xref: /linux/arch/powerpc/sysdev/xive/common.c (revision 9d106c6dd81bb26ad7fc3ee89cb1d62557c8e2c9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016,2017 IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive: " fmt
7 
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 
23 #include <asm/prom.h>
24 #include <asm/io.h>
25 #include <asm/smp.h>
26 #include <asm/machdep.h>
27 #include <asm/irq.h>
28 #include <asm/errno.h>
29 #include <asm/xive.h>
30 #include <asm/xive-regs.h>
31 #include <asm/xmon.h>
32 
33 #include "xive-internal.h"
34 
35 #undef DEBUG_FLUSH
36 #undef DEBUG_ALL
37 
38 #ifdef DEBUG_ALL
39 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
40 					 smp_processor_id(), ## __VA_ARGS__)
41 #else
42 #define DBG_VERBOSE(fmt...)	do { } while(0)
43 #endif
44 
45 bool __xive_enabled;
46 EXPORT_SYMBOL_GPL(__xive_enabled);
47 bool xive_cmdline_disabled;
48 
49 /* We use only one priority for now */
50 static u8 xive_irq_priority;
51 
52 /* TIMA exported to KVM */
53 void __iomem *xive_tima;
54 EXPORT_SYMBOL_GPL(xive_tima);
55 u32 xive_tima_offset;
56 
57 /* Backend ops */
58 static const struct xive_ops *xive_ops;
59 
60 /* Our global interrupt domain */
61 static struct irq_domain *xive_irq_domain;
62 
63 #ifdef CONFIG_SMP
64 /* The IPIs all use the same logical irq number */
65 static u32 xive_ipi_irq;
66 #endif
67 
68 /* Xive state for each CPU */
69 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
70 
71 /*
72  * A "disabled" interrupt should never fire, to catch problems
73  * we set its logical number to this
74  */
75 #define XIVE_BAD_IRQ		0x7fffffff
76 #define XIVE_MAX_IRQ		(XIVE_BAD_IRQ - 1)
77 
78 /* An invalid CPU target */
79 #define XIVE_INVALID_TARGET	(-1)
80 
81 /*
82  * Read the next entry in a queue, return its content if it's valid
83  * or 0 if there is no new entry.
84  *
85  * The queue pointer is moved forward unless "just_peek" is set
86  */
87 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
88 {
89 	u32 cur;
90 
91 	if (!q->qpage)
92 		return 0;
93 	cur = be32_to_cpup(q->qpage + q->idx);
94 
95 	/* Check valid bit (31) vs current toggle polarity */
96 	if ((cur >> 31) == q->toggle)
97 		return 0;
98 
99 	/* If consuming from the queue ... */
100 	if (!just_peek) {
101 		/* Next entry */
102 		q->idx = (q->idx + 1) & q->msk;
103 
104 		/* Wrap around: flip valid toggle */
105 		if (q->idx == 0)
106 			q->toggle ^= 1;
107 	}
108 	/* Mask out the valid bit (31) */
109 	return cur & 0x7fffffff;
110 }
111 
112 /*
113  * Scans all the queue that may have interrupts in them
114  * (based on "pending_prio") in priority order until an
115  * interrupt is found or all the queues are empty.
116  *
117  * Then updates the CPPR (Current Processor Priority
118  * Register) based on the most favored interrupt found
119  * (0xff if none) and return what was found (0 if none).
120  *
121  * If just_peek is set, return the most favored pending
122  * interrupt if any but don't update the queue pointers.
123  *
124  * Note: This function can operate generically on any number
125  * of queues (up to 8). The current implementation of the XIVE
126  * driver only uses a single queue however.
127  *
128  * Note2: This will also "flush" "the pending_count" of a queue
129  * into the "count" when that queue is observed to be empty.
130  * This is used to keep track of the amount of interrupts
131  * targetting a queue. When an interrupt is moved away from
132  * a queue, we only decrement that queue count once the queue
133  * has been observed empty to avoid races.
134  */
135 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
136 {
137 	u32 irq = 0;
138 	u8 prio = 0;
139 
140 	/* Find highest pending priority */
141 	while (xc->pending_prio != 0) {
142 		struct xive_q *q;
143 
144 		prio = ffs(xc->pending_prio) - 1;
145 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
146 
147 		/* Try to fetch */
148 		irq = xive_read_eq(&xc->queue[prio], just_peek);
149 
150 		/* Found something ? That's it */
151 		if (irq) {
152 			if (just_peek || irq_to_desc(irq))
153 				break;
154 			/*
155 			 * We should never get here; if we do then we must
156 			 * have failed to synchronize the interrupt properly
157 			 * when shutting it down.
