xref: /linux/arch/powerpc/sysdev/fsl_gtm.c (revision e8cdfb0509f48d44d95d68d4f42d8d71a9ba4acd)
1 /*
2  * Freescale General-purpose Timers Module
3  *
4  * Copyright (c) Freescale Semicondutor, Inc. 2006.
5  *               Shlomi Gridish <gridish@freescale.com>
6  *               Jerry Huang <Chang-Ming.Huang@freescale.com>
7  * Copyright (c) MontaVista Software, Inc. 2008.
8  *               Anton Vorontsov <avorontsov@ru.mvista.com>
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/list.h>
20 #include <linux/io.h>
21 #include <linux/of.h>
22 #include <linux/spinlock.h>
23 #include <linux/bitops.h>
24 #include <linux/slab.h>
25 #include <asm/fsl_gtm.h>
26 
27 #define GTCFR_STP(x)		((x) & 1 ? 1 << 5 : 1 << 1)
28 #define GTCFR_RST(x)		((x) & 1 ? 1 << 4 : 1 << 0)
29 
30 #define GTMDR_ICLK_MASK		(3 << 1)
31 #define GTMDR_ICLK_ICAS		(0 << 1)
32 #define GTMDR_ICLK_ICLK		(1 << 1)
33 #define GTMDR_ICLK_SLGO		(2 << 1)
34 #define GTMDR_FRR		(1 << 3)
35 #define GTMDR_ORI		(1 << 4)
36 #define GTMDR_SPS(x)		((x) << 8)
37 
38 struct gtm_timers_regs {
39 	u8	gtcfr1;		/* Timer 1, Timer 2 global config register */
40 	u8	res0[0x3];
41 	u8	gtcfr2;		/* Timer 3, timer 4 global config register */
42 	u8	res1[0xB];
43 	__be16	gtmdr1;		/* Timer 1 mode register */
44 	__be16	gtmdr2;		/* Timer 2 mode register */
45 	__be16	gtrfr1;		/* Timer 1 reference register */
46 	__be16	gtrfr2;		/* Timer 2 reference register */
47 	__be16	gtcpr1;		/* Timer 1 capture register */
48 	__be16	gtcpr2;		/* Timer 2 capture register */
49 	__be16	gtcnr1;		/* Timer 1 counter */
50 	__be16	gtcnr2;		/* Timer 2 counter */
51 	__be16	gtmdr3;		/* Timer 3 mode register */
52 	__be16	gtmdr4;		/* Timer 4 mode register */
53 	__be16	gtrfr3;		/* Timer 3 reference register */
54 	__be16	gtrfr4;		/* Timer 4 reference register */
55 	__be16	gtcpr3;		/* Timer 3 capture register */
56 	__be16	gtcpr4;		/* Timer 4 capture register */
57 	__be16	gtcnr3;		/* Timer 3 counter */
58 	__be16	gtcnr4;		/* Timer 4 counter */
59 	__be16	gtevr1;		/* Timer 1 event register */
60 	__be16	gtevr2;		/* Timer 2 event register */
61 	__be16	gtevr3;		/* Timer 3 event register */
62 	__be16	gtevr4;		/* Timer 4 event register */
63 	__be16	gtpsr1;		/* Timer 1 prescale register */
64 	__be16	gtpsr2;		/* Timer 2 prescale register */
65 	__be16	gtpsr3;		/* Timer 3 prescale register */
66 	__be16	gtpsr4;		/* Timer 4 prescale register */
67 	u8 res2[0x40];
68 } __attribute__ ((packed));
69 
70 struct gtm {
71 	unsigned int clock;
72 	struct gtm_timers_regs __iomem *regs;
73 	struct gtm_timer timers[4];
74 	spinlock_t lock;
75 	struct list_head list_node;
76 };
77 
78 static LIST_HEAD(gtms);
79 
80 /**
81  * gtm_get_timer - request GTM timer to use it with the rest of GTM API
82  * Context:	non-IRQ
83  *
84  * This function reserves GTM timer for later use. It returns gtm_timer
85  * structure to use with the rest of GTM API, you should use timer->irq
86  * to manage timer interrupt.
