1 /* 2 * Freescale General-purpose Timers Module 3 * 4 * Copyright (c) Freescale Semicondutor, Inc. 2006. 5 * Shlomi Gridish <gridish@freescale.com> 6 * Jerry Huang <Chang-Ming.Huang@freescale.com> 7 * Copyright (c) MontaVista Software, Inc. 2008. 8 * Anton Vorontsov <avorontsov@ru.mvista.com> 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/err.h> 18 #include <linux/errno.h> 19 #include <linux/list.h> 20 #include <linux/io.h> 21 #include <linux/of.h> 22 #include <linux/spinlock.h> 23 #include <linux/bitops.h> 24 #include <linux/slab.h> 25 #include <linux/export.h> 26 #include <asm/fsl_gtm.h> 27 28 #define GTCFR_STP(x) ((x) & 1 ? 1 << 5 : 1 << 1) 29 #define GTCFR_RST(x) ((x) & 1 ? 1 << 4 : 1 << 0) 30 31 #define GTMDR_ICLK_MASK (3 << 1) 32 #define GTMDR_ICLK_ICAS (0 << 1) 33 #define GTMDR_ICLK_ICLK (1 << 1) 34 #define GTMDR_ICLK_SLGO (2 << 1) 35 #define GTMDR_FRR (1 << 3) 36 #define GTMDR_ORI (1 << 4) 37 #define GTMDR_SPS(x) ((x) << 8) 38 39 struct gtm_timers_regs { 40 u8 gtcfr1; /* Timer 1, Timer 2 global config register */ 41 u8 res0[0x3]; 42 u8 gtcfr2; /* Timer 3, timer 4 global config register */ 43 u8 res1[0xB]; 44 __be16 gtmdr1; /* Timer 1 mode register */ 45 __be16 gtmdr2; /* Timer 2 mode register */ 46 __be16 gtrfr1; /* Timer 1 reference register */ 47 __be16 gtrfr2; /* Timer 2 reference register */ 48 __be16 gtcpr1; /* Timer 1 capture register */ 49 __be16 gtcpr2; /* Timer 2 capture register */ 50 __be16 gtcnr1; /* Timer 1 counter */ 51 __be16 gtcnr2; /* Timer 2 counter */ 52 __be16 gtmdr3; /* Timer 3 mode register */ 53 __be16 gtmdr4; /* Timer 4 mode register */ 54 __be16 gtrfr3; /* Timer 3 reference register */ 55 __be16 gtrfr4; /* Timer 4 reference register */ 56 __be16 gtcpr3; /* Timer 3 capture register */ 57 __be16 gtcpr4; /* Timer 4 capture register */ 58 __be16 gtcnr3; /* Timer 3 counter */ 59 __be16 gtcnr4; /* Timer 4 counter */ 60 __be16 gtevr1; /* Timer 1 event register */ 61 __be16 gtevr2; /* Timer 2 event register */ 62 __be16 gtevr3; /* Timer 3 event register */ 63 __be16 gtevr4; /* Timer 4 event register */ 64 __be16 gtpsr1; /* Timer 1 prescale register */ 65 __be16 gtpsr2; /* Timer 2 prescale register */ 66 __be16 gtpsr3; /* Timer 3 prescale register */ 67 __be16 gtpsr4; /* Timer 4 prescale register */ 68 u8 res2[0x40]; 69 } __attribute__ ((packed)); 70 71 struct gtm { 72 unsigned int clock; 73 struct gtm_timers_regs __iomem *regs; 74 struct gtm_timer timers[4]; 75 spinlock_t lock; 76 struct list_head list_node; 77 }; 78 79 static LIST_HEAD(gtms); 80 81 /** 82 * gtm_get_timer - request GTM timer to use it with the rest of GTM API 83 * Context: non-IRQ 84 * 85 * This function reserves GTM timer for later use. It returns gtm_timer 86 * structure to use with the rest of GTM API, you should use timer->irq 87 * to manage timer interrupt. 