158 			 */
159 			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
160 				irq);
161 			WARN_ON(1);
162 			continue;
163 		}
164 
165 		/* Clear pending bits */
166 		xc->pending_prio &= ~(1 << prio);
167 
168 		/*
169 		 * Check if the queue count needs adjusting due to
170 		 * interrupts being moved away. See description of
171 		 * xive_dec_target_count()
172 		 */
173 		q = &xc->queue[prio];
174 		if (atomic_read(&q->pending_count)) {
175 			int p = atomic_xchg(&q->pending_count, 0);
176 			if (p) {
177 				WARN_ON(p > atomic_read(&q->count));
178 				atomic_sub(p, &q->count);
179 			}
180 		}
181 	}
182 
183 	/* If nothing was found, set CPPR to 0xff */
184 	if (irq == 0)
185 		prio = 0xff;
186 
187 	/* Update HW CPPR to match if necessary */
188 	if (prio != xc->cppr) {
189 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
190 		xc->cppr = prio;
191 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
192 	}
193 
194 	return irq;
195 }
196 
197 /*
198  * This is used to perform the magic loads from an ESB
199  * described in xive-regs.h
200  */
201 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
202 {
203 	u64 val;
204 
205 	/* Handle HW errata */
206 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
207 		offset |= offset << 4;
208 
209 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
210 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
211 	else
212 		val = in_be64(xd->eoi_mmio + offset);
213 
214 	return (u8)val;
215 }
216 
217 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
218 {
219 	/* Handle HW errata */
220 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
221 		offset |= offset << 4;
222 
223 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
224 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
225 	else
226 		out_be64(xd->eoi_mmio + offset, data);
227 }
228 
229 #ifdef CONFIG_XMON
230 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
231 {
232 	u32 i0, i1, idx;
233 
234 	if (!q->qpage)
235 		return;
236 	idx = q->idx;
237 	i0 = be32_to_cpup(q->qpage + idx);
238 	idx = (idx + 1) & q->msk;
239 	i1 = be32_to_cpup(q->qpage + idx);
240 	xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
241 		     q->idx, q->toggle, i0, i1);
242 }
243 
244 notrace void xmon_xive_do_dump(int cpu)
245 {
246 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
247 
248 	xmon_printf("CPU %d:", cpu);
249 	if (xc) {
250 		xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
251 
252 #ifdef CONFIG_SMP
253 		{
254 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
255 
256 			xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
257 				    val & XIVE_ESB_VAL_P ? 'P' : '-',
258 				    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
259 		}
260 #endif
261 		xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
262 	}
263 	xmon_printf("\n");
264 }
265 
266 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
267 {
268 	int rc;
269 	u32 target;
270 	u8 prio;
271 	u32 lirq;
272 
273 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
274 	if (rc) {
275 		xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
276 		return rc;
277 	}
278 
279 	xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
280 		    hw_irq, target, prio, lirq);
281 
282 	if (d) {
283 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
284 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
285 
286 		xmon_printf("PQ=%c%c",
287 			    val & XIVE_ESB_VAL_P ? 'P' : '-',
288 			    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
289 	}
290 
291 	xmon_printf("\n");
292 	return 0;
293 }
294 
295 #endif /* CONFIG_XMON */
296 
297 static unsigned int xive_get_irq(void)
298 {
299 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
300 	u32 irq;
301 
302 	/*
303 	 * This can be called either as a result of a HW interrupt or
304 	 * as a "replay" because EOI decided there was still something
305 	 * in one of the queues.
306 	 *
307 	 * First we perform an ACK cycle in order to update our mask
308 	 * of pending priorities. This will also have the effect of
309 	 * updating the CPPR to the most favored pending interrupts.
310 	 *
311 	 * In the future, if we have a way to differentiate a first
312 	 * entry (on HW interrupt) from a replay triggered by EOI,
313 	 * we could skip this on replays unless we soft-mask tells us
314 	 * that a new HW interrupt occurred.
315 	 */
316 	xive_ops->update_pending(xc);
317 
318 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
319 
320 	/* Scan our queue(s) for interrupts */
321 	irq = xive_scan_interrupts(xc, false);
322 
323 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
324 	    irq, xc->pending_prio);
325 
326 	/* Return pending interrupt if any */
327 	if (irq == XIVE_BAD_IRQ)
328 		return 0;
329 	return irq;
330 }
331 
332 /*
333  * After EOI'ing an interrupt, we need to re-check the queue
334  * to see if another interrupt is pending since multiple
335  * interrupts can coalesce into a single notification to the
336  * CPU.
337  *
338  * If we find that there is indeed more in there, we call
339  * force_external_irq_replay() to make Linux synthetize an
340  * external interrupt on the next call to local_irq_restore().
341  */
342 static void xive_do_queue_eoi(struct xive_cpu *xc)
343 {
344 	if (xive_scan_interrupts(xc, true) != 0) {
345 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
346 		force_external_irq_replay();
347 	}
348 }
349 
350 /*
351  * EOI an interrupt at the source. There are several methods
352  * to do this depending on the HW version and source type
353  */
354 static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
355 {
356 	xd->stale_p = false;
357 	/* If the XIVE supports the new "store EOI facility, use it */
358 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
359 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
360 	else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
361 		/*
362 		 * The FW told us to call it. This happens for some
363 		 * interrupt sources that need additional HW whacking
364 		 * beyond the ESB manipulation. For example LPC interrupts
365 		 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
366 		 * itself. The Firmware will take care of it.
367 		 */
368 		if (WARN_ON_ONCE(!xive_ops->eoi))
369 			return;
370 		xive_ops->eoi(hw_irq);
371 	} else {
372 		u8 eoi_val;
373 
374 		/*
375 		 * Otherwise for EOI, we use the special MMIO that does
376 		 * a clear of both P and Q and returns the old Q,
377 		 * except for LSIs where we use the "EOI cycle" special
378 		 * load.
379 		 *
380 		 * This allows us to then do a re-trigger if Q was set
381 		 * rather than synthesizing an interrupt in software
382 		 *
383 		 * For LSIs the HW EOI cycle is used rather than PQ bits,
384 		 * as they are automatically re-triggred in HW when still
385 		 * pending.
386 		 */
387 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
388 			xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
389 		else {
390 			eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
391 			DBG_VERBOSE("eoi_val=%x\n", eoi_val);
392 
393 			/* Re-trigger if needed */
394 			if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
395 				out_be64(xd->trig_mmio, 0);
396 		}
397 	}
398 }
399 
400 /* irq_chip eoi callback, called with irq descriptor lock held */
401 static void xive_irq_eoi(struct irq_data *d)
402 {
403 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
404 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
405 
406 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
407 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
408 
409 	/*
410 	 * EOI the source if it hasn't been disabled and hasn't
411 	 * been passed-through to a KVM guest
412 	 */
413 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
414 	    !(xd->flags & XIVE_IRQ_NO_EOI))
415 		xive_do_source_eoi(irqd_to_hwirq(d), xd);
416 	else
417 		xd->stale_p = true;
418 
419 	/*
420 	 * Clear saved_p to indicate that it's no longer occupying
421 	 * a queue slot on the target queue
422 	 */
423 	xd->saved_p = false;
424 
425 	/* Check for more work in the queue */
426 	xive_do_queue_eoi(xc);
427 }
428 
429 /*
430  * Helper used to mask and unmask an interrupt source. This
431  * is only called for normal interrupts that do not require
432  * masking/unmasking via firmware.
