1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2016,2017 IBM Corporation. 4 */ 5 6 #define pr_fmt(fmt) "xive: " fmt 7 8 #include <linux/types.h> 9 #include <linux/threads.h> 10 #include <linux/kernel.h> 11 #include <linux/irq.h> 12 #include <linux/debugfs.h> 13 #include <linux/smp.h> 14 #include <linux/interrupt.h> 15 #include <linux/seq_file.h> 16 #include <linux/init.h> 17 #include <linux/cpu.h> 18 #include <linux/of.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/msi.h> 22 23 #include <asm/prom.h> 24 #include <asm/io.h> 25 #include <asm/smp.h> 26 #include <asm/machdep.h> 27 #include <asm/irq.h> 28 #include <asm/errno.h> 29 #include <asm/xive.h> 30 #include <asm/xive-regs.h> 31 #include <asm/xmon.h> 32 33 #include "xive-internal.h" 34 35 #undef DEBUG_FLUSH 36 #undef DEBUG_ALL 37 38 #ifdef DEBUG_ALL 39 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ 40 smp_processor_id(), ## __VA_ARGS__) 41 #else 42 #define DBG_VERBOSE(fmt...) do { } while(0) 43 #endif 44 45 bool __xive_enabled; 46 EXPORT_SYMBOL_GPL(__xive_enabled); 47 bool xive_cmdline_disabled; 48 49 /* We use only one priority for now */ 50 static u8 xive_irq_priority; 51 52 /* TIMA exported to KVM */ 53 void __iomem *xive_tima; 54 EXPORT_SYMBOL_GPL(xive_tima); 55 u32 xive_tima_offset; 56 57 /* Backend ops */ 58 static const struct xive_ops *xive_ops; 59 60 /* Our global interrupt domain */ 61 static struct irq_domain *xive_irq_domain; 62 63 #ifdef CONFIG_SMP 64 /* The IPIs all use the same logical irq number */ 65 static u32 xive_ipi_irq; 66 #endif 67 68 /* Xive state for each CPU */ 69 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); 70 71 /* 72 * A "disabled" interrupt should never fire, to catch problems 73 * we set its logical number to this 74 */ 75 #define XIVE_BAD_IRQ 0x7fffffff 76 #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1) 77 78 /* An invalid CPU target */ 79 #define XIVE_INVALID_TARGET (-1) 80 81 /* 82 * Read the next entry in a queue, return its content if it's valid 83 * or 0 if there is no new entry. 84 * 85 * The queue pointer is moved forward unless "just_peek" is set 86 */ 87 static u32 xive_read_eq(struct xive_q *q, bool just_peek) 88 { 89 u32 cur; 90 91 if (!q->qpage) 92 return 0; 93 cur = be32_to_cpup(q->qpage + q->idx); 94 95 /* Check valid bit (31) vs current toggle polarity */ 96 if ((cur >> 31) == q->toggle) 97 return 0; 98 99 /* If consuming from the queue ... */ 100 if (!just_peek) { 101 /* Next entry */ 102 q->idx = (q->idx + 1) & q->msk; 103 104 /* Wrap around: flip valid toggle */ 105 if (q->idx == 0) 106 q->toggle ^= 1; 107 } 108 /* Mask out the valid bit (31) */ 109 return cur & 0x7fffffff; 110 } 111 112 /* 113 * Scans all the queue that may have interrupts in them 114 * (based on "pending_prio") in priority order until an 115 * interrupt is found or all the queues are empty. 116 * 117 * Then updates the CPPR (Current Processor Priority 118 * Register) based on the most favored interrupt found 119 * (0xff if none) and return what was found (0 if none). 120 * 121 * If just_peek is set, return the most favored pending 122 * interrupt if any but don't update the queue pointers. 123 * 124 * Note: This function can operate generically on any number 125 * of queues (up to 8). The current implementation of the XIVE 126 * driver only uses a single queue however. 127 * 128 * Note2: This will also "flush" "the pending_count" of a queue 129 * into the "count" when that queue is observed to be empty. 130 * This is used to keep track of the amount of interrupts 131 * targetting a queue. When an interrupt is moved away from 132 * a queue, we only decrement that queue count once the queue 133 * has been observed empty to avoid races. 134 */ 135 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) 136 { 137 u32 irq = 0; 138 u8 prio = 0; 139 140 /* Find highest pending priority */ 141 while (xc->pending_prio != 0) { 142 struct xive_q *q; 143 144 prio = ffs(xc->pending_prio) - 1; 145 DBG_VERBOSE("scan_irq: trying prio %d\n", prio); 146 147 /* Try to fetch */ 148 irq = xive_read_eq(&xc->queue[prio], just_peek); 149 150 /* Found something ? That's it */ 151 if (irq) { 152 if (just_peek || irq_to_desc(irq)) 153 break; 154 /* 155 * We should never get here; if we do then we must 156 * have failed to synchronize the interrupt properly 157 * when shutting it down. 158 */ 159 pr_crit("xive: got interrupt %d without descriptor, dropping\n", 160 irq); 161 WARN_ON(1); 162 continue; 163 } 164 165 /* Clear pending bits */ 166 xc->pending_prio &= ~(1 << prio); 167 168 /* 169 * Check if the queue count needs adjusting due to 170 * interrupts being moved away. See description of 171 * xive_dec_target_count() 172 */ 173 q = &xc->queue[prio]; 174 if (atomic_read(&q->pending_count)) { 175 int p = atomic_xchg(&q->pending_count, 0); 176 if (p) { 177 WARN_ON(p > atomic_read(&q->count)); 178 atomic_sub(p, &q->count); 179 } 180 } 181 } 182 183 /* If nothing was found, set CPPR to 0xff */ 184 if (irq == 0) 185 prio = 0xff; 186 187 /* Update HW CPPR to match if necessary */ 188 if (prio != xc->cppr) { 189 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); 190 xc->cppr = prio; 191 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); 192 } 193 194 return irq; 195 } 196 197 /* 198 * This is used