88 */ 89 struct gtm_timer *gtm_get_timer16(void) 90 { 91 struct gtm *gtm = NULL; 92 int i; 93 94 list_for_each_entry(gtm, >ms, list_node) { 95 spin_lock_irq(>m->lock); 96 97 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { 98 if (!gtm->timers[i].requested) { 99 gtm->timers[i].requested = true; 100 spin_unlock_irq(>m->lock); 101 return >m->timers[i]; 102 } 103 } 104 105 spin_unlock_irq(>m->lock); 106 } 107 108 if (gtm) 109 return ERR_PTR(-EBUSY); 110 return ERR_PTR(-ENODEV); 111 } 112 EXPORT_SYMBOL(gtm_get_timer16); 113 114 /** 115 * gtm_get_specific_timer - request specific GTM timer 116 * @gtm: specific GTM, pass here GTM's device_node->data 117 * @timer: specific timer number, Timer1 is 0. 118 * Context: non-IRQ 119 * 120 * This function reserves GTM timer for later use. It returns gtm_timer 121 * structure to use with the rest of GTM API, you should use timer->irq 122 * to manage timer interrupt. 123 */ 124 struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm, 125 unsigned int timer) 126 { 127 struct gtm_timer *ret = ERR_PTR(-EBUSY); 128 129 if (timer > 3) 130 return ERR_PTR(-EINVAL); 131 132 spin_lock_irq(>m->lock); 133 134 if (gtm->timers[timer].requested) 135 goto out; 136 137 ret = >m->timers[timer]; 138 ret->requested = true; 139 140 out: 141 spin_unlock_irq(>m->lock); 142 return ret; 143 } 144 EXPORT_SYMBOL(gtm_get_specific_timer16); 145 146 /** 147 * gtm_put_timer16 - release 16 bits GTM timer 148 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer 149 * Context: any 150 * 151 * This function releases GTM timer so others may request it. 152 */ 153 void gtm_put_timer16(struct gtm_timer *tmr) 154 { 155 gtm_stop_timer16(tmr); 156 157 spin_lock_irq(&tmr->gtm->lock); 158 tmr->requested = false; 159 spin_unlock_irq(&tmr->gtm->lock); 160 } 161 EXPORT_SYMBOL(gtm_put_timer16); 162 163 /* 164 * This is back-end for the exported functions, it's used to reset single 165 * timer in reference mode. 166 */ 167 static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency, 168 int reference_value, bool free_run) 169 { 170 struct gtm *gtm = tmr->gtm; 171 int num = tmr - >m->timers[0]; 172 unsigned int prescaler; 173 u8 iclk = GTMDR_ICLK_ICLK; 174 u8 psr; 175 u8 sps; 176 unsigned long flags; 177 int max_prescaler = 256 * 256 * 16; 178 179 /* CPM2 doesn't have primary prescaler */ 180 if (!tmr->gtpsr) 181 max_prescaler /= 256; 182 183 prescaler = gtm->clock / frequency; 184 /* 185 * We have two 8 bit prescalers -- primary and secondary (psr, sps), 186 * plus "slow go" mode (clk / 16). So, total prescale value is 187 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr. 188 */ 189 if (prescaler > max_prescaler) 190 return -EINVAL; 191 192 if (prescaler > max_prescaler / 16) { 193 iclk = GTMDR_ICLK_SLGO; 194 prescaler /= 16; 195 } 196 197 if (prescaler <= 256) { 198 psr = 0; 199 sps = prescaler - 1; 200 } else { 201 psr = 256 - 1; 202 sps = prescaler / 256 - 1; 203 } 204 205 spin_lock_irqsave(>m->lock, flags); 206 207 /* 208 * Properly reset timers: stop, reset, set up prescalers, reference 209 * value and clear event register. 