433  */
434 static void xive_do_source_set_mask(struct xive_irq_data *xd,
435 				    bool mask)
436 {
437 	u64 val;
438 
439 	/*
440 	 * If the interrupt had P set, it may be in a queue.
441 	 *
442 	 * We need to make sure we don't re-enable it until it
443 	 * has been fetched from that queue and EOId. We keep
444 	 * a copy of that P state and use it to restore the
445 	 * ESB accordingly on unmask.
446 	 */
447 	if (mask) {
448 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
449 		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
450 			xd->saved_p = true;
451 		xd->stale_p = false;
452 	} else if (xd->saved_p) {
453 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
454 		xd->saved_p = false;
455 	} else {
456 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
457 		xd->stale_p = false;
458 	}
459 }
460 
461 /*
462  * Try to chose "cpu" as a new interrupt target. Increments
463  * the queue accounting for that target if it's not already
464  * full.
465  */
466 static bool xive_try_pick_target(int cpu)
467 {
468 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
469 	struct xive_q *q = &xc->queue[xive_irq_priority];
470 	int max;
471 
472 	/*
473 	 * Calculate max number of interrupts in that queue.
474 	 *
475 	 * We leave a gap of 1 just in case...
476 	 */
477 	max = (q->msk + 1) - 1;
478 	return !!atomic_add_unless(&q->count, 1, max);
479 }
480 
481 /*
482  * Un-account an interrupt for a target CPU. We don't directly
483  * decrement q->count since the interrupt might still be present
484  * in the queue.
485  *
486  * Instead increment a separate counter "pending_count" which
487  * will be substracted from "count" later when that CPU observes
488  * the queue to be empty.
489  */
490 static void xive_dec_target_count(int cpu)
491 {
492 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
493 	struct xive_q *q = &xc->queue[xive_irq_priority];
494 
495 	if (WARN_ON(cpu < 0 || !xc)) {
496 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
497 		return;
498 	}
499 
500 	/*
501 	 * We increment the "pending count" which will be used
502 	 * to decrement the target queue count whenever it's next
503 	 * processed and found empty. This ensure that we don't
504 	 * decrement while we still have the interrupt there
505 	 * occupying a slot.
506 	 */
507 	atomic_inc(&q->pending_count);
508 }
509 
510 /* Find a tentative CPU target in a CPU mask */
511 static int xive_find_target_in_mask(const struct cpumask *mask,
512 				    unsigned int fuzz)
513 {
514 	int cpu, first, num, i;
515 
516 	/* Pick up a starting point CPU in the mask based on  fuzz */
517 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
518 	first = fuzz % num;
519 
520 	/* Locate it */
521 	cpu = cpumask_first(mask);
522 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
523 		cpu = cpumask_next(cpu, mask);
524 
525 	/* Sanity check */
526 	if (WARN_ON(cpu >= nr_cpu_ids))
527 		cpu = cpumask_first(cpu_online_mask);
528 
529 	/* Remember first one to handle wrap-around */
530 	first = cpu;
531 
532 	/*
533 	 * Now go through the entire mask until we find a valid
534 	 * target.
535 	 */
536 	do {
537 		/*
538 		 * We re-check online as the fallback case passes us
539 		 * an untested affinity mask
540 		 */
541 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
542 			return cpu;
543 		cpu = cpumask_next(cpu, mask);
544 		/* Wrap around */
545 		if (cpu >= nr_cpu_ids)
546 			cpu = cpumask_first(mask);
547 	} while (cpu != first);
548 
549 	return -1;
550 }
551 
552 /*
553  * Pick a target CPU for an interrupt. This is done at
554  * startup or if the affinity is changed in a way that
555  * invalidates the current target.
556  */
557 static int xive_pick_irq_target(struct irq_data *d,
558 				const struct cpumask *affinity)
559 {
560 	static unsigned int fuzz;
561 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
562 	cpumask_var_t mask;
563 	int cpu = -1;
564 
565 	/*
566 	 * If we have chip IDs, first we try to build a mask of
567 	 * CPUs matching the CPU and find a target in there
568 	 */
569 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
570 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
571 		/* Build a mask of matching chip IDs */
572 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
573 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
574 			if (xc->chip_id == xd->src_chip)
575 				cpumask_set_cpu(cpu, mask);
576 		}
577 		/* Try to find a target */
578 		if (cpumask_empty(mask))
579 			cpu = -1;
580 		else
581 			cpu = xive_find_target_in_mask(mask, fuzz++);
582 		free_cpumask_var(mask);
583 		if (cpu >= 0)
584 			return cpu;
585 		fuzz--;
586 	}
587 
588 	/* No chip IDs, fallback to using the affinity mask */
589 	return xive_find_target_in_mask(affinity, fuzz++);
590 }
591 
592 static unsigned int xive_irq_startup(struct irq_data *d)
593 {
594 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
595 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
596 	int target, rc;
597 
598 	xd->saved_p = false;
599 	xd->stale_p = false;
600 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
601 		 d->irq, hw_irq, d);
602 
603 #ifdef CONFIG_PCI_MSI
604 	/*
605 	 * The generic MSI code returns with the interrupt disabled on the
606 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
607 	 * at that level, so we do it here by hand.