to perform the magic loads from an ESB 199 * described in xive.h 200 */ 201 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) 202 { 203 u64 val; 204 205 /* Handle HW errata */ 206 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) 207 offset |= offset << 4; 208 209 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 210 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); 211 else 212 val = in_be64(xd->eoi_mmio + offset); 213 214 return (u8)val; 215 } 216 217 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) 218 { 219 /* Handle HW errata */ 220 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) 221 offset |= offset << 4; 222 223 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) 224 xive_ops->esb_rw(xd->hw_irq, offset, data, 1); 225 else 226 out_be64(xd->eoi_mmio + offset, data); 227 } 228 229 #ifdef CONFIG_XMON 230 static notrace void xive_dump_eq(const char *name, struct xive_q *q) 231 { 232 u32 i0, i1, idx; 233 234 if (!q->qpage) 235 return; 236 idx = q->idx; 237 i0 = be32_to_cpup(q->qpage + idx); 238 idx = (idx + 1) & q->msk; 239 i1 = be32_to_cpup(q->qpage + idx); 240 xmon_printf(" %s Q T=%d %08x %08x ...\n", name, 241 q->toggle, i0, i1); 242 } 243 244 notrace void xmon_xive_do_dump(int cpu) 245 { 246 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 247 248 xmon_printf("XIVE state for CPU %d:\n", cpu); 249 xmon_printf(" pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr); 250 xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]); 251 #ifdef CONFIG_SMP 252 { 253 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); 254 xmon_printf(" IPI state: %x:%c%c\n", xc->hw_ipi, 255 val & XIVE_ESB_VAL_P ? 'P' : 'p', 256 val & XIVE_ESB_VAL_Q ? 'Q' : 'q'); 257 } 258 #endif 259 } 260 #endif /* CONFIG_XMON */ 261 262 static unsigned int xive_get_irq(void) 263 { 264 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 265 u32 irq; 266 267 /* 268 * This can be called either as a result of a HW interrupt or 269 * as a "replay" because EOI decided there was still something 270 * in one of the queues. 271 * 272 * First we perform an ACK cycle in order to update our mask 273 * of pending priorities. This will also have the effect of 274 * updating the CPPR to the most favored pending interrupts. 275 * 276 * In the future, if we have a way to differentiate a first 277 * entry (on HW interrupt) from a replay triggered by EOI, 278 * we could skip this on replays unless we soft-mask tells us 279 * that a new HW interrupt occurred. 280 */ 281 xive_ops->update_pending(xc); 282 283 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); 284 285 /* Scan our queue(s) for interrupts */ 286 irq = xive_scan_interrupts(xc, false); 287 288 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", 289 irq, xc->pending_prio); 290 291 /* Return pending interrupt if any */ 292 if (irq == XIVE_BAD_IRQ) 293 return 0; 294 return irq; 295 } 296 297 /* 298 * After EOI'ing an interrupt, we need to re-check the queue 299 * to see if another interrupt is pending since multiple 300 * interrupts can coalesce into a single notification to the 301 * CPU. 302 * 303 * If we find that there is indeed more in there, we call 304 * force_external_irq_replay() to make Linux synthetize an 305 * external interrupt on the next call to local_irq_restore(). 306 */ 307 static void xive_do_queue_eoi(struct xive_cpu *xc) 308 { 309 if (xive_scan_interrupts(xc, true) != 0) { 310 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); 311 force_external_irq_replay(); 312 } 313 } 314 315 /* 316 * EOI an interrupt at the source. There are several methods 317 * to do this depending on the HW version and source type 318 */ 319 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd) 320 { 321 xd->stale_p = false; 322 /* If the XIVE supports the new "store EOI facility, use it */ 323 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) 324 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); 325 else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) { 326 /* 327 * The FW told us to call it. This happens for some 328 * interrupt sources that need additional HW whacking 329 * beyond the ESB manipulation. For example LPC interrupts 330 * on P9 DD1.0 needed a latch to be clared in the LPC bridge 331 * itself. The Firmware will take care of it. 332 */ 333 if (WARN_ON_ONCE(!xive_ops->eoi)) 334 return; 335 xive_ops->eoi(hw_irq); 336 } else { 337 u8 eoi_val; 338 339 /* 340 * Otherwise for EOI, we use the special MMIO that does 341 * a clear of both P and Q and returns the old Q, 342 * except for LSIs where we use the "EOI cycle" special 343 * load. 344 * 345 * This allows us to then do a re-trigger if Q was set 346 * rather than synthesizing an interrupt in software 347 * 348 * For LSIs the HW EOI cycle is used rather than PQ bits, 349 * as they are automatically re-triggred in HW when still 350 * pending. 