xref: /linux/arch/powerpc/sysdev/fsl_gtm.c (revision 0d9c2ff1c9f7f8b339fc42ac9763b28c71f1c115)
1 /*
2  * Freescale General-purpose Timers Module
3  *
4  * Copyright (c) Freescale Semiconductor, Inc. 2006.
5  *               Shlomi Gridish <gridish@freescale.com>
6  *               Jerry Huang <Chang-Ming.Huang@freescale.com>
7  * Copyright (c) MontaVista Software, Inc. 2008.
8  *               Anton Vorontsov <avorontsov@ru.mvista.com>
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/list.h>
20 #include <linux/io.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/spinlock.h>
25 #include <linux/bitops.h>
26 #include <linux/slab.h>
27 #include <linux/export.h>
28 #include <asm/fsl_gtm.h>
29 
30 #define GTCFR_STP(x)		((x) & 1 ? 1 << 5 : 1 << 1)
31 #define GTCFR_RST(x)		((x) & 1 ? 1 << 4 : 1 << 0)
32 
33 #define GTMDR_ICLK_MASK		(3 << 1)
34 #define GTMDR_ICLK_ICAS		(0 << 1)
35 #define GTMDR_ICLK_ICLK		(1 << 1)
36 #define GTMDR_ICLK_SLGO		(2 << 1)
37 #define GTMDR_FRR		(1 << 3)
38 #define GTMDR_ORI		(1 << 4)
39 #define GTMDR_SPS(x)		((x) << 8)
40 
41 struct gtm_timers_regs {
42 	u8	gtcfr1;		/* Timer 1, Timer 2 global config register */
43 	u8	res0[0x3];
44 	u8	gtcfr2;		/* Timer 3, timer 4 global config register */
45 	u8	res1[0xB];
46 	__be16	gtmdr1;		/* Timer 1 mode register */
47 	__be16	gtmdr2;		/* Timer 2 mode register */
48 	__be16	gtrfr1;		/* Timer 1 reference register */
49 	__be16	gtrfr2;		/* Timer 2 reference register */
50 	__be16	gtcpr1;		/* Timer 1 capture register */
51 	__be16	gtcpr2;		/* Timer 2 capture register */
52 	__be16	gtcnr1;		/* Timer 1 counter */
53 	__be16	gtcnr2;		/* Timer 2 counter */
54 	__be16	gtmdr3;		/* Timer 3 mode register */
55 	__be16	gtmdr4;		/* Timer 4 mode register */
56 	__be16	gtrfr3;		/* Timer 3 reference register */
57 	__be16	gtrfr4;		/* Timer 4 reference register */
58 	__be16	gtcpr3;		/* Timer 3 capture register */
59 	__be16	gtcpr4;		/* Timer 4 capture register */
60 	__be16	gtcnr3;		/* Timer 3 counter */
61 	__be16	gtcnr4;		/* Timer 4 counter */
62 	__be16	gtevr1;		/* Timer 1 event register */
63 	__be16	gtevr2;		/* Timer 2 event register */
64 	__be16	gtevr3;		/* Timer 3 event register */
65 	__be16	gtevr4;		/* Timer 4 event register */
66 	__be16	gtpsr1;		/* Timer 1 prescale register */
67 	__be16	gtpsr2;		/* Timer 2 prescale register */
68 	__be16	gtpsr3;		/* Timer 3 prescale register */
69 	__be16	gtpsr4;		/* Timer 4 prescale register */
70 	u8 res2[0x40];
71 } __attribute__ ((packed));
72 
73 struct gtm {
74 	unsigned int clock;
75 	struct gtm_timers_regs __iomem *regs;
76 	struct gtm_timer timers[4];
77 	spinlock_t lock;
78 	struct list_head list_node;
79 };
80 
81 static LIST_HEAD(gtms);
82 
83 /**
84  * gtm_get_timer - request GTM timer to use it with the rest of GTM API
85  * Context:	non-IRQ
86  *
87  * This function reserves GTM timer for later use. It returns gtm_timer
88  * structure to use with the rest of GTM API, you should use timer->irq
89  * to manage timer interrupt.
