1 /* 2 * General Purpose functions for the global management of the 3 * 8260 Communication Processor Module. 4 * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com> 5 * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com) 6 * 2.3.99 Updates 7 * 8 * 2006 (c) MontaVista Software, Inc. 9 * Vitaly Bordug <vbordug@ru.mvista.com> 10 * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c 11 * 12 * This file is licensed under the terms of the GNU General Public License 13 * version 2. This program is licensed "as is" without any warranty of any 14 * kind, whether express or implied. 15 */ 16 17 /* 18 * 19 * In addition to the individual control of the communication 20 * channels, there are a few functions that globally affect the 21 * communication processor. 22 * 23 * Buffer descriptors must be allocated from the dual ported memory 24 * space. The allocator for that is here. When the communication 25 * process is reset, we reclaim the memory available. There is 26 * currently no deallocator for this memory. 27 */ 28 #include <linux/errno.h> 29 #include <linux/sched.h> 30 #include <linux/kernel.h> 31 #include <linux/param.h> 32 #include <linux/string.h> 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/module.h> 36 #include <linux/of.h> 37 38 #include <asm/io.h> 39 #include <asm/irq.h> 40 #include <asm/mpc8260.h> 41 #include <asm/page.h> 42 #include <asm/pgtable.h> 43 #include <asm/cpm2.h> 44 #include <asm/rheap.h> 45 #include <asm/fs_pd.h> 46 47 #include <sysdev/fsl_soc.h> 48 49 cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */ 50 51 /* We allocate this here because it is used almost exclusively for 52 * the communication processor devices. 53 */ 54 cpm2_map_t __iomem *cpm2_immr; 55 EXPORT_SYMBOL(cpm2_immr); 56 57 #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount 58 of space for CPM as it is larger 59 than on PQ2 */ 60 61 void __init cpm2_reset(void) 62 { 63 #ifdef CONFIG_PPC_85xx 64 cpm2_immr = ioremap(get_immrbase() + 0x80000, CPM_MAP_SIZE); 65 #else 66 cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE); 67 #endif 68 69 /* Reclaim the DP memory for our use. 70 */ 71 cpm_muram_init(); 72 73 /* Tell everyone where the comm processor resides. 74 */ 75 cpmp = &cpm2_immr->im_cpm; 76 77 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM 78 /* Reset the CPM. 79 */ 80 cpm_command(CPM_CR_RST, 0); 81 #endif 82 } 83 84 static DEFINE_SPINLOCK(cmd_lock); 85 86 #define MAX_CR_CMD_LOOPS 10000 87 88 int cpm_command(u32 command, u8 opcode) 89 { 90 int i, ret; 91 unsigned long flags; 92 93 spin_lock_irqsave(&cmd_lock, flags); 94 95 ret = 0; 96 out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG); 97 for (i = 0; i < MAX_CR_CMD_LOOPS; i++) 98 if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0) 99 goto out; 100 101 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__); 102 ret = -EIO; 103 out: 104 spin_unlock_irqrestore(&cmd_lock, flags); 105 return ret; 106 } 107 EXPORT_SYMBOL(cpm_command); 108 109 /* Set a baud rate generator. This needs lots of work. There are 110 * eight BRGs, which can be connected to the CPM channels or output 111 * as clocks. The BRGs are in two different block of internal 112 * memory mapped space. 