351 */ 352 if (xd->flags & XIVE_IRQ_FLAG_LSI) 353 xive_esb_read(xd, XIVE_ESB_LOAD_EOI); 354 else { 355 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 356 DBG_VERBOSE("eoi_val=%x\n", eoi_val); 357 358 /* Re-trigger if needed */ 359 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) 360 out_be64(xd->trig_mmio, 0); 361 } 362 } 363 } 364 365 /* irq_chip eoi callback, called with irq descriptor lock held */ 366 static void xive_irq_eoi(struct irq_data *d) 367 { 368 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 369 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 370 371 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", 372 d->irq, irqd_to_hwirq(d), xc->pending_prio); 373 374 /* 375 * EOI the source if it hasn't been disabled and hasn't 376 * been passed-through to a KVM guest 377 */ 378 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) && 379 !(xd->flags & XIVE_IRQ_NO_EOI)) 380 xive_do_source_eoi(irqd_to_hwirq(d), xd); 381 else 382 xd->stale_p = true; 383 384 /* 385 * Clear saved_p to indicate that it's no longer occupying 386 * a queue slot on the target queue 387 */ 388 xd->saved_p = false; 389 390 /* Check for more work in the queue */ 391 xive_do_queue_eoi(xc); 392 } 393 394 /* 395 * Helper used to mask and unmask an interrupt source. This 396 * is only called for normal interrupts that do not require 397 * masking/unmasking via firmware. 398 */ 399 static void xive_do_source_set_mask(struct xive_irq_data *xd, 400 bool mask) 401 { 402 u64 val; 403 404 /* 405 * If the interrupt had P set, it may be in a queue. 406 * 407 * We need to make sure we don't re-enable it until it 408 * has been fetched from that queue and EOId. We keep 409 * a copy of that P state and use it to restore the 410 * ESB accordingly on unmask. 411 */ 412 if (mask) { 413 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); 414 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P)) 415 xd->saved_p = true; 416 xd->stale_p = false; 417 } else if (xd->saved_p) { 418 xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 419 xd->saved_p = false; 420 } else { 421 xive_esb_read(xd, XIVE_ESB_SET_PQ_00); 422 xd->stale_p = false; 423 } 424 } 425 426 /* 427 * Try to chose "cpu" as a new interrupt target. Increments 428 * the queue accounting for that target if it's not already 429 * full. 430 */ 431 static bool xive_try_pick_target(int cpu) 432 { 433 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 434 struct xive_q *q = &xc->queue[xive_irq_priority]; 435 int max; 436 437 /* 438 * Calculate max number of interrupts in that queue. 439 * 440 * We leave a gap of 1 just in case... 441 */ 442 max = (q->msk + 1) - 1; 443 return !!atomic_add_unless(&q->count, 1, max); 444 } 445 446 /* 447 * Un-account an interrupt for a target CPU. We don't directly 448 * decrement q->count since the interrupt might still be present 449 * in the queue. 450 * 451 * Instead increment a separate counter "pending_count" which 452 * will be substracted from "count" later when that CPU observes 453 * the queue to be empty. 454 */ 455 static void xive_dec_target_count(int cpu) 456 { 457 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 458 struct xive_q *q = &xc->queue[xive_irq_priority]; 459 460 if (WARN_ON(cpu < 0 || !xc)) { 461 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); 462 return; 463 } 464 465 /* 466 * We increment the "pending count" which will be used 467 * to decrement the target queue count whenever it's next 468 * processed and found empty. This ensure that we don't 469 * decrement while we still have the interrupt there 470 * occupying a slot. 471 */ 472 atomic_inc(&q->pending_count); 473 } 474 475 /* Find a tentative CPU target in a CPU mask */ 476 static int xive_find_target_in_mask(const struct cpumask *mask, 477 unsigned int fuzz) 478 { 479 int cpu, first, num, i; 480 481 /* Pick up a starting point CPU in the mask based on fuzz */ 482 num = min_t(int, cpumask_weight(mask), nr_cpu_ids); 483 first = fuzz % num; 484 485 /* Locate it */ 486 cpu = cpumask_first(mask); 487 for (i = 0; i < first && cpu < nr_cpu_ids; i++) 488 cpu = cpumask_next(cpu, mask); 489 490 /* Sanity check */ 491 if (WARN_ON(cpu >= nr_cpu_ids)) 492 cpu = cpumask_first(cpu_online_mask); 493 494 /* Remember first one to handle wrap-around */ 495 first = cpu; 496 497 /* 498 * Now go through the entire mask until we find a valid 499 * target. 500 */ 501 do { 502 /* 503 * We re-check online as the fallback case passes us 504 * an untested affinity mask 505 */ 506 if (cpu_online(cpu) && xive_try_pick_target(cpu)) 507 return cpu; 508 cpu = cpumask_next(cpu, mask); 509 /* Wrap around */ 510 if (cpu >= nr_cpu_ids) 511 cpu = cpumask_first(mask); 512 } while (cpu != first); 513 514 return -1; 515 } 516 517 /* 518 * Pick a target CPU for an interrupt. This is done at 519 * startup or if the affinity is changed in a way that 520 * invalidates the current target. 