xref: /linux/arch/powerpc/sysdev/mpic_timer.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * MPIC timer driver
3  *
4  * Copyright 2013 Freescale Semiconductor, Inc.
5  * Author: Dongsheng Wang <Dongsheng.Wang@freescale.com>
6  *	   Li Yang <leoli@freescale.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the
10  * Free Software Foundation; either version 2 of the License, or (at your
11  * option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/syscore_ops.h>
24 #include <sysdev/fsl_soc.h>
25 #include <asm/io.h>
26 
27 #include <asm/mpic_timer.h>
28 
29 #define FSL_GLOBAL_TIMER		0x1
30 
31 /* Clock Ratio
32  * Divide by 64 0x00000300
33  * Divide by 32 0x00000200
34  * Divide by 16 0x00000100
35  * Divide by  8 0x00000000 (Hardware default div)
36  */
37 #define MPIC_TIMER_TCR_CLKDIV		0x00000300
38 
39 #define MPIC_TIMER_TCR_ROVR_OFFSET	24
40 
41 #define TIMER_STOP			0x80000000
42 #define TIMERS_PER_GROUP		4
43 #define MAX_TICKS			(~0U >> 1)
44 #define MAX_TICKS_CASCADE		(~0U)
45 #define TIMER_OFFSET(num)		(1 << (TIMERS_PER_GROUP - 1 - num))
46 
47 /* tv_usec should be less than ONE_SECOND, otherwise use tv_sec */
48 #define ONE_SECOND			1000000
49 
50 struct timer_regs {
51 	u32	gtccr;
52 	u32	res0[3];
53 	u32	gtbcr;
54 	u32	res1[3];
55 	u32	gtvpr;
56 	u32	res2[3];
57 	u32	gtdr;
58 	u32	res3[3];
59 };
60 
61 struct cascade_priv {
62 	u32 tcr_value;			/* TCR register: CASC & ROVR value */
63 	unsigned int cascade_map;	/* cascade map */
64 	unsigned int timer_num;		/* cascade control timer */
65 };
66 
67 struct timer_group_priv {
68 	struct timer_regs __iomem	*regs;
69 	struct mpic_timer		timer[TIMERS_PER_GROUP];
70 	struct list_head		node;
71 	unsigned int			timerfreq;
72 	unsigned int			idle;
73 	unsigned int			flags;
74 	spinlock_t			lock;
75 	void __iomem			*group_tcr;
76 };
77 
78 static struct cascade_priv cascade_timer[] = {
79 	/* cascade timer 0 and 1 */
80 	{0x1, 0xc, 0x1},
81 	/* cascade timer 1 and 2 */
82 	{0x2, 0x6, 0x2},
83 	/* cascade timer 2 and 3 */
84 	{0x4, 0x3, 0x3}
85 };
86 
87 static LIST_HEAD(timer_group_list);
88 
89 static void convert_ticks_to_time(struct timer_group_priv *priv,
90 		const u64 ticks, struct timeval *time)
91 {
92 	u64 tmp_sec;
93 
94 	time->tv_sec = (__kernel_time_t)div_u64(ticks, priv->timerfreq);
95 	tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq;
96 
97 	time->tv_usec = (__kernel_suseconds_t)
98 		div_u64((ticks - tmp_sec) * 1000000, priv->timerfreq);
99 
100 	return;
101 }
102 
103 /* the time set by the user is converted to "ticks" */
104 static int convert_time_to_ticks(struct timer_group_priv *priv,
105 		const struct timeval *time, u64 *ticks)
106 {
107 	u64 max_value;		/* prevent u64 overflow */
108 	u64 tmp = 0;
109 
110 	u64 tmp_sec;
111 	u64 tmp_ms;
112 	u64 tmp_us;
113 
114 	max_value = div_u64(ULLONG_MAX, priv->timerfreq);
115 
116 	if (time->tv_sec > max_value ||
117 			(time->tv_sec == max_value && time->tv_usec > 0))
118 		return -EINVAL;
119 
120 	tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq;
121 	tmp += tmp_sec;
122 
123 	tmp_ms = time->tv_usec / 1000;
