1 /* 2 * Freescale General-purpose Timers Module 3 * 4 * Copyright (c) Freescale Semicondutor, Inc. 2006. 5 * Shlomi Gridish <gridish@freescale.com> 6 * Jerry Huang <Chang-Ming.Huang@freescale.com> 7 * Copyright (c) MontaVista Software, Inc. 2008. 8 * Anton Vorontsov <avorontsov@ru.mvista.com> 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/err.h> 18 #include <linux/errno.h> 19 #include <linux/list.h> 20 #include <linux/io.h> 21 #include <linux/of.h> 22 #include <linux/spinlock.h> 23 #include <linux/bitops.h> 24 #include <linux/slab.h> 25 #include <asm/fsl_gtm.h> 26 27 #define GTCFR_STP(x) ((x) & 1 ? 1 << 5 : 1 << 1) 28 #define GTCFR_RST(x) ((x) & 1 ? 1 << 4 : 1 << 0) 29 30 #define GTMDR_ICLK_MASK (3 << 1) 31 #define GTMDR_ICLK_ICAS (0 << 1) 32 #define GTMDR_ICLK_ICLK (1 << 1) 33 #define GTMDR_ICLK_SLGO (2 << 1) 34 #define GTMDR_FRR (1 << 3) 35 #define GTMDR_ORI (1 << 4) 36 #define GTMDR_SPS(x) ((x) << 8) 37 38 struct gtm_timers_regs { 39 u8 gtcfr1; /* Timer 1, Timer 2 global config register */ 40 u8 res0[0x3]; 41 u8 gtcfr2; /* Timer 3, timer 4 global config register */ 42 u8 res1[0xB]; 43 __be16 gtmdr1; /* Timer 1 mode register */ 44 __be16 gtmdr2; /* Timer 2 mode register */ 45 __be16 gtrfr1; /* Timer 1 reference register */ 46 __be16 gtrfr2; /* Timer 2 reference register */ 47 __be16 gtcpr1; /* Timer 1 capture register */ 48 __be16 gtcpr2; /* Timer 2 capture register */ 49 __be16 gtcnr1; /* Timer 1 counter */ 50 __be16 gtcnr2; /* Timer 2 counter */ 51 __be16 gtmdr3; /* Timer 3 mode register */ 52 __be16 gtmdr4; /* Timer 4 mode register */ 53 __be16 gtrfr3; /* Timer 3 reference register */ 54 __be16 gtrfr4; /* Timer 4 reference register */ 55 __be16 gtcpr3; /* Timer 3 capture register */ 56 __be16 gtcpr4; /* Timer 4 capture register */ 57 __be16 gtcnr3; /* Timer 3 counter */ 58 __be16 gtcnr4; /* Timer 4 counter */ 59 __be16 gtevr1; /* Timer 1 event register */ 60 __be16 gtevr2; /* Timer 2 event register */ 61 __be16 gtevr3; /* Timer 3 event register */ 62 __be16 gtevr4; /* Timer 4 event register */ 63 __be16 gtpsr1; /* Timer 1 prescale register */ 64 __be16 gtpsr2; /* Timer 2 prescale register */ 65 __be16 gtpsr3; /* Timer 3 prescale register */ 66 __be16 gtpsr4; /* Timer 4 prescale register */ 67 u8 res2[0x40]; 68 } __attribute__ ((packed)); 69 70 struct gtm { 71 unsigned int clock; 72 struct gtm_timers_regs __iomem *regs; 73 struct gtm_timer timers[4]; 74 spinlock_t lock; 75 struct list_head list_node; 76 }; 77 78 static LIST_HEAD(gtms); 79 80 /** 81 * gtm_get_timer - request GTM timer to use it with the rest of GTM API 82 * Context: non-IRQ 83 * 84 * This function reserves GTM timer for later use. It returns gtm_timer 85 * structure to use with the rest of GTM API, you should use timer->irq 86 * to manage timer interrupt. 