521 */ 522 static int xive_pick_irq_target(struct irq_data *d, 523 const struct cpumask *affinity) 524 { 525 static unsigned int fuzz; 526 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 527 cpumask_var_t mask; 528 int cpu = -1; 529 530 /* 531 * If we have chip IDs, first we try to build a mask of 532 * CPUs matching the CPU and find a target in there 533 */ 534 if (xd->src_chip != XIVE_INVALID_CHIP_ID && 535 zalloc_cpumask_var(&mask, GFP_ATOMIC)) { 536 /* Build a mask of matching chip IDs */ 537 for_each_cpu_and(cpu, affinity, cpu_online_mask) { 538 struct xive_cpu *xc = per_cpu(xive_cpu, cpu); 539 if (xc->chip_id == xd->src_chip) 540 cpumask_set_cpu(cpu, mask); 541 } 542 /* Try to find a target */ 543 if (cpumask_empty(mask)) 544 cpu = -1; 545 else 546 cpu = xive_find_target_in_mask(mask, fuzz++); 547 free_cpumask_var(mask); 548 if (cpu >= 0) 549 return cpu; 550 fuzz--; 551 } 552 553 /* No chip IDs, fallback to using the affinity mask */ 554 return xive_find_target_in_mask(affinity, fuzz++); 555 } 556 557 static unsigned int xive_irq_startup(struct irq_data *d) 558 { 559 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 560 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 561 int target, rc; 562 563 xd->saved_p = false; 564 xd->stale_p = false; 565 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n", 566 d->irq, hw_irq, d); 567 568 #ifdef CONFIG_PCI_MSI 569 /* 570 * The generic MSI code returns with the interrupt disabled on the 571 * card, using the MSI mask bits. Firmware doesn't appear to unmask 572 * at that level, so we do it here by hand. 573 */ 574 if (irq_data_get_msi_desc(d)) 575 pci_msi_unmask_irq(d); 576 #endif 577 578 /* Pick a target */ 579 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); 580 if (target == XIVE_INVALID_TARGET) { 581 /* Try again breaking affinity */ 582 target = xive_pick_irq_target(d, cpu_online_mask); 583 if (target == XIVE_INVALID_TARGET) 584 return -ENXIO; 585 pr_warn("irq %d started with broken affinity\n", d->irq); 586 } 587 588 /* Sanity check */ 589 if (WARN_ON(target == XIVE_INVALID_TARGET || 590 target >= nr_cpu_ids)) 591 target = smp_processor_id(); 592 593 xd->target = target; 594 595 /* 596 * Configure the logical number to be the Linux IRQ number 597 * and set the target queue 598 */ 599 rc = xive_ops->configure_irq(hw_irq, 600 get_hard_smp_processor_id(target), 601 xive_irq_priority, d->irq); 602 if (rc) 603 return rc; 604 605 /* Unmask the ESB */ 606 xive_do_source_set_mask(xd, false); 607 608 return 0; 609 } 610 611 /* called with irq descriptor lock held */ 612 static void xive_irq_shutdown(struct irq_data *d) 613 { 614 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 615 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 616 617 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n", 618 d->irq, hw_irq, d); 619 620 if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) 621 return; 622 623 /* Mask the interrupt at the source */ 624 xive_do_source_set_mask(xd, true); 625 626 /* 627 * Mask the interrupt in HW in the IVT/EAS and set the number 628 * to be the "bad" IRQ number 629 */ 630 xive_ops->configure_irq(hw_irq, 631 get_hard_smp_processor_id(xd->target), 632 0xff, XIVE_BAD_IRQ); 633 634 xive_dec_target_count(xd->target); 635 xd->target = XIVE_INVALID_TARGET; 636 } 637 638 static void xive_irq_unmask(struct irq_data *d) 639 { 640 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 641 642 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd); 643 644 /* 645 * This is a workaround for PCI LSI problems on P9, for 646 * these, we call FW to set the mask. The problems might 647 * be fixed by P9 DD2.0, if that is the case, firmware 648 * will no longer set that flag. 649 */ 650 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { 651 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 652 xive_ops->configure_irq(hw_irq, 653 get_hard_smp_processor_id(xd->target), 654 xive_irq_priority, d->irq); 655 return; 656 } 657 658 xive_do_source_set_mask(xd, false); 659 } 660 661 static void xive_irq_mask(struct irq_data *d) 662 { 663 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 664 665 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd); 666 667 /* 668 * This is a workaround for PCI LSI problems on P9, for 669 * these, we call OPAL to set the mask. The problems might 670 * be fixed by P9 DD2.0, if that is the case, firmware 671 * will no longer set that flag. 672 */ 673 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { 674 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 675 xive_ops->configure_irq(hw_irq, 676 get_hard_smp_processor_id(xd->target), 677 0xff, d->irq); 678 return; 679 } 680 681 xive_do_source_set_mask(xd, true); 682 } 683 684 static int xive_irq_set_affinity(struct irq_data *d, 685 const struct cpumask *cpumask, 686 bool force) 687 { 688 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 689 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 690 u32 target, old_target; 691 int rc = 0; 692 693 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq); 694 695 /* Is this valid ? */ 696 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) 697 return -EINVAL; 698 699 /* Don't do anything if the interrupt isn't started */ 700 if (!irqd_is_started(d)) 701 return IRQ_SET_MASK_OK; 702 703 /* 704 * If existing target is already in the new mask, and is 705 * online then do nothing. 