87  */
88 struct gtm_timer *gtm_get_timer16(void)
89 {
90 	struct gtm *gtm = NULL;
91 	int i;
92 
93 	list_for_each_entry(gtm, &gtms, list_node) {
94 		spin_lock_irq(&gtm->lock);
95 
96 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
97 			if (!gtm->timers[i].requested) {
98 				gtm->timers[i].requested = true;
99 				spin_unlock_irq(&gtm->lock);
100 				return &gtm->timers[i];
101 			}
102 		}
103 
104 		spin_unlock_irq(&gtm->lock);
105 	}
106 
107 	if (gtm)
108 		return ERR_PTR(-EBUSY);
109 	return ERR_PTR(-ENODEV);
110 }
111 EXPORT_SYMBOL(gtm_get_timer16);
112 
113 /**
114  * gtm_get_specific_timer - request specific GTM timer
115  * @gtm:	specific GTM, pass here GTM's device_node->data
116  * @timer:	specific timer number, Timer1 is 0.
117  * Context:	non-IRQ
118  *
119  * This function reserves GTM timer for later use. It returns gtm_timer
120  * structure to use with the rest of GTM API, you should use timer->irq
121  * to manage timer interrupt.
122  */
123 struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
124 					   unsigned int timer)
125 {
126 	struct gtm_timer *ret = ERR_PTR(-EBUSY);
127 
128 	if (timer > 3)
129 		return ERR_PTR(-EINVAL);
130 
131 	spin_lock_irq(&gtm->lock);
132 
133 	if (gtm->timers[timer].requested)
134 		goto out;
135 
136 	ret = &gtm->timers[timer];
137 	ret->requested = true;
138 
139 out:
140 	spin_unlock_irq(&gtm->lock);
141 	return ret;
142 }
143 EXPORT_SYMBOL(gtm_get_specific_timer16);
144 
145 /**
146  * gtm_put_timer16 - release 16 bits GTM timer
147  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
148  * Context:	any
149  *
150  * This function releases GTM timer so others may request it.
151  */
152 void gtm_put_timer16(struct gtm_timer *tmr)
153 {
154 	gtm_stop_timer16(tmr);
155 
156 	spin_lock_irq(&tmr->gtm->lock);
157 	tmr->requested = false;
158 	spin_unlock_irq(&tmr->gtm->lock);
159 }
160 EXPORT_SYMBOL(gtm_put_timer16);
161 
162 /*
163  * This is back-end for the exported functions, it's used to reset single
164  * timer in reference mode.
165  */
166 static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
167 			       int reference_value, bool free_run)
168 {
169 	struct gtm *gtm = tmr->gtm;
170 	int num = tmr - &gtm->timers[0];
171 	unsigned int prescaler;
172 	u8 iclk = GTMDR_ICLK_ICLK;
173 	u8 psr;
174 	u8 sps;
175 	unsigned long flags;
176 	int max_prescaler = 256 * 256 * 16;
177 
178 	/* CPM2 doesn't have primary prescaler */
179 	if (!tmr->gtpsr)
180 		max_prescaler /= 256;
181 
182 	prescaler = gtm->clock / frequency;
183 	/*
184 	 * We have two 8 bit prescalers -- primary and secondary (psr, sps),
185 	 * plus "slow go" mode (clk / 16). So, total prescale value is
186 	 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
187 	 */
188 	if (prescaler > max_prescaler)
189 		return -EINVAL;
190 
191 	if (prescaler > max_prescaler / 16) {
192 		iclk = GTMDR_ICLK_SLGO;
193 		prescaler /= 16;
194 	}
195 
196 	if (prescaler <= 256) {
197 		psr = 0;
198 		sps = prescaler - 1;
199 	} else {
200 		psr = 256 - 1;
201 		sps = prescaler / 256 - 1;
202 	}
203 
204 	spin_lock_irqsave(&gtm->lock, flags);
205 
206 	/*
207 	 * Properly reset timers: stop, reset, set up prescalers, reference
208 	 * value and clear event register.