90  */
91 struct gtm_timer *gtm_get_timer16(void)
92 {
93 	struct gtm *gtm = NULL;
94 	int i;
95 
96 	list_for_each_entry(gtm, &gtms, list_node) {
97 		spin_lock_irq(&gtm->lock);
98 
99 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
100 			if (!gtm->timers[i].requested) {
101 				gtm->timers[i].requested = true;
102 				spin_unlock_irq(&gtm->lock);
103 				return &gtm->timers[i];
104 			}
105 		}
106 
107 		spin_unlock_irq(&gtm->lock);
108 	}
109 
110 	if (gtm)
111 		return ERR_PTR(-EBUSY);
112 	return ERR_PTR(-ENODEV);
113 }
114 EXPORT_SYMBOL(gtm_get_timer16);
115 
116 /**
117  * gtm_get_specific_timer - request specific GTM timer
118  * @gtm:	specific GTM, pass here GTM's device_node->data
119  * @timer:	specific timer number, Timer1 is 0.
120  * Context:	non-IRQ
121  *
122  * This function reserves GTM timer for later use. It returns gtm_timer
123  * structure to use with the rest of GTM API, you should use timer->irq
124  * to manage timer interrupt.
125  */
126 struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
127 					   unsigned int timer)
128 {
129 	struct gtm_timer *ret = ERR_PTR(-EBUSY);
130 
131 	if (timer > 3)
132 		return ERR_PTR(-EINVAL);
133 
134 	spin_lock_irq(&gtm->lock);
135 
136 	if (gtm->timers[timer].requested)
137 		goto out;
138 
139 	ret = &gtm->timers[timer];
140 	ret->requested = true;
141 
142 out:
143 	spin_unlock_irq(&gtm->lock);
144 	return ret;
145 }
146 EXPORT_SYMBOL(gtm_get_specific_timer16);
147 
148 /**
149  * gtm_put_timer16 - release 16 bits GTM timer
150  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
151  * Context:	any
152  *
153  * This function releases GTM timer so others may request it.
154  */
155 void gtm_put_timer16(struct gtm_timer *tmr)
156 {
157 	gtm_stop_timer16(tmr);
158 
159 	spin_lock_irq(&tmr->gtm->lock);
160 	tmr->requested = false;
161 	spin_unlock_irq(&tmr->gtm->lock);
162 }
163 EXPORT_SYMBOL(gtm_put_timer16);
164 
165 /*
166  * This is back-end for the exported functions, it's used to reset single
167  * timer in reference mode.
168  */
169 static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
170 			       int reference_value, bool free_run)
171 {
172 	struct gtm *gtm = tmr->gtm;
173 	int num = tmr - &gtm->timers[0];
174 	unsigned int prescaler;
175 	u8 iclk = GTMDR_ICLK_ICLK;
176 	u8 psr;
177 	u8 sps;
178 	unsigned long flags;
179 	int max_prescaler = 256 * 256 * 16;
180 
181 	/* CPM2 doesn't have primary prescaler */
182 	if (!tmr->gtpsr)
183 		max_prescaler /= 256;
184 
185 	prescaler = gtm->clock / frequency;
186 	/*
187 	 * We have two 8 bit prescalers -- primary and secondary (psr, sps),
188 	 * plus "slow go" mode (clk / 16). So, total prescale value is
189 	 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
190 	 */
191 	if (prescaler > max_prescaler)
192 		return -EINVAL;
193 
194 	if (prescaler > max_prescaler / 16) {
195 		iclk = GTMDR_ICLK_SLGO;
196 		prescaler /= 16;
197 	}
198 
199 	if (prescaler <= 256) {
200 		psr = 0;
201 		sps = prescaler - 1;
202 	} else {
203 		psr = 256 - 1;
204 		sps = prescaler / 256 - 1;
205 	}
206 
207 	spin_lock_irqsave(&gtm->lock, flags);
208 
209 	/*
210 	 * Properly reset timers: stop, reset, set up prescalers, reference
211 	 * value and clear event register.