113 * The baud rate clock is the system clock divided by something. 114 * It was set up long ago during the initial boot phase and is 115 * is given to us. 116 * Baud rate clocks are zero-based in the driver code (as that maps 117 * to port numbers). Documentation uses 1-based numbering. 118 */ 119 void __cpm2_setbrg(uint brg, uint rate, uint clk, int div16, int src) 120 { 121 u32 __iomem *bp; 122 u32 val; 123 124 /* This is good enough to get SMCs running..... 125 */ 126 if (brg < 4) { 127 bp = cpm2_map_size(im_brgc1, 16); 128 } else { 129 bp = cpm2_map_size(im_brgc5, 16); 130 brg -= 4; 131 } 132 bp += brg; 133 /* Round the clock divider to the nearest integer. */ 134 val = (((clk * 2 / rate) - 1) & ~1) | CPM_BRG_EN | src; 135 if (div16) 136 val |= CPM_BRG_DIV16; 137 138 out_be32(bp, val); 139 cpm2_unmap(bp); 140 } 141 EXPORT_SYMBOL(__cpm2_setbrg); 142 143 int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode) 144 { 145 int ret = 0; 146 int shift; 147 int i, bits = 0; 148 cpmux_t __iomem *im_cpmux; 149 u32 __iomem *reg; 150 u32 mask = 7; 151 152 u8 clk_map[][3] = { 153 {CPM_CLK_FCC1, CPM_BRG5, 0}, 154 {CPM_CLK_FCC1, CPM_BRG6, 1}, 155 {CPM_CLK_FCC1, CPM_BRG7, 2}, 156 {CPM_CLK_FCC1, CPM_BRG8, 3}, 157 {CPM_CLK_FCC1, CPM_CLK9, 4}, 158 {CPM_CLK_FCC1, CPM_CLK10, 5}, 159 {CPM_CLK_FCC1, CPM_CLK11, 6}, 160 {CPM_CLK_FCC1, CPM_CLK12, 7}, 161 {CPM_CLK_FCC2, CPM_BRG5, 0}, 162 {CPM_CLK_FCC2, CPM_BRG6, 1}, 163 {CPM_CLK_FCC2, CPM_BRG7, 2}, 164 {CPM_CLK_FCC2, CPM_BRG8, 3}, 165 {CPM_CLK_FCC2, CPM_CLK13, 4}, 166 {CPM_CLK_FCC2, CPM_CLK14, 5}, 167 {CPM_CLK_FCC2, CPM_CLK15, 6}, 168 {CPM_CLK_FCC2, CPM_CLK16, 7}, 169 {CPM_CLK_FCC3, CPM_BRG5, 0}, 170 {CPM_CLK_FCC3, CPM_BRG6, 1}, 171 {CPM_CLK_FCC3, CPM_BRG7, 2}, 172 {CPM_CLK_FCC3, CPM_BRG8, 3}, 173 {CPM_CLK_FCC3, CPM_CLK13, 4}, 174 {CPM_CLK_FCC3, CPM_CLK14, 5}, 175 {CPM_CLK_FCC3, CPM_CLK15, 6}, 176 {CPM_CLK_FCC3, CPM_CLK16, 7}, 177 {CPM_CLK_SCC1, CPM_BRG1, 0}, 178 {CPM_CLK_SCC1, CPM_BRG2, 1}, 179 {CPM_CLK_SCC1, CPM_BRG3, 2}, 180 {CPM_CLK_SCC1, CPM_BRG4, 3}, 181 {CPM_CLK_SCC1, CPM_CLK11, 4}, 182 {CPM_CLK_SCC1, CPM_CLK12, 5}, 183 {CPM_CLK_SCC1, CPM_CLK3, 6}, 184 {CPM_CLK_SCC1, CPM_CLK4, 7}, 185 {CPM_CLK_SCC2, CPM_BRG1, 0}, 186 {CPM_CLK_SCC2, CPM_BRG2, 1}, 187 {CPM_CLK_SCC2, CPM_BRG3, 2}, 188 {CPM_CLK_SCC2, CPM_BRG4, 3}, 189 {CPM_CLK_SCC2, CPM_CLK11, 4}, 190 {CPM_CLK_SCC2, CPM_CLK12, 5}, 191 {CPM_CLK_SCC2, CPM_CLK3, 6}, 192 {CPM_CLK_SCC2, CPM_CLK4, 7}, 193 {CPM_CLK_SCC3, CPM_BRG1, 0}, 194 {CPM_CLK_SCC3, CPM_BRG2, 1}, 195 {CPM_CLK_SCC3, CPM_BRG3, 2}, 196 {CPM_CLK_SCC3, CPM_BRG4, 3}, 197 {CPM_CLK_SCC3, CPM_CLK5, 4}, 198 {CPM_CLK_SCC3, CPM_CLK6, 5}, 199 {CPM_CLK_SCC3, CPM_CLK7, 6}, 200 {CPM_CLK_SCC3, CPM_CLK8, 7}, 201 {CPM_CLK_SCC4, CPM_BRG1, 0}, 202 {CPM_CLK_SCC4, CPM_BRG2, 1}, 203 {CPM_CLK_SCC4, CPM_BRG3, 2}, 204 {CPM_CLK_SCC4, CPM_BRG4, 3}, 205 {CPM_CLK_SCC4, CPM_CLK5, 4}, 206 {CPM_CLK_SCC4, CPM_CLK6, 5}, 207 {CPM_CLK_SCC4, CPM_CLK7, 6}, 208 {CPM_CLK_SCC4, CPM_CLK8, 7}, 209 }; 210 211 im_cpmux = cpm2_map(im_cpmux); 212 213 switch (target) { 214 case CPM_CLK_SCC1: 215 reg = &im_cpmux->cmx_scr; 216 shift = 24; 217 break; 218 case CPM_CLK_SCC2: 219 reg = &im_cpmux->cmx_scr; 220 shift = 16; 221 break; 222 case CPM_CLK_SCC3: 223 reg = &im_cpmux->cmx_scr; 224 shift = 8; 225 break; 226 case CPM_CLK_SCC4: 227 reg = &im_cpmux->cmx_scr; 228 shift = 0; 229 break; 230 case CPM_CLK_FCC1: 231 reg = &im_cpmux->cmx_fcr; 232 shift = 24; 233 break; 234 case CPM_CLK_FCC2: 235 reg = &im_cpmux->cmx_fcr; 236 shift = 16; 237 break; 238 case CPM_CLK_FCC3: 239 reg = &im_cpmux->cmx_fcr; 240 shift = 8; 241 break; 242 default: 243 printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n"); 244 return -EINVAL; 245 } 246 247 if (mode == CPM_CLK_RX) 248 shift += 3; 249 250 for (i = 0; i < ARRAY_SIZE(clk_map); i++) { 251 if (clk_map[i][0] == target && clk_map[i][1] == clock) { 252 bits = clk_map[i][2]; 253 break; 254 } 255 } 256 if (i == ARRAY_SIZE(clk_map)) 257 ret = -EINVAL; 258 259 bits <<= shift; 260 mask <<= shift; 261 262 out_be32(reg, (in_be32(reg) & ~mask) | bits); 263 264 cpm2_unmap(im_cpmux); 265 return ret; 266 } 267 268 int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock) 269 { 270 int ret = 0; 271 int shift; 272 int i, bits = 0; 273 cpmux_t __iomem *im_cpmux; 274 u8 __iomem *reg; 275 u8 mask = 3; 276 277 u8 clk_map[][3] = { 278 {CPM_CLK_SMC1, CPM_BRG1, 0}, 279 {CPM_CLK_SMC1, CPM_BRG7, 1}, 280 {CPM_CLK_SMC1, CPM_CLK7, 2}, 281 {CPM_CLK_SMC1, CPM_CLK9, 3}, 282 {CPM_CLK_SMC2, CPM_BRG2, 0}, 283 {CPM_CLK_SMC2, CPM_BRG8, 1}, 284 {CPM_CLK_SMC2, CPM_CLK4, 2}, 285 {CPM_CLK_SMC2, CPM_CLK15, 3}, 286 }; 287 288 im_cpmux = cpm2_map(im_cpmux); 289 290 switch (target) { 291 case CPM_CLK_SMC1: 292 reg = &im_cpmux->cmx_smr; 293 mask = 3; 294 shift = 4; 295 break; 296 case CPM_CLK_SMC2: 297 reg = &im_cpmux->cmx_smr; 298 mask = 3; 299 shift = 0; 300 break; 301 default: 302 printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n"); 303 return -EINVAL; 304 } 305 306 for (i = 0; i < ARRAY_SIZE(clk_map); i++) { 307 if (clk_map[i][0] == target && clk_map[i][1] == clock) { 308 bits = clk_map[i][2]; 309 break; 310 } 311 } 312 if (i == ARRAY_SIZE(clk_map)) 313 ret = -EINVAL; 314 315 bits <<= shift; 316 mask <<= shift; 317 318 out_8(reg, (in_8(reg) & ~mask) | bits); 319 320 cpm2_unmap(im_cpmux); 321 return ret; 322 } 323 324 struct cpm2_ioports { 325 u32 dir, par, sor, odr, dat; 326 u32 res[3]; 327 }; 328 329 void cpm2_set_pin(int port, int pin, int flags) 330 { 331 struct cpm2_ioports __iomem *iop = 332 (struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport; 333 334 pin = 1 << (31 - pin); 335 336 if (flags & CPM_PIN_OUTPUT) 337 setbits32(&iop[port].dir, pin); 338 else 339 clrbits32(&iop[port].dir, pin); 340 341 if (!(flags & CPM_PIN_GPIO)) 342 setbits32(&iop[port].par, pin); 343 else 344 clrbits32(&iop[port].par, pin); 345 346 if (flags & CPM_PIN_SECONDARY) 347 setbits32(&iop[port].sor, pin); 348 else 349 clrbits32(&iop[port].sor, pin); 350 351 if (flags & CPM_PIN_OPENDRAIN) 352 setbits32(&iop[port].odr, pin); 353 else 354 clrbits32(&iop[port].odr, pin); 355 } 356 357 static int cpm_init_par_io(void) 358 { 359 struct device_node *np; 360 361 for_each_compatible_node(np, NULL, "fsl,cpm2-pario-bank") 362 cpm2_gpiochip_add32(np); 363 return 0; 364 } 365 arch_initcall(cpm_init_par_io); 366 367