209 	 */
210 	clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
211 				 GTCFR_STP(num) | GTCFR_RST(num));
212 
213 	setbits8(tmr->gtcfr, GTCFR_STP(num));
214 
215 	if (tmr->gtpsr)
216 		out_be16(tmr->gtpsr, psr);
217 	clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
218 			GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
219 	out_be16(tmr->gtcnr, 0);
220 	out_be16(tmr->gtrfr, reference_value);
221 	out_be16(tmr->gtevr, 0xFFFF);
222 
223 	/* Let it be. */
224 	clrbits8(tmr->gtcfr, GTCFR_STP(num));
225 
226 	spin_unlock_irqrestore(&gtm->lock, flags);
227 
228 	return 0;
229 }
230 
231 /**
232  * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
233  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
234  * @usec:	timer interval in microseconds
235  * @reload:	if set, the timer will reset upon expiry rather than
236  *         	continue running free.
237  * Context:	any
238  *
239  * This function (re)sets the GTM timer so that it counts up to the requested
240  * interval value, and fires the interrupt when the value is reached. This
241  * function will reduce the precision of the timer as needed in order for the
242  * requested timeout to fit in a 16-bit register.
243  */
244 int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
245 {
246 	/* quite obvious, frequency which is enough for µSec precision */
247 	int freq = 1000000;
248 	unsigned int bit;
249 
250 	bit = fls_long(usec);
251 	if (bit > 15) {
252 		freq >>= bit - 15;
253 		usec >>= bit - 15;
254 	}
255 
256 	if (!freq)
257 		return -EINVAL;
258 
259 	return gtm_set_ref_timer16(tmr, freq, usec, reload);
260 }
261 EXPORT_SYMBOL(gtm_set_timer16);
262 
263 /**
264  * gtm_set_exact_utimer16 - (re)set 16 bits timer
265  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
266  * @usec:	timer interval in microseconds
267  * @reload:	if set, the timer will reset upon expiry rather than
268  *         	continue running free.
269  * Context:	any
270  *
271  * This function (re)sets GTM timer so that it counts up to the requested
272  * interval value, and fires the interrupt when the value is reached. If reload
273  * flag was set, timer will also reset itself upon reference value, otherwise
274  * it continues to increment.
275  *
276  * The _exact_ bit in the function name states that this function will not
277  * crop precision of the "usec" argument, thus usec is limited to 16 bits
278  * (single timer width).
279  */
280 int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
281 {
282 	/* quite obvious, frequency which is enough for µSec precision */
283 	const int freq = 1000000;
284 
285 	/*
286 	 * We can lower the frequency (and probably power consumption) by
287 	 * dividing both frequency and usec by 2 until there is no remainder.
288 	 * But we won't bother with this unless savings are measured, so just
289 	 * run the timer as is.
290 	 */
291 
292 	return gtm_set_ref_timer16(tmr, freq, usec, reload);
293 }
294 EXPORT_SYMBOL(gtm_set_exact_timer16);
295 
296 /**
297  * gtm_stop_timer16 - stop single timer
298  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
299  * Context:	any
300  *
301  * This function simply stops the GTM timer.
302  */
303 void gtm_stop_timer16(struct gtm_timer *tmr)
304 {
305 	struct gtm *gtm = tmr->gtm;
306 	int num = tmr - &gtm->timers[0];
307 	unsigned long flags;
308 
309 	spin_lock_irqsave(&gtm->lock, flags);
310 
311 	setbits8(tmr->gtcfr, GTCFR_STP(num));
312 	out_be16(tmr->gtevr, 0xFFFF);
313 
314 	spin_unlock_irqrestore(&gtm->lock, flags);
315 }
316 EXPORT_SYMBOL(gtm_stop_timer16);
317 
318 /**
319  * gtm_ack_timer16 - acknowledge timer event (free-run timers only)
320  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
321  * @events:	events mask to ack
322  * Context:	any
323  *
324  * Thus function used to acknowledge timer interrupt event, use it inside the
325  * interrupt handler.