608 	 */
609 	if (irq_data_get_msi_desc(d))
610 		pci_msi_unmask_irq(d);
611 #endif
612 
613 	/* Pick a target */
614 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
615 	if (target == XIVE_INVALID_TARGET) {
616 		/* Try again breaking affinity */
617 		target = xive_pick_irq_target(d, cpu_online_mask);
618 		if (target == XIVE_INVALID_TARGET)
619 			return -ENXIO;
620 		pr_warn("irq %d started with broken affinity\n", d->irq);
621 	}
622 
623 	/* Sanity check */
624 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
625 		    target >= nr_cpu_ids))
626 		target = smp_processor_id();
627 
628 	xd->target = target;
629 
630 	/*
631 	 * Configure the logical number to be the Linux IRQ number
632 	 * and set the target queue
633 	 */
634 	rc = xive_ops->configure_irq(hw_irq,
635 				     get_hard_smp_processor_id(target),
636 				     xive_irq_priority, d->irq);
637 	if (rc)
638 		return rc;
639 
640 	/* Unmask the ESB */
641 	xive_do_source_set_mask(xd, false);
642 
643 	return 0;
644 }
645 
646 /* called with irq descriptor lock held */
647 static void xive_irq_shutdown(struct irq_data *d)
648 {
649 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
650 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
651 
652 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
653 		 d->irq, hw_irq, d);
654 
655 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
656 		return;
657 
658 	/* Mask the interrupt at the source */
659 	xive_do_source_set_mask(xd, true);
660 
661 	/*
662 	 * Mask the interrupt in HW in the IVT/EAS and set the number
663 	 * to be the "bad" IRQ number
664 	 */
665 	xive_ops->configure_irq(hw_irq,
666 				get_hard_smp_processor_id(xd->target),
667 				0xff, XIVE_BAD_IRQ);
668 
669 	xive_dec_target_count(xd->target);
670 	xd->target = XIVE_INVALID_TARGET;
671 }
672 
673 static void xive_irq_unmask(struct irq_data *d)
674 {
675 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
676 
677 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
678 
679 	/*
680 	 * This is a workaround for PCI LSI problems on P9, for
681 	 * these, we call FW to set the mask. The problems might
682 	 * be fixed by P9 DD2.0, if that is the case, firmware
683 	 * will no longer set that flag.
684 	 */
685 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
686 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
687 		xive_ops->configure_irq(hw_irq,
688 					get_hard_smp_processor_id(xd->target),
689 					xive_irq_priority, d->irq);
690 		return;
691 	}
692 
693 	xive_do_source_set_mask(xd, false);
694 }
695 
696 static void xive_irq_mask(struct irq_data *d)
697 {
698 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
699 
700 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
701 
702 	/*
703 	 * This is a workaround for PCI LSI problems on P9, for
704 	 * these, we call OPAL to set the mask. The problems might
705 	 * be fixed by P9 DD2.0, if that is the case, firmware
706 	 * will no longer set that flag.
707 	 */
708 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
709 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
710 		xive_ops->configure_irq(hw_irq,
711 					get_hard_smp_processor_id(xd->target),
712 					0xff, d->irq);
713 		return;
714 	}
715 
716 	xive_do_source_set_mask(xd, true);
717 }
718 
719 static int xive_irq_set_affinity(struct irq_data *d,
720 				 const struct cpumask *cpumask,
721 				 bool force)
722 {
723 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
724 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
725 	u32 target, old_target;
726 	int rc = 0;
727 
728 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
729 
730 	/* Is this valid ? */
731 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
732 		return -EINVAL;
733 
734 	/* Don't do anything if the interrupt isn't started */
735 	if (!irqd_is_started(d))
736 		return IRQ_SET_MASK_OK;
737 
738 	/*
739 	 * If existing target is already in the new mask, and is
740 	 * online then do nothing.
741 	 */
742 	if (xd->target != XIVE_INVALID_TARGET &&
743 	    cpu_online(xd->target) &&
744 	    cpumask_test_cpu(xd->target, cpumask))
745 		return IRQ_SET_MASK_OK;
746 
747 	/* Pick a new target */
748 	target = xive_pick_irq_target(d, cpumask);
749 
750 	/* No target found */
751 	if (target == XIVE_INVALID_TARGET)
752 		return -ENXIO;
753 
754 	/* Sanity check */
755 	if (WARN_ON(target >= nr_cpu_ids))
756 		target = smp_processor_id();
757 
758 	old_target = xd->target;
759 
760 	/*
761 	 * Only configure the irq if it's not currently passed-through to
762 	 * a KVM guest
763 	 */
764 	if (!irqd_is_forwarded_to_vcpu(d))
765 		rc = xive_ops->configure_irq(hw_irq,
766 					     get_hard_smp_processor_id(target),
767 					     xive_irq_priority, d->irq);
768 	if (rc < 0) {
769 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
770 		return rc;
771 	}
772 
773 	pr_devel("  target: 0x%x\n", target);
774 	xd->target = target;
775 
776 	/* Give up previous target */
777 	if (old_target != XIVE_INVALID_TARGET)
778 	    xive_dec_target_count(old_target);
779 
780 	return IRQ_SET_MASK_OK;
781 }
782 
783 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
784 {
785 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
786 
787 	/*
788 	 * We only support these. This has really no effect other than setting
789 	 * the corresponding descriptor bits mind you but those will in turn
790 	 * affect the resend function when re-enabling an edge interrupt.
791 	 *
792 	 * Set set the default to edge as explained in map().
793 	 */
794 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
795 		flow_type = IRQ_TYPE_EDGE_RISING;
796 
797 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
798 	    flow_type != IRQ_TYPE_LEVEL_LOW)
799 		return -EINVAL;
800 
801 	irqd_set_trigger_type(d, flow_type);
802 
803 	/*
804 	 * Double check it matches what the FW thinks
805 	 *
806 	 * NOTE: We don't know yet if the PAPR interface will provide
807 	 * the LSI vs MSI information apart from the device-tree so
808 	 * this check might have to move into an optional backend call
809 	 * that is specific to the native backend
810 	 */
811 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
812 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
813 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
814 			d->irq, (u32)irqd_to_hwirq(d),
815 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
816 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
817 	}
818 
819 	return IRQ_SET_MASK_OK_NOCOPY;
820 }
821 
822 static int xive_irq_retrigger(struct irq_data *d)
823 {
824 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
825 
826 	/* This should be only for MSIs */
827 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
828 		return 0;
829 
830 	/*
831 	 * To perform a retrigger, we first set the PQ bits to
832 	 * 11, then perform an EOI.