87 */ 88 struct gtm_timer *gtm_get_timer16(void) 89 { 90 struct gtm *gtm = NULL; 91 int i; 92 93 list_for_each_entry(gtm, >ms, list_node) { 94 spin_lock_irq(>m->lock); 95 96 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { 97 if (!gtm->timers[i].requested) { 98 gtm->timers[i].requested = true; 99 spin_unlock_irq(>m->lock); 100 return >m->timers[i]; 101 } 102 } 103 104 spin_unlock_irq(>m->lock); 105 } 106 107 if (gtm) 108 return ERR_PTR(-EBUSY); 109 return ERR_PTR(-ENODEV); 110 } 111 EXPORT_SYMBOL(gtm_get_timer16); 112 113 /** 114 * gtm_get_specific_timer - request specific GTM timer 115 * @gtm: specific GTM, pass here GTM's device_node->data 116 * @timer: specific timer number, Timer1 is 0. 117 * Context: non-IRQ 118 * 119 * This function reserves GTM timer for later use. It returns gtm_timer 120 * structure to use with the rest of GTM API, you should use timer->irq 121 * to manage timer interrupt. 122 */ 123 struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm, 124 unsigned int timer) 125 { 126 struct gtm_timer *ret = ERR_PTR(-EBUSY); 127 128 if (timer > 3) 129 return ERR_PTR(-EINVAL); 130 131 spin_lock_irq(>m->lock); 132 133 if (gtm->timers[timer].requested) 134 goto out; 135 136 ret = >m->timers[timer]; 137 ret->requested = true; 138 139 out: 140 spin_unlock_irq(>m->lock); 141 return ret; 142 } 143 EXPORT_SYMBOL(gtm_get_specific_timer16); 144 145 /** 146 * gtm_put_timer16 - release 16 bits GTM timer 147 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer 148 * Context: any 149 * 150 * This function releases GTM timer so others may request it. 151 */ 152 void gtm_put_timer16(struct gtm_timer *tmr) 153 { 154 gtm_stop_timer16(tmr); 155 156 spin_lock_irq(&tmr->gtm->lock); 157 tmr->requested = false; 158 spin_unlock_irq(&tmr->gtm->lock); 159 } 160 EXPORT_SYMBOL(gtm_put_timer16); 161 162 /* 163 * This is back-end for the exported functions, it's used to reset single 164 * timer in reference mode. 165 */ 166 static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency, 167 int reference_value, bool free_run) 168 { 169 struct gtm *gtm = tmr->gtm; 170 int num = tmr - >m->timers[0]; 171 unsigned int prescaler; 172 u8 iclk = GTMDR_ICLK_ICLK; 173 u8 psr; 174 u8 sps; 175 unsigned long flags; 176 int max_prescaler = 256 * 256 * 16; 177 178 /* CPM2 doesn't have primary prescaler */ 179 if (!tmr->gtpsr) 180 max_prescaler /= 256; 181 182 prescaler = gtm->clock / frequency; 183 /* 184 * We have two 8 bit prescalers -- primary and secondary (psr, sps), 185 * plus "slow go" mode (clk / 16). So, total prescale value is 186 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr. 187 */ 188 if (prescaler > max_prescaler) 189 return -EINVAL; 190 191 if (prescaler > max_prescaler / 16) { 192 iclk = GTMDR_ICLK_SLGO; 193 prescaler /= 16; 194 } 195 196 if (prescaler <= 256) { 197 psr = 0; 198 sps = prescaler - 1; 199 } else { 200 psr = 256 - 1; 201 sps = prescaler / 256 - 1; 202 } 203 204 spin_lock_irqsave(>m->lock, flags); 205 206 /* 207 * Properly reset timers: stop, reset, set up prescalers, reference 208 * value and clear event register. 