326  */
327 void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
328 {
329 	out_be16(tmr->gtevr, events);
330 }
331 EXPORT_SYMBOL(gtm_ack_timer16);
332 
333 static void __init gtm_set_shortcuts(struct device_node *np,
334 				     struct gtm_timer *timers,
335 				     struct gtm_timers_regs __iomem *regs)
336 {
337 	/*
338 	 * Yeah, I don't like this either, but timers' registers a bit messed,
339 	 * so we have to provide shortcuts to write timer independent code.
340 	 * Alternative option is to create gt*() accessors, but that will be
341 	 * even uglier and cryptic.
342 	 */
343 	timers[0].gtcfr = &regs->gtcfr1;
344 	timers[0].gtmdr = &regs->gtmdr1;
345 	timers[0].gtcnr = &regs->gtcnr1;
346 	timers[0].gtrfr = &regs->gtrfr1;
347 	timers[0].gtevr = &regs->gtevr1;
348 
349 	timers[1].gtcfr = &regs->gtcfr1;
350 	timers[1].gtmdr = &regs->gtmdr2;
351 	timers[1].gtcnr = &regs->gtcnr2;
352 	timers[1].gtrfr = &regs->gtrfr2;
353 	timers[1].gtevr = &regs->gtevr2;
354 
355 	timers[2].gtcfr = &regs->gtcfr2;
356 	timers[2].gtmdr = &regs->gtmdr3;
357 	timers[2].gtcnr = &regs->gtcnr3;
358 	timers[2].gtrfr = &regs->gtrfr3;
359 	timers[2].gtevr = &regs->gtevr3;
360 
361 	timers[3].gtcfr = &regs->gtcfr2;
362 	timers[3].gtmdr = &regs->gtmdr4;
363 	timers[3].gtcnr = &regs->gtcnr4;
364 	timers[3].gtrfr = &regs->gtrfr4;
365 	timers[3].gtevr = &regs->gtevr4;
366 
367 	/* CPM2 doesn't have primary prescaler */
368 	if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
369 		timers[0].gtpsr = &regs->gtpsr1;
370 		timers[1].gtpsr = &regs->gtpsr2;
371 		timers[2].gtpsr = &regs->gtpsr3;
372 		timers[3].gtpsr = &regs->gtpsr4;
373 	}
374 }
375 
376 static int __init fsl_gtm_init(void)
377 {
378 	struct device_node *np;
379 
380 	for_each_compatible_node(np, NULL, "fsl,gtm") {
381 		int i;
382 		struct gtm *gtm;
383 		const u32 *clock;
384 		int size;
385 
386 		gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
387 		if (!gtm) {
388 			pr_err("%s: unable to allocate memory\n",
389 				np->full_name);
390 			continue;
391 		}
392 
393 		spin_lock_init(&gtm->lock);
394 
395 		clock = of_get_property(np, "clock-frequency", &size);
396 		if (!clock || size != sizeof(*clock)) {
397 			pr_err("%s: no clock-frequency\n", np->full_name);
398 			goto err;
399 		}
400 		gtm->clock = *clock;
401 
402 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
403 			int ret;
404 			struct resource irq;
405 
406 			ret = of_irq_to_resource(np, i, &irq);
407 			if (ret == NO_IRQ) {
408 				pr_err("%s: not enough interrupts specified\n",
409 				       np->full_name);
410 				goto err;
411 			}
412 			gtm->timers[i].irq = irq.start;
413 			gtm->timers[i].gtm = gtm;
414 		}
415 
416 		gtm->regs = of_iomap(np, 0);
417 		if (!gtm->regs) {
418 			pr_err("%s: unable to iomap registers\n",
419 			       np->full_name);
420 			goto err;
421 		}
422 
423 		gtm_set_shortcuts(np, gtm->timers, gtm->regs);
424 		list_add(&gtm->list_node, &gtms);
425 
426 		/* We don't want to lose the node and its ->data */
427 		np->data = gtm;
428 		of_node_get(np);
429 
430 		continue;
431 err:
432 		kfree(gtm);
433 	}
434 	return 0;
435 }
436 arch_initcall(fsl_gtm_init);
437