833 	 */
834 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
835 
836 	/*
837 	 * Note: We pass "0" to the hw_irq argument in order to
838 	 * avoid calling into the backend EOI code which we don't
839 	 * want to do in the case of a re-trigger. Backends typically
840 	 * only do EOI for LSIs anyway.
841 	 */
842 	xive_do_source_eoi(0, xd);
843 
844 	return 1;
845 }
846 
847 /*
848  * Caller holds the irq descriptor lock, so this won't be called
849  * concurrently with xive_get_irqchip_state on the same interrupt.
850  */
851 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
852 {
853 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
854 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
855 	int rc;
856 	u8 pq;
857 
858 	/*
859 	 * We only support this on interrupts that do not require
860 	 * firmware calls for masking and unmasking
861 	 */
862 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
863 		return -EIO;
864 
865 	/*
866 	 * This is called by KVM with state non-NULL for enabling
867 	 * pass-through or NULL for disabling it
868 	 */
869 	if (state) {
870 		irqd_set_forwarded_to_vcpu(d);
871 
872 		/* Set it to PQ=10 state to prevent further sends */
873 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
874 		if (!xd->stale_p) {
875 			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
876 			xd->stale_p = !xd->saved_p;
877 		}
878 
879 		/* No target ? nothing to do */
880 		if (xd->target == XIVE_INVALID_TARGET) {
881 			/*
882 			 * An untargetted interrupt should have been
883 			 * also masked at the source
884 			 */
885 			WARN_ON(xd->saved_p);
886 
887 			return 0;
888 		}
889 
890 		/*
891 		 * If P was set, adjust state to PQ=11 to indicate
892 		 * that a resend is needed for the interrupt to reach
893 		 * the guest. Also remember the value of P.
894 		 *
895 		 * This also tells us that it's in flight to a host queue
896 		 * or has already been fetched but hasn't been EOIed yet
897 		 * by the host. This it's potentially using up a host
898 		 * queue slot. This is important to know because as long
899 		 * as this is the case, we must not hard-unmask it when
900 		 * "returning" that interrupt to the host.
901 		 *
902 		 * This saved_p is cleared by the host EOI, when we know
903 		 * for sure the queue slot is no longer in use.
904 		 */
905 		if (xd->saved_p) {
906 			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
907 
908 			/*
909 			 * Sync the XIVE source HW to ensure the interrupt
910 			 * has gone through the EAS before we change its
911 			 * target to the guest. That should guarantee us
912 			 * that we *will* eventually get an EOI for it on
913 			 * the host. Otherwise there would be a small window
914 			 * for P to be seen here but the interrupt going
915 			 * to the guest queue.
916 			 */
917 			if (xive_ops->sync_source)
918 				xive_ops->sync_source(hw_irq);
919 		}
920 	} else {
921 		irqd_clr_forwarded_to_vcpu(d);
922 
923 		/* No host target ? hard mask and return */
924 		if (xd->target == XIVE_INVALID_TARGET) {
925 			xive_do_source_set_mask(xd, true);
926 			return 0;
927 		}
928 
929 		/*
930 		 * Sync the XIVE source HW to ensure the interrupt
931 		 * has gone through the EAS before we change its
932 		 * target to the host.
933 		 */
934 		if (xive_ops->sync_source)
935 			xive_ops->sync_source(hw_irq);
936 
937 		/*
938 		 * By convention we are called with the interrupt in
939 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
940 		 * have latched in Q whether there's a pending HW
941 		 * interrupt or not.
942 		 *
943 		 * First reconfigure the target.
944 		 */
945 		rc = xive_ops->configure_irq(hw_irq,
946 					     get_hard_smp_processor_id(xd->target),
947 					     xive_irq_priority, d->irq);
948 		if (rc)
949 			return rc;
950 
951 		/*
952 		 * Then if saved_p is not set, effectively re-enable the
953 		 * interrupt with an EOI. If it is set, we know there is
954 		 * still a message in a host queue somewhere that will be
955 		 * EOId eventually.
956 		 *
957 		 * Note: We don't check irqd_irq_disabled(). Effectively,
958 		 * we *will* let the irq get through even if masked if the
959 		 * HW is still firing it in order to deal with the whole
960 		 * saved_p business properly. If the interrupt triggers
961 		 * while masked, the generic code will re-mask it anyway.
962 		 */
963 		if (!xd->saved_p)
964 			xive_do_source_eoi(hw_irq, xd);
965 
966 	}
967 	return 0;
968 }
969 
970 /* Called with irq descriptor lock held. */
971 static int xive_get_irqchip_state(struct irq_data *data,
972 				  enum irqchip_irq_state which, bool *state)
973 {
974 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
975 	u8 pq;
976 
977 	switch (which) {
978 	case IRQCHIP_STATE_ACTIVE:
979 		pq = xive_esb_read(xd, XIVE_ESB_GET);
980 
981 		/*
982 		 * The esb value being all 1's means we couldn't get
983 		 * the PQ state of the interrupt through mmio. It may
984 		 * happen, for example when querying a PHB interrupt
985 		 * while the PHB is in an error state. We consider the
986 		 * interrupt to be inactive in that case.