706 */ 707 if (xd->target != XIVE_INVALID_TARGET && 708 cpu_online(xd->target) && 709 cpumask_test_cpu(xd->target, cpumask)) 710 return IRQ_SET_MASK_OK; 711 712 /* Pick a new target */ 713 target = xive_pick_irq_target(d, cpumask); 714 715 /* No target found */ 716 if (target == XIVE_INVALID_TARGET) 717 return -ENXIO; 718 719 /* Sanity check */ 720 if (WARN_ON(target >= nr_cpu_ids)) 721 target = smp_processor_id(); 722 723 old_target = xd->target; 724 725 /* 726 * Only configure the irq if it's not currently passed-through to 727 * a KVM guest 728 */ 729 if (!irqd_is_forwarded_to_vcpu(d)) 730 rc = xive_ops->configure_irq(hw_irq, 731 get_hard_smp_processor_id(target), 732 xive_irq_priority, d->irq); 733 if (rc < 0) { 734 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); 735 return rc; 736 } 737 738 pr_devel(" target: 0x%x\n", target); 739 xd->target = target; 740 741 /* Give up previous target */ 742 if (old_target != XIVE_INVALID_TARGET) 743 xive_dec_target_count(old_target); 744 745 return IRQ_SET_MASK_OK; 746 } 747 748 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) 749 { 750 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 751 752 /* 753 * We only support these. This has really no effect other than setting 754 * the corresponding descriptor bits mind you but those will in turn 755 * affect the resend function when re-enabling an edge interrupt. 756 * 757 * Set set the default to edge as explained in map(). 758 */ 759 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) 760 flow_type = IRQ_TYPE_EDGE_RISING; 761 762 if (flow_type != IRQ_TYPE_EDGE_RISING && 763 flow_type != IRQ_TYPE_LEVEL_LOW) 764 return -EINVAL; 765 766 irqd_set_trigger_type(d, flow_type); 767 768 /* 769 * Double check it matches what the FW thinks 770 * 771 * NOTE: We don't know yet if the PAPR interface will provide 772 * the LSI vs MSI information apart from the device-tree so 773 * this check might have to move into an optional backend call 774 * that is specific to the native backend 775 */ 776 if ((flow_type == IRQ_TYPE_LEVEL_LOW) != 777 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { 778 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", 779 d->irq, (u32)irqd_to_hwirq(d), 780 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", 781 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); 782 } 783 784 return IRQ_SET_MASK_OK_NOCOPY; 785 } 786 787 static int xive_irq_retrigger(struct irq_data *d) 788 { 789 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 790 791 /* This should be only for MSIs */ 792 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) 793 return 0; 794 795 /* 796 * To perform a retrigger, we first set the PQ bits to 797 * 11, then perform an EOI. 798 */ 799 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 800 801 /* 802 * Note: We pass "0" to the hw_irq argument in order to 803 * avoid calling into the backend EOI code which we don't 804 * want to do in the case of a re-trigger. Backends typically 805 * only do EOI for LSIs anyway. 806 */ 807 xive_do_source_eoi(0, xd); 808 809 return 1; 810 } 811 812 /* 813 * Caller holds the irq descriptor lock, so this won't be called 814 * concurrently with xive_get_irqchip_state on the same interrupt. 815 */ 816 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) 817 { 818 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); 819 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 820 int rc; 821 u8 pq; 822 823 /* 824 * We only support this on interrupts that do not require 825 * firmware calls for masking and unmasking 826 */ 827 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) 828 return -EIO; 829 830 /* 831 * This is called by KVM with state non-NULL for enabling 832 * pass-through or NULL for disabling it 833 */ 834 if (state) { 835 irqd_set_forwarded_to_vcpu(d); 836 837 /* Set it to PQ=10 state to prevent further sends */ 838 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); 839 if (!xd->stale_p) { 840 xd->saved_p = !!(pq & XIVE_ESB_VAL_P); 841 xd->stale_p = !xd->saved_p; 842 } 843 844 /* No target ? nothing to do */ 845 if (xd->target == XIVE_INVALID_TARGET) { 846 /* 847 * An untargetted interrupt should have been 848 * also masked at the source 849 */ 850 WARN_ON(xd->saved_p); 851 852 return 0; 853 } 854 855 /* 856 * If P was set, adjust state to PQ=11 to indicate 857 * that a resend is needed for the interrupt to reach 858 * the guest. Also remember the value of P. 859 * 860 * This also tells us that it's in flight to a host queue 861 * or has already been fetched but hasn't been EOIed yet 862 * by the host. This it's potentially using up a host 863 * queue slot. This is important to know because as long 864 * as this is the case, we must not hard-unmask it when 865 * "returning" that interrupt to the host. 866 * 867 * This saved_p is cleared by the host EOI, when we know 868 * for sure the queue slot is no longer in use. 869 */ 870 if (xd->saved_p) { 871 xive_esb_read(xd, XIVE_ESB_SET_PQ_11); 872 873 /* 874 * Sync the XIVE source HW to ensure the interrupt 875 * has gone through the EAS before we change its 876 * target to the guest. That should guarantee us 877 * that we *will* eventually get an EOI for it on 878 * the host. Otherwise there would be a small window 879 * for P to be seen here but the interrupt going 880 * to the guest queue. 881 */ 882 if (xive_ops->sync_source) 883 xive_ops->sync_source(hw_irq); 884 } 885 } else { 886 irqd_clr_forwarded_to_vcpu(d); 887 888 /* No host target ? hard mask and return */ 889 if (xd->target == XIVE_INVALID_TARGET) { 890 xive_do_source_set_mask(xd, true); 891 return 0; 892 } 893 894 /* 895 * Sync the XIVE source HW to ensure the interrupt 896 * has gone through the EAS before we change its 897 * target to the host. 898 */ 899 if (xive_ops->sync_source) 900 xive_ops->sync_source(hw_irq); 901 902 /* 903 * By convention we are called with the interrupt in 904 * a PQ=10 or PQ=11 state, ie, it won't fire and will 905 * have latched in Q whether there's a pending HW 906 * interrupt or not. 907 * 908 * First reconfigure the target. 