212 	 */
213 	clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
214 				 GTCFR_STP(num) | GTCFR_RST(num));
215 
216 	setbits8(tmr->gtcfr, GTCFR_STP(num));
217 
218 	if (tmr->gtpsr)
219 		out_be16(tmr->gtpsr, psr);
220 	clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
221 			GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
222 	out_be16(tmr->gtcnr, 0);
223 	out_be16(tmr->gtrfr, reference_value);
224 	out_be16(tmr->gtevr, 0xFFFF);
225 
226 	/* Let it be. */
227 	clrbits8(tmr->gtcfr, GTCFR_STP(num));
228 
229 	spin_unlock_irqrestore(&gtm->lock, flags);
230 
231 	return 0;
232 }
233 
234 /**
235  * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
236  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
237  * @usec:	timer interval in microseconds
238  * @reload:	if set, the timer will reset upon expiry rather than
239  *         	continue running free.
240  * Context:	any
241  *
242  * This function (re)sets the GTM timer so that it counts up to the requested
243  * interval value, and fires the interrupt when the value is reached. This
244  * function will reduce the precision of the timer as needed in order for the
245  * requested timeout to fit in a 16-bit register.
246  */
247 int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
248 {
249 	/* quite obvious, frequency which is enough for µSec precision */
250 	int freq = 1000000;
251 	unsigned int bit;
252 
253 	bit = fls_long(usec);
254 	if (bit > 15) {
255 		freq >>= bit - 15;
256 		usec >>= bit - 15;
257 	}
258 
259 	if (!freq)
260 		return -EINVAL;
261 
262 	return gtm_set_ref_timer16(tmr, freq, usec, reload);
263 }
264 EXPORT_SYMBOL(gtm_set_timer16);
265 
266 /**
267  * gtm_set_exact_utimer16 - (re)set 16 bits timer
268  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
269  * @usec:	timer interval in microseconds
270  * @reload:	if set, the timer will reset upon expiry rather than
271  *         	continue running free.
272  * Context:	any
273  *
274  * This function (re)sets GTM timer so that it counts up to the requested
275  * interval value, and fires the interrupt when the value is reached. If reload
276  * flag was set, timer will also reset itself upon reference value, otherwise
277  * it continues to increment.
278  *
279  * The _exact_ bit in the function name states that this function will not
280  * crop precision of the "usec" argument, thus usec is limited to 16 bits
281  * (single timer width).
282  */
283 int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
284 {
285 	/* quite obvious, frequency which is enough for µSec precision */
286 	const int freq = 1000000;
287 
288 	/*
289 	 * We can lower the frequency (and probably power consumption) by
290 	 * dividing both frequency and usec by 2 until there is no remainder.
291 	 * But we won't bother with this unless savings are measured, so just
292 	 * run the timer as is.
293 	 */
294 
295 	return gtm_set_ref_timer16(tmr, freq, usec, reload);
296 }
297 EXPORT_SYMBOL(gtm_set_exact_timer16);
298 
299 /**
300  * gtm_stop_timer16 - stop single timer
301  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
302  * Context:	any
303  *
304  * This function simply stops the GTM timer.
305  */
306 void gtm_stop_timer16(struct gtm_timer *tmr)
307 {
308 	struct gtm *gtm = tmr->gtm;
309 	int num = tmr - &gtm->timers[0];
310 	unsigned long flags;
311 
312 	spin_lock_irqsave(&gtm->lock, flags);
313 
314 	setbits8(tmr->gtcfr, GTCFR_STP(num));
315 	out_be16(tmr->gtevr, 0xFFFF);
316 
317 	spin_unlock_irqrestore(&gtm->lock, flags);
318 }
319 EXPORT_SYMBOL(gtm_stop_timer16);
320 
321 /**
322  * gtm_ack_timer16 - acknowledge timer event (free-run timers only)
323  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer
324  * @events:	events mask to ack
325  * Context:	any
326  *
327  * Thus function used to acknowledge timer interrupt event, use it inside the
328  * interrupt handler.