987 		 */
988 		*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
989 			(xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
990 		return 0;
991 	default:
992 		return -EINVAL;
993 	}
994 }
995 
996 static struct irq_chip xive_irq_chip = {
997 	.name = "XIVE-IRQ",
998 	.irq_startup = xive_irq_startup,
999 	.irq_shutdown = xive_irq_shutdown,
1000 	.irq_eoi = xive_irq_eoi,
1001 	.irq_mask = xive_irq_mask,
1002 	.irq_unmask = xive_irq_unmask,
1003 	.irq_set_affinity = xive_irq_set_affinity,
1004 	.irq_set_type = xive_irq_set_type,
1005 	.irq_retrigger = xive_irq_retrigger,
1006 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
1007 	.irq_get_irqchip_state = xive_get_irqchip_state,
1008 };
1009 
1010 bool is_xive_irq(struct irq_chip *chip)
1011 {
1012 	return chip == &xive_irq_chip;
1013 }
1014 EXPORT_SYMBOL_GPL(is_xive_irq);
1015 
1016 void xive_cleanup_irq_data(struct xive_irq_data *xd)
1017 {
1018 	if (xd->eoi_mmio) {
1019 		iounmap(xd->eoi_mmio);
1020 		if (xd->eoi_mmio == xd->trig_mmio)
1021 			xd->trig_mmio = NULL;
1022 		xd->eoi_mmio = NULL;
1023 	}
1024 	if (xd->trig_mmio) {
1025 		iounmap(xd->trig_mmio);
1026 		xd->trig_mmio = NULL;
1027 	}
1028 }
1029 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1030 
1031 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1032 {
1033 	struct xive_irq_data *xd;
1034 	int rc;
1035 
1036 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1037 	if (!xd)
1038 		return -ENOMEM;
1039 	rc = xive_ops->populate_irq_data(hw, xd);
1040 	if (rc) {
1041 		kfree(xd);
1042 		return rc;
1043 	}
1044 	xd->target = XIVE_INVALID_TARGET;
1045 	irq_set_handler_data(virq, xd);
1046 
1047 	/*
1048 	 * Turn OFF by default the interrupt being mapped. A side
1049 	 * effect of this check is the mapping the ESB page of the
1050 	 * interrupt in the Linux address space. This prevents page
1051 	 * fault issues in the crash handler which masks all
1052 	 * interrupts.
1053 	 */
1054 	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1055 
1056 	return 0;
1057 }
1058 
1059 static void xive_irq_free_data(unsigned int virq)
1060 {
1061 	struct xive_irq_data *xd = irq_get_handler_data(virq);
1062 
1063 	if (!xd)
1064 		return;
1065 	irq_set_handler_data(virq, NULL);
1066 	xive_cleanup_irq_data(xd);
1067 	kfree(xd);
1068 }
1069 
1070 #ifdef CONFIG_SMP
1071 
1072 static void xive_cause_ipi(int cpu)
1073 {
1074 	struct xive_cpu *xc;
1075 	struct xive_irq_data *xd;
1076 
1077 	xc = per_cpu(xive_cpu, cpu);
1078 
1079 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1080 		    smp_processor_id(), cpu, xc->hw_ipi);
1081 
1082 	xd = &xc->ipi_data;
1083 	if (WARN_ON(!xd->trig_mmio))
1084 		return;
1085 	out_be64(xd->trig_mmio, 0);
1086 }
1087 
1088 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1089 {
1090 	return smp_ipi_demux();
1091 }
1092 
1093 static void xive_ipi_eoi(struct irq_data *d)
1094 {
1095 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1096 
1097 	/* Handle possible race with unplug and drop stale IPIs */
1098 	if (!xc)
1099 		return;
1100 
1101 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1102 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1103 
1104 	xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1105 	xive_do_queue_eoi(xc);
1106 }
1107 
1108 static void xive_ipi_do_nothing(struct irq_data *d)
1109 {
1110 	/*
1111 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1112 	 * has to exist for the struct irq_chip.
1113 	 */
1114 }
1115 
1116 static struct irq_chip xive_ipi_chip = {
1117 	.name = "XIVE-IPI",
1118 	.irq_eoi = xive_ipi_eoi,
1119 	.irq_mask = xive_ipi_do_nothing,
1120 	.irq_unmask = xive_ipi_do_nothing,
1121 };
1122 
1123 static void __init xive_request_ipi(void)
1124 {
1125 	unsigned int virq;
1126 
1127 	/*
1128 	 * Initialization failed, move on, we might manage to
1129 	 * reach the point where we display our errors before
1130 	 * the system falls appart
1131 	 */
1132 	if (!xive_irq_domain)
1133 		return;
1134 
1135 	/* Initialize it */
1136 	virq = irq_create_mapping(xive_irq_domain, 0);
1137 	xive_ipi_irq = virq;
1138 
1139 	WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1140 			    IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1141 }
1142 
1143 static int xive_setup_cpu_ipi(unsigned int cpu)
1144 {
1145 	struct xive_cpu *xc;
1146 	int rc;
1147 
1148 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1149 
1150 	xc = per_cpu(xive_cpu, cpu);
1151 
1152 	/* Check if we are already setup */
1153 	if (xc->hw_ipi != 0)
1154 		return 0;
1155 
1156 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1157 	if (xive_ops->get_ipi(cpu, xc))
1158 		return -EIO;
1159 
1160 	/*
1161 	 * Populate the IRQ data in the xive_cpu structure and
1162 	 * configure the HW / enable the IPIs.