209 */ 210 clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)), 211 GTCFR_STP(num) | GTCFR_RST(num)); 212 213 setbits8(tmr->gtcfr, GTCFR_STP(num)); 214 215 if (tmr->gtpsr) 216 out_be16(tmr->gtpsr, psr); 217 clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) | 218 GTMDR_ORI | (free_run ? GTMDR_FRR : 0)); 219 out_be16(tmr->gtcnr, 0); 220 out_be16(tmr->gtrfr, reference_value); 221 out_be16(tmr->gtevr, 0xFFFF); 222 223 /* Let it be. */ 224 clrbits8(tmr->gtcfr, GTCFR_STP(num)); 225 226 spin_unlock_irqrestore(>m->lock, flags); 227 228 return 0; 229 } 230 231 /** 232 * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision 233 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer 234 * @usec: timer interval in microseconds 235 * @reload: if set, the timer will reset upon expiry rather than 236 * continue running free. 237 * Context: any 238 * 239 * This function (re)sets the GTM timer so that it counts up to the requested 240 * interval value, and fires the interrupt when the value is reached. This 241 * function will reduce the precision of the timer as needed in order for the 242 * requested timeout to fit in a 16-bit register. 243 */ 244 int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload) 245 { 246 /* quite obvious, frequency which is enough for µSec precision */ 247 int freq = 1000000; 248 unsigned int bit; 249 250 bit = fls_long(usec); 251 if (bit > 15) { 252 freq >>= bit - 15; 253 usec >>= bit - 15; 254 } 255 256 if (!freq) 257 return -EINVAL; 258 259 return gtm_set_ref_timer16(tmr, freq, usec, reload); 260 } 261 EXPORT_SYMBOL(gtm_set_timer16); 262 263 /** 264 * gtm_set_exact_utimer16 - (re)set 16 bits timer 265 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer 266 * @usec: timer interval in microseconds 267 * @reload: if set, the timer will reset upon expiry rather than 268 * continue running free. 269 * Context: any 270 * 271 * This function (re)sets GTM timer so that it counts up to the requested 272 * interval value, and fires the interrupt when the value is reached. If reload 273 * flag was set, timer will also reset itself upon reference value, otherwise 274 * it continues to increment. 275 * 276 * The _exact_ bit in the function name states that this function will not 277 * crop precision of the "usec" argument, thus usec is limited to 16 bits 278 * (single timer width). 279 */ 280 int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload) 281 { 282 /* quite obvious, frequency which is enough for µSec precision */ 283 const int freq = 1000000; 284 285 /* 286 * We can lower the frequency (and probably power consumption) by 287 * dividing both frequency and usec by 2 until there is no remainder. 288 * But we won't bother with this unless savings are measured, so just 289 * run the timer as is. 290 */ 291 292 return gtm_set_ref_timer16(tmr, freq, usec, reload); 293 } 294 EXPORT_SYMBOL(gtm_set_exact_timer16); 295 296 /** 297 * gtm_stop_timer16 - stop single timer 298 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer 299 * Context: any 300 * 301 * This function simply stops the GTM timer. 302 */ 303 void gtm_stop_timer16(struct gtm_timer *tmr) 304 { 305 struct gtm *gtm = tmr->gtm; 306 int num = tmr - >m->timers[0]; 307 unsigned long flags; 308 309 spin_lock_irqsave(>m->lock, flags); 310 311 setbits8(tmr->gtcfr, GTCFR_STP(num)); 312 out_be16(tmr->gtevr, 0xFFFF); 313 314 spin_unlock_irqrestore(>m->lock, flags); 315 } 316 EXPORT_SYMBOL(gtm_stop_timer16); 317 318 /** 319 * gtm_ack_timer16 - acknowledge timer event (free-run timers only) 320 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer 321 * @events: events mask to ack 322 * Context: any 323 * 324 * Thus function used to acknowledge timer interrupt event, use it inside the 325 * interrupt handler. 