124 	tmp_ms = div_u64((u64)tmp_ms * (u64)priv->timerfreq, 1000);
125 	tmp += tmp_ms;
126 
127 	tmp_us = time->tv_usec % 1000;
128 	tmp_us = div_u64((u64)tmp_us * (u64)priv->timerfreq, 1000000);
129 	tmp += tmp_us;
130 
131 	*ticks = tmp;
132 
133 	return 0;
134 }
135 
136 /* detect whether there is a cascade timer available */
137 static struct mpic_timer *detect_idle_cascade_timer(
138 					struct timer_group_priv *priv)
139 {
140 	struct cascade_priv *casc_priv;
141 	unsigned int map;
142 	unsigned int array_size = ARRAY_SIZE(cascade_timer);
143 	unsigned int num;
144 	unsigned int i;
145 	unsigned long flags;
146 
147 	casc_priv = cascade_timer;
148 	for (i = 0; i < array_size; i++) {
149 		spin_lock_irqsave(&priv->lock, flags);
150 		map = casc_priv->cascade_map & priv->idle;
151 		if (map == casc_priv->cascade_map) {
152 			num = casc_priv->timer_num;
153 			priv->timer[num].cascade_handle = casc_priv;
154 
155 			/* set timer busy */
156 			priv->idle &= ~casc_priv->cascade_map;
157 			spin_unlock_irqrestore(&priv->lock, flags);
158 			return &priv->timer[num];
159 		}
160 		spin_unlock_irqrestore(&priv->lock, flags);
161 		casc_priv++;
162 	}
163 
164 	return NULL;
165 }
166 
167 static int set_cascade_timer(struct timer_group_priv *priv, u64 ticks,
168 		unsigned int num)
169 {
170 	struct cascade_priv *casc_priv;
171 	u32 tcr;
172 	u32 tmp_ticks;
173 	u32 rem_ticks;
174 
175 	/* set group tcr reg for cascade */
176 	casc_priv = priv->timer[num].cascade_handle;
177 	if (!casc_priv)
178 		return -EINVAL;
179 
180 	tcr = casc_priv->tcr_value |
181 		(casc_priv->tcr_value << MPIC_TIMER_TCR_ROVR_OFFSET);
182 	setbits32(priv->group_tcr, tcr);
183 
184 	tmp_ticks = div_u64_rem(ticks, MAX_TICKS_CASCADE, &rem_ticks);
185 
186 	out_be32(&priv->regs[num].gtccr, 0);
187 	out_be32(&priv->regs[num].gtbcr, tmp_ticks | TIMER_STOP);
188 
189 	out_be32(&priv->regs[num - 1].gtccr, 0);
190 	out_be32(&priv->regs[num - 1].gtbcr, rem_ticks);
191 
192 	return 0;
193 }
194 
195 static struct mpic_timer *get_cascade_timer(struct timer_group_priv *priv,
196 					u64 ticks)
197 {
198 	struct mpic_timer *allocated_timer;
199 
200 	/* Two cascade timers: Support the maximum time */
201 	const u64 max_ticks = (u64)MAX_TICKS * (u64)MAX_TICKS_CASCADE;
202 	int ret;
203 
204 	if (ticks > max_ticks)
205 		return NULL;
206 
207 	/* detect idle timer */
208 	allocated_timer = detect_idle_cascade_timer(priv);
209 	if (!allocated_timer)
210 		return NULL;
211 
212 	/* set ticks to timer */
213 	ret = set_cascade_timer(priv, ticks, allocated_timer->num);
214 	if (ret < 0)
215 		return NULL;
216 
217 	return allocated_timer;
218 }
219 
220 static struct mpic_timer *get_timer(const struct timeval *time)
221 {
222 	struct timer_group_priv *priv;
223 	struct mpic_timer *timer;
224 
225 	u64 ticks;
226 	unsigned int num;
227 	unsigned int i;
228 	unsigned long flags;
229 	int ret;
230 
231 	list_for_each_entry(priv, &timer_group_list, node) {
232 		ret = convert_time_to_ticks(priv, time, &ticks);
233 		if (ret < 0)
234 			return NULL;
235 
236 		if (ticks > MAX_TICKS) {
237 			if (!(priv->flags & FSL_GLOBAL_TIMER))
238 				return NULL;