1163 	 */
1164 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1165 	if (rc) {
1166 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1167 		return -EIO;
1168 	}
1169 	rc = xive_ops->configure_irq(xc->hw_ipi,
1170 				     get_hard_smp_processor_id(cpu),
1171 				     xive_irq_priority, xive_ipi_irq);
1172 	if (rc) {
1173 		pr_err("Failed to map IPI CPU %d\n", cpu);
1174 		return -EIO;
1175 	}
1176 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1177 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1178 
1179 	/* Unmask it */
1180 	xive_do_source_set_mask(&xc->ipi_data, false);
1181 
1182 	return 0;
1183 }
1184 
1185 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1186 {
1187 	/* Disable the IPI and free the IRQ data */
1188 
1189 	/* Already cleaned up ? */
1190 	if (xc->hw_ipi == 0)
1191 		return;
1192 
1193 	/* Mask the IPI */
1194 	xive_do_source_set_mask(&xc->ipi_data, true);
1195 
1196 	/*
1197 	 * Note: We don't call xive_cleanup_irq_data() to free
1198 	 * the mappings as this is called from an IPI on kexec
1199 	 * which is not a safe environment to call iounmap()
1200 	 */
1201 
1202 	/* Deconfigure/mask in the backend */
1203 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1204 				0xff, xive_ipi_irq);
1205 
1206 	/* Free the IPIs in the backend */
1207 	xive_ops->put_ipi(cpu, xc);
1208 }
1209 
1210 void __init xive_smp_probe(void)
1211 {
1212 	smp_ops->cause_ipi = xive_cause_ipi;
1213 
1214 	/* Register the IPI */
1215 	xive_request_ipi();
1216 
1217 	/* Allocate and setup IPI for the boot CPU */
1218 	xive_setup_cpu_ipi(smp_processor_id());
1219 }
1220 
1221 #endif /* CONFIG_SMP */
1222 
1223 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1224 			       irq_hw_number_t hw)
1225 {
1226 	int rc;
1227 
1228 	/*
1229 	 * Mark interrupts as edge sensitive by default so that resend
1230 	 * actually works. Will fix that up below if needed.
1231 	 */
1232 	irq_clear_status_flags(virq, IRQ_LEVEL);
1233 
1234 #ifdef CONFIG_SMP
1235 	/* IPIs are special and come up with HW number 0 */
1236 	if (hw == 0) {
1237 		/*
1238 		 * IPIs are marked per-cpu. We use separate HW interrupts under
1239 		 * the hood but associated with the same "linux" interrupt
1240 		 */
1241 		irq_set_chip_and_handler(virq, &xive_ipi_chip,
1242 					 handle_percpu_irq);
1243 		return 0;
1244 	}
1245 #endif
1246 
1247 	rc = xive_irq_alloc_data(virq, hw);
1248 	if (rc)
1249 		return rc;
1250 
1251 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1252 
1253 	return 0;
1254 }
1255 
1256 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1257 {
1258 	struct irq_data *data = irq_get_irq_data(virq);
1259 	unsigned int hw_irq;
1260 
1261 	/* XXX Assign BAD number */
1262 	if (!data)
1263 		return;
1264 	hw_irq = (unsigned int)irqd_to_hwirq(data);
1265 	if (hw_irq)
1266 		xive_irq_free_data(virq);
1267 }
1268 
1269 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1270 				 const u32 *intspec, unsigned int intsize,
1271 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1272 
1273 {
1274 	*out_hwirq = intspec[0];
1275 
1276 	/*
1277 	 * If intsize is at least 2, we look for the type in the second cell,
1278 	 * we assume the LSB indicates a level interrupt.
1279 	 */
1280 	if (intsize > 1) {
1281 		if (intspec[1] & 1)
1282 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1283 		else
1284 			*out_flags = IRQ_TYPE_EDGE_RISING;
1285 	} else
1286 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1287 
1288 	return 0;
1289 }
1290 
1291 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1292 				 enum irq_domain_bus_token bus_token)
1293 {
1294 	return xive_ops->match(node);
1295 }
1296 
1297 static const struct irq_domain_ops xive_irq_domain_ops = {
1298 	.match = xive_irq_domain_match,
1299 	.map = xive_irq_domain_map,
1300 	.unmap = xive_irq_domain_unmap,
1301 	.xlate = xive_irq_domain_xlate,
1302 };
1303 
1304 static void __init xive_init_host(void)
1305 {
1306 	xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1307 					       &xive_irq_domain_ops, NULL);
1308 	if (WARN_ON(xive_irq_domain == NULL))
1309 		return;
1310 	irq_set_default_host(xive_irq_domain);
1311 }
1312 
1313 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1314 {
1315 	if (xc->queue[xive_irq_priority].qpage)
1316 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1317 }
1318 
1319 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1320 {
1321 	int rc = 0;
1322 
1323 	/* We setup 1 queues for now with a 64k page */
1324 	if (!xc->queue[xive_irq_priority].qpage)
1325 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1326 
1327 	return rc;
1328 }
1329 
1330 static int xive_prepare_cpu(unsigned int cpu)
1331 {
1332 	struct xive_cpu *xc;
1333 
1334 	xc = per_cpu(xive_cpu, cpu);
1335 	if (!xc) {
1336 		struct device_node *np;
1337 
1338 		xc = kzalloc_node(sizeof(struct xive_cpu),
1339 				  GFP_KERNEL, cpu_to_node(cpu));
1340 		if (!xc)
1341 			return -ENOMEM;
1342 		np = of_get_cpu_node(cpu, NULL);
1343 		if (np)
1344 			xc->chip_id = of_get_ibm_chip_id(np);
1345 		of_node_put(np);
1346 
1347 		per_cpu(xive_cpu, cpu) = xc;
1348 	}
1349 
1350 	/* Setup EQs if not already */
1351 	return xive_setup_cpu_queues(cpu, xc);
1352 }
1353 
1354 static void xive_setup_cpu(void)
1355 {
1356 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1357 
1358 	/* The backend might have additional things to do */
1359 	if (xive_ops->setup_cpu)
1360 		xive_ops->setup_cpu(smp_processor_id(), xc);
1361 
1362 	/* Set CPPR to 0xff to enable flow of interrupts */
1363 	xc->cppr = 0xff;
1364 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1365 }
1366 
1367 #ifdef CONFIG_SMP
1368 void xive_smp_setup_cpu(void)
1369 {
1370 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1371 
1372 	/* This will have already been done on the boot CPU */
1373 	if (smp_processor_id() != boot_cpuid)
1374 		xive_setup_cpu();
1375 
1376 }
1377 
1378 int xive_smp_prepare_cpu(unsigned int cpu)
1379 {
1380 	int rc;
1381 
1382 	/* Allocate per-CPU data and queues */
1383 	rc = xive_prepare_cpu(cpu);
1384 	if (rc)
1385 		return rc;
1386 
1387 	/* Allocate and setup IPI for the new CPU */
1388 	return xive_setup_cpu_ipi(cpu);
1389 }
1390 
1391 #ifdef CONFIG_HOTPLUG_CPU
1392 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1393 {
1394 	u32 irq;
1395 
1396 	/* We assume local irqs are disabled */
1397 	WARN_ON(!irqs_disabled());
1398 
1399 	/* Check what's already in the CPU queue */
1400 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1401 		/*
1402 		 * We need to re-route that interrupt to its new destination.