326 */ 327 void gtm_ack_timer16(struct gtm_timer *tmr, u16 events) 328 { 329 out_be16(tmr->gtevr, events); 330 } 331 EXPORT_SYMBOL(gtm_ack_timer16); 332 333 static void __init gtm_set_shortcuts(struct device_node *np, 334 struct gtm_timer *timers, 335 struct gtm_timers_regs __iomem *regs) 336 { 337 /* 338 * Yeah, I don't like this either, but timers' registers a bit messed, 339 * so we have to provide shortcuts to write timer independent code. 340 * Alternative option is to create gt*() accessors, but that will be 341 * even uglier and cryptic. 342 */ 343 timers[0].gtcfr = ®s->gtcfr1; 344 timers[0].gtmdr = ®s->gtmdr1; 345 timers[0].gtcnr = ®s->gtcnr1; 346 timers[0].gtrfr = ®s->gtrfr1; 347 timers[0].gtevr = ®s->gtevr1; 348 349 timers[1].gtcfr = ®s->gtcfr1; 350 timers[1].gtmdr = ®s->gtmdr2; 351 timers[1].gtcnr = ®s->gtcnr2; 352 timers[1].gtrfr = ®s->gtrfr2; 353 timers[1].gtevr = ®s->gtevr2; 354 355 timers[2].gtcfr = ®s->gtcfr2; 356 timers[2].gtmdr = ®s->gtmdr3; 357 timers[2].gtcnr = ®s->gtcnr3; 358 timers[2].gtrfr = ®s->gtrfr3; 359 timers[2].gtevr = ®s->gtevr3; 360 361 timers[3].gtcfr = ®s->gtcfr2; 362 timers[3].gtmdr = ®s->gtmdr4; 363 timers[3].gtcnr = ®s->gtcnr4; 364 timers[3].gtrfr = ®s->gtrfr4; 365 timers[3].gtevr = ®s->gtevr4; 366 367 /* CPM2 doesn't have primary prescaler */ 368 if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) { 369 timers[0].gtpsr = ®s->gtpsr1; 370 timers[1].gtpsr = ®s->gtpsr2; 371 timers[2].gtpsr = ®s->gtpsr3; 372 timers[3].gtpsr = ®s->gtpsr4; 373 } 374 } 375 376 static int __init fsl_gtm_init(void) 377 { 378 struct device_node *np; 379 380 for_each_compatible_node(np, NULL, "fsl,gtm") { 381 int i; 382 struct gtm *gtm; 383 const u32 *clock; 384 int size; 385 386 gtm = kzalloc(sizeof(*gtm), GFP_KERNEL); 387 if (!gtm) { 388 pr_err("%s: unable to allocate memory\n", 389 np->full_name); 390 continue; 391 } 392 393 spin_lock_init(>m->lock); 394 395 clock = of_get_property(np, "clock-frequency", &size); 396 if (!clock || size != sizeof(*clock)) { 397 pr_err("%s: no clock-frequency\n", np->full_name); 398 goto err; 399 } 400 gtm->clock = *clock; 401 402 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { 403 int ret; 404 struct resource irq; 405 406 ret = of_irq_to_resource(np, i, &irq); 407 if (ret == NO_IRQ) { 408 pr_err("%s: not enough interrupts specified\n", 409 np->full_name); 410 goto err; 411 } 412 gtm->timers[i].irq = irq.start; 413 gtm->timers[i].gtm = gtm; 414 } 415 416 gtm->regs = of_iomap(np, 0); 417 if (!gtm->regs) { 418 pr_err("%s: unable to iomap registers\n", 419 np->full_name); 420 goto err; 421 } 422 423 gtm_set_shortcuts(np, gtm->timers, gtm->regs); 424 list_add(>m->list_node, >ms); 425 426 /* We don't want to lose the node and its ->data */ 427 np->data = gtm; 428 of_node_get(np); 429 430 continue; 431 err: 432 kfree(gtm); 433 } 434 return 0; 435 } 436 arch_initcall(fsl_gtm_init); 437