909 */ 910 rc = xive_ops->configure_irq(hw_irq, 911 get_hard_smp_processor_id(xd->target), 912 xive_irq_priority, d->irq); 913 if (rc) 914 return rc; 915 916 /* 917 * Then if saved_p is not set, effectively re-enable the 918 * interrupt with an EOI. If it is set, we know there is 919 * still a message in a host queue somewhere that will be 920 * EOId eventually. 921 * 922 * Note: We don't check irqd_irq_disabled(). Effectively, 923 * we *will* let the irq get through even if masked if the 924 * HW is still firing it in order to deal with the whole 925 * saved_p business properly. If the interrupt triggers 926 * while masked, the generic code will re-mask it anyway. 927 */ 928 if (!xd->saved_p) 929 xive_do_source_eoi(hw_irq, xd); 930 931 } 932 return 0; 933 } 934 935 /* Called with irq descriptor lock held. */ 936 static int xive_get_irqchip_state(struct irq_data *data, 937 enum irqchip_irq_state which, bool *state) 938 { 939 struct xive_irq_data *xd = irq_data_get_irq_handler_data(data); 940 941 switch (which) { 942 case IRQCHIP_STATE_ACTIVE: 943 *state = !xd->stale_p && 944 (xd->saved_p || 945 !!(xive_esb_read(xd, XIVE_ESB_GET) & XIVE_ESB_VAL_P)); 946 return 0; 947 default: 948 return -EINVAL; 949 } 950 } 951 952 static struct irq_chip xive_irq_chip = { 953 .name = "XIVE-IRQ", 954 .irq_startup = xive_irq_startup, 955 .irq_shutdown = xive_irq_shutdown, 956 .irq_eoi = xive_irq_eoi, 957 .irq_mask = xive_irq_mask, 958 .irq_unmask = xive_irq_unmask, 959 .irq_set_affinity = xive_irq_set_affinity, 960 .irq_set_type = xive_irq_set_type, 961 .irq_retrigger = xive_irq_retrigger, 962 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, 963 .irq_get_irqchip_state = xive_get_irqchip_state, 964 }; 965 966 bool is_xive_irq(struct irq_chip *chip) 967 { 968 return chip == &xive_irq_chip; 969 } 970 EXPORT_SYMBOL_GPL(is_xive_irq); 971 972 void xive_cleanup_irq_data(struct xive_irq_data *xd) 973 { 974 if (xd->eoi_mmio) { 975 iounmap(xd->eoi_mmio); 976 if (xd->eoi_mmio == xd->trig_mmio) 977 xd->trig_mmio = NULL; 978 xd->eoi_mmio = NULL; 979 } 980 if (xd->trig_mmio) { 981 iounmap(xd->trig_mmio); 982 xd->trig_mmio = NULL; 983 } 984 } 985 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); 986 987 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) 988 { 989 struct xive_irq_data *xd; 990 int rc; 991 992 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); 993 if (!xd) 994 return -ENOMEM; 995 rc = xive_ops->populate_irq_data(hw, xd); 996 if (rc) { 997 kfree(xd); 998 return rc; 999 } 1000 xd->target = XIVE_INVALID_TARGET; 1001 irq_set_handler_data(virq, xd); 1002 1003 return 0; 1004 } 1005 1006 static void xive_irq_free_data(unsigned int virq) 1007 { 1008 struct xive_irq_data *xd = irq_get_handler_data(virq); 1009 1010 if (!xd) 1011 return; 1012 irq_set_handler_data(virq, NULL); 1013 xive_cleanup_irq_data(xd); 1014 kfree(xd); 1015 } 1016 1017 #ifdef CONFIG_SMP 1018 1019 static void xive_cause_ipi(int cpu) 1020 { 1021 struct xive_cpu *xc; 1022 struct xive_irq_data *xd; 1023 1024 xc = per_cpu(xive_cpu, cpu); 1025 1026 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", 1027 smp_processor_id(), cpu, xc->hw_ipi); 1028 1029 xd = &xc->ipi_data; 1030 if (WARN_ON(!xd->trig_mmio)) 1031 return; 1032 out_be64(xd->trig_mmio, 0); 1033 } 1034 1035 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) 1036 { 1037 return smp_ipi_demux(); 1038 } 1039 1040 static void xive_ipi_eoi(struct irq_data *d) 1041 { 1042 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1043 1044 /* Handle possible race with unplug and drop stale IPIs */ 1045 if (!xc) 1046 return; 1047 1048 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", 1049 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); 1050 1051 xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data); 1052 xive_do_queue_eoi(xc); 1053 } 1054 1055 static void xive_ipi_do_nothing(struct irq_data *d) 1056 { 1057 /* 1058 * Nothing to do, we never mask/unmask IPIs, but the callback 1059 * has to exist for the struct irq_chip. 1060 */ 1061 } 1062 1063 static struct irq_chip xive_ipi_chip = { 1064 .name = "XIVE-IPI", 1065 .irq_eoi = xive_ipi_eoi, 1066 .irq_mask = xive_ipi_do_nothing, 1067 .irq_unmask = xive_ipi_do_nothing, 1068 }; 1069 1070 static void __init xive_request_ipi(void) 1071 { 1072 unsigned int virq; 1073 1074 /* 1075 * Initialization failed, move on, we might manage to 1076 * reach the point where we display our errors before 1077 * the system falls appart 1078 */ 1079 if (!xive_irq_domain) 1080 return; 1081 1082 /* Initialize it */ 1083 virq = irq_create_mapping(xive_irq_domain, 0); 1084 xive_ipi_irq = virq; 1085 1086 WARN_ON(request_irq(virq, xive_muxed_ipi_action, 1087 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL)); 1088 } 1089 1090 static int xive_setup_cpu_ipi(unsigned int cpu) 1091 { 1092 struct xive_cpu *xc; 1093 int rc; 1094 1095 pr_debug("Setting up IPI for CPU %d\n", cpu); 1096 1097 xc = per_cpu(xive_cpu, cpu); 1098 1099 /* Check if we are already setup */ 1100 if (xc->hw_ipi != 0) 1101 return 0; 1102 1103 /* Grab an IPI from the backend, this will populate xc->hw_ipi */ 1104 if (xive_ops->get_ipi(cpu, xc)) 1105 return -EIO; 1106 1107 /* 1108 * Populate the IRQ data in the xive_cpu structure and 1109 * configure the HW / enable the IPIs. 1110 */ 1111 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); 1112 if (rc) { 1113 pr_err("Failed to populate IPI data on CPU %d\n", cpu); 1114 return -EIO; 1115 } 1116 rc = xive_ops->configure_irq(xc->hw_ipi, 1117 get_hard_smp_processor_id(cpu), 1118 xive_irq_priority, xive_ipi_irq); 1119 if (rc) { 1120 pr_err("Failed to map IPI CPU %d\n", cpu); 1121 return -EIO; 1122 } 1123 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu, 1124 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); 1125 1126 /* Unmask it */ 1127 xive_do_source_set_mask(&xc->ipi_data, false); 1128 1129 return 0; 1130 } 1131 1132 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) 1133 { 1134 /* Disable the IPI and free the IRQ data */ 1135 1136 /* Already cleaned up ? */ 1137 if (xc->hw_ipi == 0) 1138 return; 1139 1140 /* Mask the IPI */ 1141 xive_do_source_set_mask(&xc->ipi_data, true); 1142 1143 /* 1144 * Note: We don't call xive_cleanup_irq_data() to free 1145 * the mappings as this is called from an IPI on kexec 1146 * which is not a safe environment to call iounmap() 1147 */ 1148 1149 /* Deconfigure/mask in the backend */ 1150 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), 1151 0xff, xive_ipi_irq); 1152 1153 /* Free the IPIs in the backend */ 1154 xive_ops->put_ipi(cpu, xc); 1155 } 1156 1157 void __init xive_smp_probe(void) 1158 { 1159 smp_ops->cause_ipi = xive_cause_ipi; 1160 1161 /* Register the IPI */ 1162 xive_request_ipi(); 1163 1164 /* Allocate and setup IPI for the boot CPU */ 1165 xive_setup_cpu_ipi(smp_processor_id()); 1166 } 1167 1168 #endif /* CONFIG_SMP */ 1169 1170 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, 1171 irq_hw_number_t hw) 1172 { 1173 int rc; 1174 1175 /* 1176 * Mark interrupts as edge sensitive by default so that resend 1177 * actually works. Will fix that up below if needed. 1178 */ 1179 irq_clear_status_flags(virq, IRQ_LEVEL); 1180 1181 #ifdef CONFIG_SMP 1182 /* IPIs are special and come up with HW number 0 */ 1183 if (hw == 0) { 1184 /* 1185 * IPIs are marked per-cpu. We use separate HW interrupts under 1186 * the hood but associated with the same "linux" interrupt 1187 */ 1188 irq_set_chip_and_handler(virq, &xive_ipi_chip, 1189 handle_percpu_irq); 1190 return 0; 1191 } 1192 #endif 1193 1194 rc = xive_irq_alloc_data(virq, hw); 1195 if (rc) 1196 return rc; 1197 1198 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); 1199 1200 return 0; 1201 } 1202 1203 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) 1204 { 1205 struct irq_data *data = irq_get_irq_data(virq); 1206 unsigned int hw_irq; 1207 1208 /* XXX Assign BAD number */ 1209 if (!data) 1210 return; 1211 hw_irq = (unsigned int)irqd_to_hwirq(data); 1212 if (hw_irq) 1213 xive_irq_free_data(virq); 1214 } 1215 1216 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, 1217 const u32 *intspec, unsigned int intsize, 1218 irq_hw_number_t *out_hwirq, unsigned int *out_flags) 1219 1220 { 1221 *out_hwirq = intspec[0]; 1222 1223 /* 1224 * If intsize is at least 2, we look for the type in the second cell, 1225 * we assume the LSB indicates a level interrupt. 1226 */ 1227 if (intsize > 1) { 1228 if (intspec[1] & 1) 1229 *out_flags = IRQ_TYPE_LEVEL_LOW; 1230 else 1231 *out_flags = IRQ_TYPE_EDGE_RISING; 1232 } else 1233 *out_flags = IRQ_TYPE_LEVEL_LOW; 1234 1235 return 0; 1236 } 1237 1238 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, 1239 enum irq_domain_bus_token bus_token) 1240 { 1241 return xive_ops->match(node); 1242 } 1243 1244 static const struct irq_domain_ops xive_irq_domain_ops = { 1245 .match = xive_irq_domain_match, 1246 .map = xive_irq_domain_map, 1247 .unmap = xive_irq_domain_unmap, 1248 .xlate = xive_irq_domain_xlate, 1249 }; 1250 1251 static void __init xive_init_host(void) 1252 { 1253 xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ, 1254 &xive_irq_domain_ops, NULL); 1255 if (WARN_ON(xive_irq_domain == NULL)) 1256 return; 1257 irq_set_default_host(xive_irq_domain); 1258 } 1259 1260 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1261 { 1262 if (xc->queue[xive_irq_priority].qpage) 1263 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); 1264 } 1265 1266 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) 1267 { 1268 int rc = 0; 1269 1270 /* We setup 1 queues for now with a 64k page */ 1271 if (!xc->queue[xive_irq_priority].qpage) 1272 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); 1273 1274 return rc; 1275 } 1276 1277 static int xive_prepare_cpu(unsigned int cpu) 1278 { 1279 struct xive_cpu *xc; 1280 1281 xc = per_cpu(xive_cpu, cpu); 1282 if (!xc) { 1283 struct device_node *np; 1284 1285 xc = kzalloc_node(sizeof(struct xive_cpu), 1286 GFP_KERNEL, cpu_to_node(cpu)); 1287 if (!xc) 1288 return -ENOMEM; 1289 np = of_get_cpu_node(cpu, NULL); 1290 if (np) 1291 xc->chip_id = of_get_ibm_chip_id(np); 1292 of_node_put(np); 1293 1294 per_cpu(xive_cpu, cpu) = xc; 1295 } 1296 1297 /* Setup EQs if not already */ 1298 return xive_setup_cpu_queues(cpu, xc); 1299 } 1300 1301 static void xive_setup_cpu(void) 1302 { 1303 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1304 1305 /* The backend might have additional