1403 		 * First get and lock the descriptor
1404 		 */
1405 		struct irq_desc *desc = irq_to_desc(irq);
1406 		struct irq_data *d = irq_desc_get_irq_data(desc);
1407 		struct xive_irq_data *xd;
1408 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1409 
1410 		/*
1411 		 * Ignore anything that isn't a XIVE irq and ignore
1412 		 * IPIs, so can just be dropped.
1413 		 */
1414 		if (d->domain != xive_irq_domain || hw_irq == 0)
1415 			continue;
1416 
1417 		/*
1418 		 * The IRQ should have already been re-routed, it's just a
1419 		 * stale in the old queue, so re-trigger it in order to make
1420 		 * it reach is new destination.
1421 		 */
1422 #ifdef DEBUG_FLUSH
1423 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1424 			cpu, irq);
1425 #endif
1426 		raw_spin_lock(&desc->lock);
1427 		xd = irq_desc_get_handler_data(desc);
1428 
1429 		/*
1430 		 * Clear saved_p to indicate that it's no longer pending
1431 		 */
1432 		xd->saved_p = false;
1433 
1434 		/*
1435 		 * For LSIs, we EOI, this will cause a resend if it's
1436 		 * still asserted. Otherwise do an MSI retrigger.
1437 		 */
1438 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1439 			xive_do_source_eoi(irqd_to_hwirq(d), xd);
1440 		else
1441 			xive_irq_retrigger(d);
1442 
1443 		raw_spin_unlock(&desc->lock);
1444 	}
1445 }
1446 
1447 void xive_smp_disable_cpu(void)
1448 {
1449 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1450 	unsigned int cpu = smp_processor_id();
1451 
1452 	/* Migrate interrupts away from the CPU */
1453 	irq_migrate_all_off_this_cpu();
1454 
1455 	/* Set CPPR to 0 to disable flow of interrupts */
1456 	xc->cppr = 0;
1457 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1458 
1459 	/* Flush everything still in the queue */
1460 	xive_flush_cpu_queue(cpu, xc);
1461 
1462 	/* Re-enable CPPR  */
1463 	xc->cppr = 0xff;
1464 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1465 }
1466 
1467 void xive_flush_interrupt(void)
1468 {
1469 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1470 	unsigned int cpu = smp_processor_id();
1471 
1472 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1473 	xive_flush_cpu_queue(cpu, xc);
1474 }
1475 
1476 #endif /* CONFIG_HOTPLUG_CPU */
1477 
1478 #endif /* CONFIG_SMP */
1479 
1480 void xive_teardown_cpu(void)
1481 {
1482 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1483 	unsigned int cpu = smp_processor_id();
1484 
1485 	/* Set CPPR to 0 to disable flow of interrupts */
1486 	xc->cppr = 0;
1487 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1488 
1489 	if (xive_ops->teardown_cpu)
1490 		xive_ops->teardown_cpu(cpu, xc);
1491 
1492 #ifdef CONFIG_SMP
1493 	/* Get rid of IPI */
1494 	xive_cleanup_cpu_ipi(cpu, xc);
1495 #endif
1496 
1497 	/* Disable and free the queues */
1498 	xive_cleanup_cpu_queues(cpu, xc);
1499 }
1500 
1501 void xive_shutdown(void)
1502 {
1503 	xive_ops->shutdown();
1504 }
1505 
1506 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1507 			   u8 max_prio)
1508 {
1509 	xive_tima = area;
1510 	xive_tima_offset = offset;
1511 	xive_ops = ops;
1512 	xive_irq_priority = max_prio;
1513 
1514 	ppc_md.get_irq = xive_get_irq;
1515 	__xive_enabled = true;
1516 
1517 	pr_devel("Initializing host..\n");
1518 	xive_init_host();
1519 
1520 	pr_devel("Initializing boot CPU..\n");
1521 
1522 	/* Allocate per-CPU data and queues */
1523 	xive_prepare_cpu(smp_processor_id());
1524 
1525 	/* Get ready for interrupts */
1526 	xive_setup_cpu();
1527 
1528 	pr_info("Interrupt handling initialized with %s backend\n",
1529 		xive_ops->name);
1530 	pr_info("Using priority %d for all interrupts\n", max_prio);
1531 
1532 	return true;
1533 }
1534 
1535 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1536 {
1537 	unsigned int alloc_order;
1538 	struct page *pages;
1539 	__be32 *qpage;
1540 
1541 	alloc_order = xive_alloc_order(queue_shift);
1542 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1543 	if (!pages)
1544 		return ERR_PTR(-ENOMEM);
1545 	qpage = (__be32 *)page_address(pages);
1546 	memset(qpage, 0, 1 << queue_shift);
1547 
1548 	return qpage;
1549 }
1550 
1551 static int __init xive_off(char *arg)
1552 {
1553 	xive_cmdline_disabled = true;
1554 	return 0;
1555 }
1556 __setup("xive=off", xive_off);
1557