329  */
330 void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
331 {
332 	out_be16(tmr->gtevr, events);
333 }
334 EXPORT_SYMBOL(gtm_ack_timer16);
335 
336 static void __init gtm_set_shortcuts(struct device_node *np,
337 				     struct gtm_timer *timers,
338 				     struct gtm_timers_regs __iomem *regs)
339 {
340 	/*
341 	 * Yeah, I don't like this either, but timers' registers a bit messed,
342 	 * so we have to provide shortcuts to write timer independent code.
343 	 * Alternative option is to create gt*() accessors, but that will be
344 	 * even uglier and cryptic.
345 	 */
346 	timers[0].gtcfr = &regs->gtcfr1;
347 	timers[0].gtmdr = &regs->gtmdr1;
348 	timers[0].gtcnr = &regs->gtcnr1;
349 	timers[0].gtrfr = &regs->gtrfr1;
350 	timers[0].gtevr = &regs->gtevr1;
351 
352 	timers[1].gtcfr = &regs->gtcfr1;
353 	timers[1].gtmdr = &regs->gtmdr2;
354 	timers[1].gtcnr = &regs->gtcnr2;
355 	timers[1].gtrfr = &regs->gtrfr2;
356 	timers[1].gtevr = &regs->gtevr2;
357 
358 	timers[2].gtcfr = &regs->gtcfr2;
359 	timers[2].gtmdr = &regs->gtmdr3;
360 	timers[2].gtcnr = &regs->gtcnr3;
361 	timers[2].gtrfr = &regs->gtrfr3;
362 	timers[2].gtevr = &regs->gtevr3;
363 
364 	timers[3].gtcfr = &regs->gtcfr2;
365 	timers[3].gtmdr = &regs->gtmdr4;
366 	timers[3].gtcnr = &regs->gtcnr4;
367 	timers[3].gtrfr = &regs->gtrfr4;
368 	timers[3].gtevr = &regs->gtevr4;
369 
370 	/* CPM2 doesn't have primary prescaler */
371 	if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
372 		timers[0].gtpsr = &regs->gtpsr1;
373 		timers[1].gtpsr = &regs->gtpsr2;
374 		timers[2].gtpsr = &regs->gtpsr3;
375 		timers[3].gtpsr = &regs->gtpsr4;
376 	}
377 }
378 
379 static int __init fsl_gtm_init(void)
380 {
381 	struct device_node *np;
382 
383 	for_each_compatible_node(np, NULL, "fsl,gtm") {
384 		int i;
385 		struct gtm *gtm;
386 		const u32 *clock;
387 		int size;
388 
389 		gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
390 		if (!gtm) {
391 			pr_err("%pOF: unable to allocate memory\n",
392 				np);
393 			continue;
394 		}
395 
396 		spin_lock_init(&gtm->lock);
397 
398 		clock = of_get_property(np, "clock-frequency", &size);
399 		if (!clock || size != sizeof(*clock)) {
400 			pr_err("%pOF: no clock-frequency\n", np);
401 			goto err;
402 		}
403 		gtm->clock = *clock;
404 
405 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
406 			unsigned int irq;
407 
408 			irq = irq_of_parse_and_map(np, i);
409 			if (!irq) {
410 				pr_err("%pOF: not enough interrupts specified\n",
411 				       np);
412 				goto err;
413 			}
414 			gtm->timers[i].irq = irq;
415 			gtm->timers[i].gtm = gtm;
416 		}
417 
418 		gtm->regs = of_iomap(np, 0);
419 		if (!gtm->regs) {
420 			pr_err("%pOF: unable to iomap registers\n",
421 			       np);
422 			goto err;
423 		}
424 
425 		gtm_set_shortcuts(np, gtm->timers, gtm->regs);
426 		list_add(&gtm->list_node, &gtms);
427 
428 		/* We don't want to lose the node and its ->data */
429 		np->data = gtm;
430 		of_node_get(np);
431 
432 		continue;
433 err:
434 		kfree(gtm);
435 	}
436 	return 0;
437 }
438 arch_initcall(fsl_gtm_init);
439