
1299 }
1300 
1301 static void xive_setup_cpu(void)
1302 {
1303 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1304 
1305 	/* The backend might have additional things to do */
1306 	if (xive_ops->setup_cpu)
1307 		xive_ops->setup_cpu(smp_processor_id(), xc);
1308 
1309 	/* Set CPPR to 0xff to enable flow of interrupts */
1310 	xc->cppr = 0xff;
1311 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1312 }
1313 
1314 #ifdef CONFIG_SMP
1315 void xive_smp_setup_cpu(void)
1316 {
1317 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1318 
1319 	/* This will have already been done on the boot CPU */
1320 	if (smp_processor_id() != boot_cpuid)
1321 		xive_setup_cpu();
1322 
1323 }
1324 
1325 int xive_smp_prepare_cpu(unsigned int cpu)
1326 {
1327 	int rc;
1328 
1329 	/* Allocate per-CPU data and queues */
1330 	rc = xive_prepare_cpu(cpu);
1331 	if (rc)
1332 		return rc;
1333 
1334 	/* Allocate and setup IPI for the new CPU */
1335 	return xive_setup_cpu_ipi(cpu);
1336 }
1337 
1338 #ifdef CONFIG_HOTPLUG_CPU
1339 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1340 {
1341 	u32 irq;
1342 
1343 	/* We assume local irqs are disabled */
1344 	WARN_ON(!irqs_disabled());
1345 
1346 	/* Check what's already in the CPU queue */
1347 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1348 		/*
1349 		 * We need to re-route that interrupt to its new destination.
1350 		 * First get and lock the descriptor
1351 		 */
1352 		struct irq_desc *desc = irq_to_desc(irq);
1353 		struct irq_data *d = irq_desc_get_irq_data(desc);
1354 		struct xive_irq_data *xd;
1355 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1356 
1357 		/*
1358 		 * Ignore anything that isn't a XIVE irq and ignore
1359 		 * IPIs, so can just be dropped.
1360 		 */
1361 		if (d->domain != xive_irq_domain || hw_irq == 0)
1362 			continue;
1363 
1364 		/*
1365 		 * The IRQ should have already been re-routed, it's just a
1366 		 * stale in the old queue, so re-trigger it in order to make
1367 		 * it reach is new destination.
1368 		 */
1369 #ifdef DEBUG_FLUSH
1370 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1371 			cpu, irq);
1372 #endif
1373 		raw_spin_lock(&desc->lock);
1374 		xd = irq_desc_get_handler_data(desc);
1375 
1376 		/*
1377 		 * Clear saved_p to indicate that it's no longer pending
1378 		 */
1379 		xd->saved_p = false;
1380 
1381 		/*
1382 		 * For LSIs, we EOI, this will cause a resend if it's
1383 		 * still asserted. Otherwise do an MSI retrigger.
1384 		 */
1385 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1386 			xive_do_source_eoi(irqd_to_hwirq(d), xd);
1387 		else
1388 			xive_irq_retrigger(d);
1389 
1390 		raw_spin_unlock(&desc->lock);
1391 	}
1392 }
1393 
1394 void xive_smp_disable_cpu(void)
1395 {
1396 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1397 	unsigned int cpu = smp_processor_id();
1398 
1399 	/* Migrate interrupts away from the CPU */
1400 	irq_migrate_all_off_this_cpu();
1401 
1402 	/* Set CPPR to 0 to disable flow of interrupts */
1403 	xc->cppr = 0;
1404 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1405 
1406 	/* Flush everything still in the queue */
1407 	xive_flush_cpu_queue(cpu, xc);
1408 
1409 	/* Re-enable CPPR  */
1410 	xc->cppr = 0xff;
1411 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1412 }
1413 
1414 void xive_flush_interrupt(void)
1415 {
1416 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1417 	unsigned int cpu = smp_processor_id();
1418 
1419 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1420 	xive_flush_cpu_queue(cpu, xc);
1421 }
1422 
1423 #endif /* CONFIG_HOTPLUG_CPU */
1424 
1425 #endif /* CONFIG_SMP */
1426 
1427 void xive_teardown_cpu(void)
1428 {
1429 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1430 	unsigned int cpu = smp_processor_id();
1431 
1432 	/* Set CPPR to 0 to disable flow of interrupts */
1433 	xc->cppr = 0;
1434 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1435 
1436 	if (xive_ops->teardown_cpu)
1437 		xive_ops->teardown_cpu(cpu, xc);
1438 
1439 #ifdef CONFIG_SMP
1440 	/* Get rid of IPI */
1441 	xive_cleanup_cpu_ipi(cpu, xc);
1442 #endif
1443 
1444 	/* Disable and free the queues */
1445 	xive_cleanup_cpu_queues(cpu, xc);
1446 }
1447 
1448 void xive_shutdown(void)
1449 {
1450 	xive_ops->shutdown();
1451 }
1452 
1453 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1454 			   u8 max_prio)
1455 {
1456 	xive_tima = area;
1457 	xive_tima_offset = offset;
1458 	xive_ops = ops;
1459 	xive_irq_priority = max_prio;
1460 
1461 	ppc_md.get_irq = xive_get_irq;
1462 	__xive_enabled = true;
1463 
1464 	pr_devel("Initializing host..\n");
1465 	xive_init_host();
1466 
1467 	pr_devel("Initializing boot CPU..\n");
1468 
1469 	/* Allocate per-CPU data and queues */
1470 	xive_prepare_cpu(smp_processor_id());
1471 
1472 	/* Get ready for interrupts */
1473 	xive_setup_cpu();
1474 
1475 	pr_info("Interrupt handling initialized with %s backend\n",
1476 		xive_ops->name);
1477 	pr_info("Using priority %d for all interrupts\n", max_prio);
1478 
1479 	return true;
1480 }
1481 
1482 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1483 {
1484 	unsigned int alloc_order;
1485 	struct page *pages;
1486 	__be32 *qpage;
1487 
1488 	alloc_order = xive_alloc_order(queue_shift);
1489 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1490 	if (!pages)
1491 		return ERR_PTR(-ENOMEM);
1492 	qpage = (__be32 *)page_address(pages);
1493 	memset(qpage, 0, 1 << queue_shift);
1494 
1495 	return qpage;
1496 }
1497 
1498 static int __init xive_off(char *arg)
1499 {
1500 	xive_cmdline_disabled = true;
1501 	return 0;
1502 }
1503 __setup("xive=off", xive_off);
1504