210 */ 211 clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)), 212 GTCFR_STP(num) | GTCFR_RST(num)); 213 214 setbits8(tmr->gtcfr, GTCFR_STP(num)); 215 216 if (tmr->gtpsr) 217 out_be16(tmr->gtpsr, psr); 218 clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) | 219 GTMDR_ORI | (free_run ? GTMDR_FRR : 0)); 220 out_be16(tmr->gtcnr, 0); 221 out_be16(tmr->gtrfr, reference_value); 222 out_be16(tmr->gtevr, 0xFFFF); 223 224 /* Let it be. */ 225 clrbits8(tmr->gtcfr, GTCFR_STP(num)); 226 227 spin_unlock_irqrestore(>m->lock, flags); 228 229 return 0; 230 } 231 232 /** 233 * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision 234 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer 235 * @usec: timer interval in microseconds 236 * @reload: if set, the timer will reset upon expiry rather than 237 * continue running free. 238 * Context: any 239 * 240 * This function (re)sets the GTM timer so that it counts up to the requested 241 * interval value, and fires the interrupt when the value is reached. This 242 * function will reduce the precision of the timer as needed in order for the 243 * requested timeout to fit in a 16-bit register. 244 */ 245 int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload) 246 { 247 /* quite obvious, frequency which is enough for µSec precision */ 248 int freq = 1000000; 249 unsigned int bit; 250 251 bit = fls_long(usec); 252 if (bit > 15) { 253 freq >>= bit - 15; 254 usec >>= bit - 15; 255 } 256 257 if (!freq) 258 return -EINVAL; 259 260 return gtm_set_ref_timer16(tmr, freq, usec, reload); 261 } 262 EXPORT_SYMBOL(gtm_set_timer16); 263 264 /** 265 * gtm_set_exact_utimer16 - (re)set 16 bits timer 266 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer 267 * @usec: timer interval in microseconds 268 * @reload: if set, the timer will reset upon expiry rather than 269 * continue running free. 270 * Context: any 271 * 272 * This function (re)sets GTM timer so that it counts up to the requested 273 * interval value, and fires the interrupt when the value is reached. If reload 274 * flag was set, timer will also reset itself upon reference value, otherwise 275 * it continues to increment. 276 * 277 * The _exact_ bit in the function name states that this function will not 278 * crop precision of the "usec" argument, thus usec is limited to 16 bits 279 * (single timer width). 280 */ 281 int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload) 282 { 283 /* quite obvious, frequency which is enough for µSec precision */ 284 const int freq = 1000000; 285 286 /* 287 * We can lower the frequency (and probably power consumption) by 288 * dividing both frequency and usec by 2 until there is no remainder. 289 * But we won't bother with this unless savings are measured, so just 290 * run the timer as is. 291 */ 292 293 return gtm_set_ref_timer16(tmr, freq, usec, reload); 294 } 295 EXPORT_SYMBOL(gtm_set_exact_timer16); 296 297 /** 298 * gtm_stop_timer16 - stop single timer 299 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer 300 * Context: any 301 * 302 * This function simply stops the GTM timer. 303 */ 304 void gtm_stop_timer16(struct gtm_timer *tmr) 305 { 306 struct gtm *gtm = tmr->gtm; 307 int num = tmr - >m->timers[0]; 308 unsigned long flags; 309 310 spin_lock_irqsave(>m->lock, flags); 311 312 setbits8(tmr->gtcfr, GTCFR_STP(num)); 313 out_be16(tmr->gtevr, 0xFFFF); 314 315 spin_unlock_irqrestore(>m->lock, flags); 316 } 317 EXPORT_SYMBOL(gtm_stop_timer16); 318 319 /** 320 * gtm_ack_timer16 - acknowledge timer event (free-run timers only) 321 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer 322 * @events: events mask to ack 323 * Context: any 324 * 325 * Thus function used to acknowledge timer interrupt event, use it inside the 326 * interrupt handler. 