239 
240 			timer = get_cascade_timer(priv, ticks);
241 			if (!timer)
242 				continue;
243 
244 			return timer;
245 		}
246 
247 		for (i = 0; i < TIMERS_PER_GROUP; i++) {
248 			/* one timer: Reverse allocation */
249 			num = TIMERS_PER_GROUP - 1 - i;
250 			spin_lock_irqsave(&priv->lock, flags);
251 			if (priv->idle & (1 << i)) {
252 				/* set timer busy */
253 				priv->idle &= ~(1 << i);
254 				/* set ticks & stop timer */
255 				out_be32(&priv->regs[num].gtbcr,
256 					ticks | TIMER_STOP);
257 				out_be32(&priv->regs[num].gtccr, 0);
258 				priv->timer[num].cascade_handle = NULL;
259 				spin_unlock_irqrestore(&priv->lock, flags);
260 				return &priv->timer[num];
261 			}
262 			spin_unlock_irqrestore(&priv->lock, flags);
263 		}
264 	}
265 
266 	return NULL;
267 }
268 
269 /**
270  * mpic_start_timer - start hardware timer
271  * @handle: the timer to be started.
272  *
273  * It will do ->fn(->dev) callback from the hardware interrupt at
274  * the ->timeval point in the future.
275  */
276 void mpic_start_timer(struct mpic_timer *handle)
277 {
278 	struct timer_group_priv *priv = container_of(handle,
279 			struct timer_group_priv, timer[handle->num]);
280 
281 	clrbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
282 }
283 EXPORT_SYMBOL(mpic_start_timer);
284 
285 /**
286  * mpic_stop_timer - stop hardware timer
287  * @handle: the timer to be stoped
288  *
289  * The timer periodically generates an interrupt. Unless user stops the timer.
290  */
291 void mpic_stop_timer(struct mpic_timer *handle)
292 {
293 	struct timer_group_priv *priv = container_of(handle,
294 			struct timer_group_priv, timer[handle->num]);
295 	struct cascade_priv *casc_priv;
296 
297 	setbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
298 
299 	casc_priv = priv->timer[handle->num].cascade_handle;
300 	if (casc_priv) {
301 		out_be32(&priv->regs[handle->num].gtccr, 0);
302 		out_be32(&priv->regs[handle->num - 1].gtccr, 0);
303 	} else {
304 		out_be32(&priv->regs[handle->num].gtccr, 0);
305 	}
306 }
307 EXPORT_SYMBOL(mpic_stop_timer);
308 
309 /**
310  * mpic_get_remain_time - get timer time
311  * @handle: the timer to be selected.
312  * @time: time for timer
313  *
314  * Query timer remaining time.
315  */
316 void mpic_get_remain_time(struct mpic_timer *handle, struct timeval *time)
317 {
318 	struct timer_group_priv *priv = container_of(handle,
319 			struct timer_group_priv, timer[handle->num]);
320 	struct cascade_priv *casc_priv;
321 
322 	u64 ticks;
323 	u32 tmp_ticks;
324 
325 	casc_priv = priv->timer[handle->num].cascade_handle;
326 	if (casc_priv) {
327 		tmp_ticks = in_be32(&priv->regs[handle->num].gtccr);
328 		ticks = ((u64)tmp_ticks & UINT_MAX) * (u64)MAX_TICKS_CASCADE;
329 		tmp_ticks = in_be32(&priv->regs[handle->num - 1].gtccr);
330 		ticks += tmp_ticks;
331 	} else {
332 		ticks = in_be32(&priv->regs[handle->num].gtccr);
333 	}
334 
335 	convert_ticks_to_time(priv, ticks, time);
336 }
337 EXPORT_SYMBOL(mpic_get_remain_time);
338 
339 /**
340  * mpic_free_timer - free hardware timer
341  * @handle: the timer to be removed.
342  *
343  * Free the timer.