things to do */ 1306 if (xive_ops->setup_cpu) 1307 xive_ops->setup_cpu(smp_processor_id(), xc); 1308 1309 /* Set CPPR to 0xff to enable flow of interrupts */ 1310 xc->cppr = 0xff; 1311 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1312 } 1313 1314 #ifdef CONFIG_SMP 1315 void xive_smp_setup_cpu(void) 1316 { 1317 pr_devel("SMP setup CPU %d\n", smp_processor_id()); 1318 1319 /* This will have already been done on the boot CPU */ 1320 if (smp_processor_id() != boot_cpuid) 1321 xive_setup_cpu(); 1322 1323 } 1324 1325 int xive_smp_prepare_cpu(unsigned int cpu) 1326 { 1327 int rc; 1328 1329 /* Allocate per-CPU data and queues */ 1330 rc = xive_prepare_cpu(cpu); 1331 if (rc) 1332 return rc; 1333 1334 /* Allocate and setup IPI for the new CPU */ 1335 return xive_setup_cpu_ipi(cpu); 1336 } 1337 1338 #ifdef CONFIG_HOTPLUG_CPU 1339 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) 1340 { 1341 u32 irq; 1342 1343 /* We assume local irqs are disabled */ 1344 WARN_ON(!irqs_disabled()); 1345 1346 /* Check what's already in the CPU queue */ 1347 while ((irq = xive_scan_interrupts(xc, false)) != 0) { 1348 /* 1349 * We need to re-route that interrupt to its new destination. 1350 * First get and lock the descriptor 1351 */ 1352 struct irq_desc *desc = irq_to_desc(irq); 1353 struct irq_data *d = irq_desc_get_irq_data(desc); 1354 struct xive_irq_data *xd; 1355 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 1356 1357 /* 1358 * Ignore anything that isn't a XIVE irq and ignore 1359 * IPIs, so can just be dropped. 1360 */ 1361 if (d->domain != xive_irq_domain || hw_irq == 0) 1362 continue; 1363 1364 /* 1365 * The IRQ should have already been re-routed, it's just a 1366 * stale in the old queue, so re-trigger it in order to make 1367 * it reach is new destination. 1368 */ 1369 #ifdef DEBUG_FLUSH 1370 pr_info("CPU %d: Got irq %d while offline, re-sending...\n", 1371 cpu, irq); 1372 #endif 1373 raw_spin_lock(&desc->lock); 1374 xd = irq_desc_get_handler_data(desc); 1375 1376 /* 1377 * Clear saved_p to indicate that it's no longer pending 1378 */ 1379 xd->saved_p = false; 1380 1381 /* 1382 * For LSIs, we EOI, this will cause a resend if it's 1383 * still asserted. Otherwise do an MSI retrigger. 1384 */ 1385 if (xd->flags & XIVE_IRQ_FLAG_LSI) 1386 xive_do_source_eoi(irqd_to_hwirq(d), xd); 1387 else 1388 xive_irq_retrigger(d); 1389 1390 raw_spin_unlock(&desc->lock); 1391 } 1392 } 1393 1394 void xive_smp_disable_cpu(void) 1395 { 1396 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1397 unsigned int cpu = smp_processor_id(); 1398 1399 /* Migrate interrupts away from the CPU */ 1400 irq_migrate_all_off_this_cpu(); 1401 1402 /* Set CPPR to 0 to disable flow of interrupts */ 1403 xc->cppr = 0; 1404 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1405 1406 /* Flush everything still in the queue */ 1407 xive_flush_cpu_queue(cpu, xc); 1408 1409 /* Re-enable CPPR */ 1410 xc->cppr = 0xff; 1411 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); 1412 } 1413 1414 void xive_flush_interrupt(void) 1415 { 1416 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1417 unsigned int cpu = smp_processor_id(); 1418 1419 /* Called if an interrupt occurs while the CPU is hot unplugged */ 1420 xive_flush_cpu_queue(cpu, xc); 1421 } 1422 1423 #endif /* CONFIG_HOTPLUG_CPU */ 1424 1425 #endif /* CONFIG_SMP */ 1426 1427 void xive_teardown_cpu(void) 1428 { 1429 struct xive_cpu *xc = __this_cpu_read(xive_cpu); 1430 unsigned int cpu = smp_processor_id(); 1431 1432 /* Set CPPR to 0 to disable flow of interrupts */ 1433 xc->cppr = 0; 1434 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); 1435 1436 if (xive_ops->teardown_cpu) 1437 xive_ops->teardown_cpu(cpu, xc); 1438 1439 #ifdef CONFIG_SMP 1440 /* Get rid of IPI */ 1441 xive_cleanup_cpu_ipi(cpu, xc); 1442 #endif 1443 1444 /* Disable and free the queues */ 1445 xive_cleanup_cpu_queues(cpu, xc); 1446 } 1447 1448 void xive_shutdown(void) 1449 { 1450 xive_ops->shutdown(); 1451 } 1452 1453 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset, 1454 u8 max_prio) 1455 { 1456 xive_tima = area; 1457 xive_tima_offset = offset; 1458 xive_ops = ops; 1459 xive_irq_priority = max_prio; 1460 1461 ppc_md.get_irq = xive_get_irq; 1462 __xive_enabled = true; 1463 1464 pr_devel("Initializing host..\n"); 1465 xive_init_host(); 1466 1467 pr_devel("Initializing boot CPU..\n"); 1468 1469 /* Allocate per-CPU data and queues */ 1470 xive_prepare_cpu(smp_processor_id()); 1471 1472 /* Get ready for interrupts */ 1473 xive_setup_cpu(); 1474 1475 pr_info("Interrupt handling initialized with %s backend\n", 1476 xive_ops->name); 1477 pr_info("Using priority %d for all interrupts\n", max_prio); 1478 1479 return true; 1480 } 1481 1482 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) 1483 { 1484 unsigned int alloc_order; 1485 struct page *pages; 1486 __be32 *qpage; 1487 1488 alloc_order = xive_alloc_order(queue_shift); 1489 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); 1490 if (!pages) 1491 return ERR_PTR(-ENOMEM); 1492 qpage = (__be32 *)page_address(pages); 1493 memset(qpage, 0, 1 << queue_shift); 1494 1495 return qpage; 1496 } 1497 1498 static int __init xive_off(char *arg) 1499 { 1500 xive_cmdline_disabled = true; 1501 return 0; 1502 } 1503 __setup("xive=off", xive_off); 1504