327 */ 328 void gtm_ack_timer16(struct gtm_timer *tmr, u16 events) 329 { 330 out_be16(tmr->gtevr, events); 331 } 332 EXPORT_SYMBOL(gtm_ack_timer16); 333 334 static void __init gtm_set_shortcuts(struct device_node *np, 335 struct gtm_timer *timers, 336 struct gtm_timers_regs __iomem *regs) 337 { 338 /* 339 * Yeah, I don't like this either, but timers' registers a bit messed, 340 * so we have to provide shortcuts to write timer independent code. 341 * Alternative option is to create gt*() accessors, but that will be 342 * even uglier and cryptic. 343 */ 344 timers[0].gtcfr = ®s->gtcfr1; 345 timers[0].gtmdr = ®s->gtmdr1; 346 timers[0].gtcnr = ®s->gtcnr1; 347 timers[0].gtrfr = ®s->gtrfr1; 348 timers[0].gtevr = ®s->gtevr1; 349 350 timers[1].gtcfr = ®s->gtcfr1; 351 timers[1].gtmdr = ®s->gtmdr2; 352 timers[1].gtcnr = ®s->gtcnr2; 353 timers[1].gtrfr = ®s->gtrfr2; 354 timers[1].gtevr = ®s->gtevr2; 355 356 timers[2].gtcfr = ®s->gtcfr2; 357 timers[2].gtmdr = ®s->gtmdr3; 358 timers[2].gtcnr = ®s->gtcnr3; 359 timers[2].gtrfr = ®s->gtrfr3; 360 timers[2].gtevr = ®s->gtevr3; 361 362 timers[3].gtcfr = ®s->gtcfr2; 363 timers[3].gtmdr = ®s->gtmdr4; 364 timers[3].gtcnr = ®s->gtcnr4; 365 timers[3].gtrfr = ®s->gtrfr4; 366 timers[3].gtevr = ®s->gtevr4; 367 368 /* CPM2 doesn't have primary prescaler */ 369 if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) { 370 timers[0].gtpsr = ®s->gtpsr1; 371 timers[1].gtpsr = ®s->gtpsr2; 372 timers[2].gtpsr = ®s->gtpsr3; 373 timers[3].gtpsr = ®s->gtpsr4; 374 } 375 } 376 377 static int __init fsl_gtm_init(void) 378 { 379 struct device_node *np; 380 381 for_each_compatible_node(np, NULL, "fsl,gtm") { 382 int i; 383 struct gtm *gtm; 384 const u32 *clock; 385 int size; 386 387 gtm = kzalloc(sizeof(*gtm), GFP_KERNEL); 388 if (!gtm) { 389 pr_err("%s: unable to allocate memory\n", 390 np->full_name); 391 continue; 392 } 393 394 spin_lock_init(>m->lock); 395 396 clock = of_get_property(np, "clock-frequency", &size); 397 if (!clock || size != sizeof(*clock)) { 398 pr_err("%s: no clock-frequency\n", np->full_name); 399 goto err; 400 } 401 gtm->clock = *clock; 402 403 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { 404 int ret; 405 struct resource irq; 406 407 ret = of_irq_to_resource(np, i, &irq); 408 if (ret == NO_IRQ) { 409 pr_err("%s: not enough interrupts specified\n", 410 np->full_name); 411 goto err; 412 } 413 gtm->timers[i].irq = irq.start; 414 gtm->timers[i].gtm = gtm; 415 } 416 417 gtm->regs = of_iomap(np, 0); 418 if (!gtm->regs) { 419 pr_err("%s: unable to iomap registers\n", 420 np->full_name); 421 goto err; 422 } 423 424 gtm_set_shortcuts(np, gtm->timers, gtm->regs); 425 list_add(>m->list_node, >ms); 426 427 /* We don't want to lose the node and its ->data */ 428 np->data = gtm; 429 of_node_get(np); 430 431 continue; 432 err: 433 kfree(gtm); 434 } 435 return 0; 436 } 437 arch_initcall(fsl_gtm_init); 438