344  *
345  * Note: can not be used in interrupt context.
346  */
347 void mpic_free_timer(struct mpic_timer *handle)
348 {
349 	struct timer_group_priv *priv = container_of(handle,
350 			struct timer_group_priv, timer[handle->num]);
351 
352 	struct cascade_priv *casc_priv;
353 	unsigned long flags;
354 
355 	mpic_stop_timer(handle);
356 
357 	casc_priv = priv->timer[handle->num].cascade_handle;
358 
359 	free_irq(priv->timer[handle->num].irq, priv->timer[handle->num].dev);
360 
361 	spin_lock_irqsave(&priv->lock, flags);
362 	if (casc_priv) {
363 		u32 tcr;
364 		tcr = casc_priv->tcr_value | (casc_priv->tcr_value <<
365 					MPIC_TIMER_TCR_ROVR_OFFSET);
366 		clrbits32(priv->group_tcr, tcr);
367 		priv->idle |= casc_priv->cascade_map;
368 		priv->timer[handle->num].cascade_handle = NULL;
369 	} else {
370 		priv->idle |= TIMER_OFFSET(handle->num);
371 	}
372 	spin_unlock_irqrestore(&priv->lock, flags);
373 }
374 EXPORT_SYMBOL(mpic_free_timer);
375 
376 /**
377  * mpic_request_timer - get a hardware timer
378  * @fn: interrupt handler function
379  * @dev: callback function of the data
380  * @time: time for timer
381  *
382  * This executes the "request_irq", returning NULL
383  * else "handle" on success.
384  */
385 struct mpic_timer *mpic_request_timer(irq_handler_t fn, void *dev,
386 					const struct timeval *time)
387 {
388 	struct mpic_timer *allocated_timer;
389 	int ret;
390 
391 	if (list_empty(&timer_group_list))
392 		return NULL;
393 
394 	if (!(time->tv_sec + time->tv_usec) ||
395 			time->tv_sec < 0 || time->tv_usec < 0)
396 		return NULL;
397 
398 	if (time->tv_usec > ONE_SECOND)
399 		return NULL;
400 
401 	allocated_timer = get_timer(time);
402 	if (!allocated_timer)
403 		return NULL;
404 
405 	ret = request_irq(allocated_timer->irq, fn,
406 			IRQF_TRIGGER_LOW, "global-timer", dev);
407 	if (ret) {
408 		mpic_free_timer(allocated_timer);
409 		return NULL;
410 	}
411 
412 	allocated_timer->dev = dev;
413 
414 	return allocated_timer;
415 }
416 EXPORT_SYMBOL(mpic_request_timer);
417 
418 static int timer_group_get_freq(struct device_node *np,
419 			struct timer_group_priv *priv)
420 {
421 	u32 div;
422 
423 	if (priv->flags & FSL_GLOBAL_TIMER) {
424 		struct device_node *dn;
425 
426 		dn = of_find_compatible_node(NULL, NULL, "fsl,mpic");
427 		if (dn) {
428 			of_property_read_u32(dn, "clock-frequency",
429 					&priv->timerfreq);
430 			of_node_put(dn);
431 		}
432 	}
433 
434 	if (priv->timerfreq <= 0)
435 		return -EINVAL;
436 
437 	if (priv->flags & FSL_GLOBAL_TIMER) {
438 		div = (1 << (MPIC_TIMER_TCR_CLKDIV >> 8)) * 8;
439 		priv->timerfreq /= div;
440 	}
441 
442 	return 0;
443 }
444 
445 static int timer_group_get_irq(struct device_node *np,
446 		struct timer_group_priv *priv)
447 {
448 	const u32 all_timer[] = { 0, TIMERS_PER_GROUP };
449 	const u32 *p;
450 	u32 offset;
451 	u32 count;
452 
453 	unsigned int i;
454 	unsigned int j;
455 	unsigned int irq_index = 0;
456 	unsigned int irq;
457 	int len;
458 
459 	p = of_get_property(np, "fsl,available-ranges", &len);
460 	if (p && len % (2 * sizeof(u32)) != 0) {
461 		pr_err("%s: malformed available-ranges property.\n",
462 				np->full_name);
463 		return -EINVAL;
464 	}
465 
466 	if (!p) {
467 		p = all_timer;
468 		len = sizeof(all_timer);
469 	}
470 
471 	len /= 2 * sizeof(u32);
472 
473 	for (i = 0; i < len; i++) {
474 		offset = p[i * 2];
475 		count = p[i * 2 + 1];
476 		for (j = 0; j < count; j++) {
477 			irq = irq_of_parse_and_map(np, irq_index);
478 			if (!irq) {
479 				pr_err("%s: irq parse and map failed.\n",
480 						np->full_name);
481 				return -EINVAL;
482 			}
483 
484 			/* Set timer idle */
485 			priv->idle |= TIMER_OFFSET((offset + j));
486 			priv->timer[offset + j].irq = irq;
487 			priv->timer[offset + j].num = offset + j;
488 			irq_index++;
489 		}
490 	}
491 
492 	return 0;
493 }
494 
495 static void timer_group_init(struct device_node *np)
496 {
497 	struct timer_group_priv *priv;
498 	unsigned int i = 0;
499 	int ret;
500 
501 	priv = kzalloc(sizeof(struct timer_group_priv), GFP_KERNEL);
502 	if (!priv) {
503 		pr_err("%s: cannot allocate memory for group.\n",
504 				np->full_name);
505 		return;
506 	}
507 
508 	if (of_device_is_compatible(np, "fsl,mpic-global-timer"))
509 		priv->flags |= FSL_GLOBAL_TIMER;
510 
511 	priv->regs = of_iomap(np, i++);
512 	if (!priv->regs) {
513 		pr_err("%s: cannot ioremap timer register address.\n",
514 				np->full_name);
515 		goto out;
516 	}
517 
518 	if (priv->flags & FSL_GLOBAL_TIMER) {
519 		priv->group_tcr = of_iomap(np, i++);
520 		if (!priv->group_tcr) {
521 			pr_err("%s: cannot ioremap tcr address.\n",
522 					np->full_name);
523 			goto out;
524 		}
525 	}
526 
527 	ret = timer_group_get_freq(np, priv);
528 	if (ret < 0) {
529 		pr_err("%s: cannot get timer frequency.\n", np->full_name);
530 		goto out;
531 	}
532 
533 	ret = timer_group_get_irq(np, priv);
534 	if (ret < 0) {
535 		pr_err("%s: cannot get timer irqs.\n", np->full_name);
536 		goto out;
537 	}
538 
539 	spin_lock_init(&priv->lock);
540 
541 	/* Init FSL timer hardware */
542 	if (priv->flags & FSL_GLOBAL_TIMER)
543 		setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
544 
545 	list_add_tail(&priv->node, &timer_group_list);
546 
547 	return;
548 
549 out:
550 	if (priv->regs)
551 		iounmap(priv->regs);
552 
553 	if (priv->group_tcr)
554 		iounmap(priv->group_tcr);
555 
556 	kfree(priv);
557 }
558 
559 static void mpic_timer_resume(void)
560 {
561 	struct timer_group_priv *priv;
562 
563 	list_for_each_entry(priv, &timer_group_list, node) {
564 		/* Init FSL timer hardware */
565 		if (priv->flags & FSL_GLOBAL_TIMER)
566 			setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
567 	}
568 }
569 
570 static const struct of_device_id mpic_timer_ids[] = {
571 	{ .compatible = "fsl,mpic-global-timer", },
572 	{},
573 };
574 
575 static struct syscore_ops mpic_timer_syscore_ops = {
576 	.resume = mpic_timer_resume,
577 };
578 
579 static int __init mpic_timer_init(void)
580 {
581 	struct device_node *np = NULL;
582 
583 	for_each_matching_node(np, mpic_timer_ids)
584 		timer_group_init(np);
585 
586 	register_syscore_ops(&mpic_timer_syscore_ops);
587 
588 	if (list_empty(&timer_group_list))
589 		return -ENODEV;
590 
591 	return 0;
592 }
593 subsys_initcall(mpic_timer_init);
594