xref: /linux/arch/powerpc/platforms/pseries/ras.c (revision fd8aa2c1811bf60ccb2d5de0579c6f62aec1772d)
1 /*
2  * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  */
18 
19 /* Change Activity:
20  * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
21  * End Change Activity
22  */
23 
24 #include <linux/errno.h>
25 #include <linux/threads.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/signal.h>
28 #include <linux/sched.h>
29 #include <linux/ioport.h>
30 #include <linux/interrupt.h>
31 #include <linux/timex.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/irq.h>
35 #include <linux/random.h>
36 #include <linux/sysrq.h>
37 #include <linux/bitops.h>
38 
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/pgtable.h>
43 #include <asm/irq.h>
44 #include <asm/cache.h>
45 #include <asm/prom.h>
46 #include <asm/ptrace.h>
47 #include <asm/machdep.h>
48 #include <asm/rtas.h>
49 #include <asm/udbg.h>
50 #include <asm/firmware.h>
51 
52 #include "pseries.h"
53 
54 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
55 static DEFINE_SPINLOCK(ras_log_buf_lock);
56 
57 static char mce_data_buf[RTAS_ERROR_LOG_MAX];
58 
59 static int ras_get_sensor_state_token;
60 static int ras_check_exception_token;
61 
62 #define EPOW_SENSOR_TOKEN	9
63 #define EPOW_SENSOR_INDEX	0
64 
65 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
66 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
67 
68 
69 /*
70  * Initialize handlers for the set of interrupts caused by hardware errors
71  * and power system events.
72  */
73 static int __init init_ras_IRQ(void)
74 {
75 	struct device_node *np;
76 
77 	ras_get_sensor_state_token = rtas_token("get-sensor-state");
78 	ras_check_exception_token = rtas_token("check-exception");
79 
80 	/* Internal Errors */
81 	np = of_find_node_by_path("/event-sources/internal-errors");
82 	if (np != NULL) {
83 		request_event_sources_irqs(np, ras_error_interrupt,
84 					   "RAS_ERROR");
85 		of_node_put(np);
86 	}
87 
88 	/* EPOW Events */
89 	np = of_find_node_by_path("/event-sources/epow-events");
90 	if (np != NULL) {
91 		request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
92 		of_node_put(np);
93 	}
94 
95 	return 0;
96 }
97 __initcall(init_ras_IRQ);
98 
99 /*
100  * Handle power subsystem events (EPOW).
101  *
102  * Presently we just log the event has occurred.  This should be fixed
103  * to examine the type of power failure and take appropriate action where
104  * the time horizon permits something useful to be done.
105  */
106 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
107 {
108 	int status = 0xdeadbeef;
109 	int state = 0;
110 	int critical;
111 
112 	status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
113 			   EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
114 
115 	if (state > 3)
116 		critical = 1;  /* Time Critical */
117 	else
118 		critical = 0;
119 
120 	spin_lock(&ras_log_buf_lock);
121 
122 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
123 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
124 			   irq_map[irq].hwirq,
125 			   RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
126 			   critical, __pa(&ras_log_buf),
127 				rtas_get_error_log_max());
128 
129 	udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
130 		    *((unsigned long *)&ras_log_buf), status, state);
131 	printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
132 	       *((unsigned long *)&ras_log_buf), status, state);
133 
134 	/* format and print the extended information */
135 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
136 
137 	spin_unlock(&ras_log_buf_lock);
138 	return IRQ_HANDLED;
139 }
140 
141 /*
142  * Handle hardware error interrupts.
143  *
144  * RTAS check-exception is called to collect data on the exception.  If
145  * the error is deemed recoverable, we log a warning and return.
146  * For nonrecoverable errors, an error is logged and we stop all processing
147  * as quickly as possible in order to prevent propagation of the failure.
148  */
149 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
150 {
151 	struct rtas_error_log *rtas_elog;
152 	int status = 0xdeadbeef;
153 	int fatal;
154 
155 	spin_lock(&ras_log_buf_lock);
156 
157 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
158 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
159 			   irq_map[irq].hwirq,
160 			   RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
161 			   __pa(&ras_log_buf),
162 				rtas_get_error_log_max());
163 
164 	rtas_elog = (struct rtas_error_log *)ras_log_buf;
165 
166 	if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
167 		fatal = 1;
168 	else
169 		fatal = 0;
170 
171 	/* format and print the extended information */
172 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
173 
174 	if (fatal) {
175 		udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
176 			    *((unsigned long *)&ras_log_buf), status);
177 		printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
178 		       *((unsigned long *)&ras_log_buf), status);
179 
180 #ifndef DEBUG_RTAS_POWER_OFF
181 		/* Don't actually power off when debugging so we can test
182 		 * without actually failing while injecting errors.
183 		 * Error data will not be logged to syslog.
184 		 */
185 		ppc_md.power_off();
186 #endif
187 	} else {
188 		udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
189 			    *((unsigned long *)&ras_log_buf), status);
190 		printk(KERN_WARNING
191 		       "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
192 		       *((unsigned long *)&ras_log_buf), status);
193 	}
194 
195 	spin_unlock(&ras_log_buf_lock);
196 	return IRQ_HANDLED;
197 }
198 
199 /* Get the error information for errors coming through the
200  * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
201  * the actual r3 if possible, and a ptr to the error log entry
202  * will be returned if found.
203  *
204  * The mce_data_buf does not have any locks or protection around it,
205  * if a second machine check comes in, or a system reset is done
206  * before we have logged the error, then we will get corruption in the
207  * error log.  This is preferable over holding off on calling
208  * ibm,nmi-interlock which would result in us checkstopping if a
209  * second machine check did come in.
210  */
211 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
212 {
213 	unsigned long errdata = regs->gpr[3];
214 	struct rtas_error_log *errhdr = NULL;
215 	unsigned long *savep;
216 
217 	if ((errdata >= 0x7000 && errdata < 0x7fff0) ||
218 	    (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) {
219 		savep = __va(errdata);
220 		regs->gpr[3] = savep[0];	/* restore original r3 */
221 		memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
222 		memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX);
223 		errhdr = (struct rtas_error_log *)mce_data_buf;
224 	} else {
225 		printk("FWNMI: corrupt r3\n");
226 	}
227 	return errhdr;
228 }
229 
230 /* Call this when done with the data returned by FWNMI_get_errinfo.
231  * It will release the saved data area for other CPUs in the
232  * partition to receive FWNMI errors.
233  */
234 static void fwnmi_release_errinfo(void)
235 {
236 	int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
237 	if (ret != 0)
238 		printk("FWNMI: nmi-interlock failed: %d\n", ret);
239 }
240 
241 int pSeries_system_reset_exception(struct pt_regs *regs)
242 {
243 	if (fwnmi_active) {
244 		struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
245 		if (errhdr) {
246 			/* XXX Should look at FWNMI information */
247 		}
248 		fwnmi_release_errinfo();
249 	}
250 	return 0; /* need to perform reset */
251 }
252 
253 /*
254  * See if we can recover from a machine check exception.
255  * This is only called on power4 (or above) and only via
256  * the Firmware Non-Maskable Interrupts (fwnmi) handler
257  * which provides the error analysis for us.
258  *
259  * Return 1 if corrected (or delivered a signal).
260  * Return 0 if there is nothing we can do.
261  */
262 static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err)
263 {
264 	int nonfatal = 0;
265 
266 	if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
267 		/* Platform corrected itself */
268 		nonfatal = 1;
269 	} else if ((regs->msr & MSR_RI) &&
270 		   user_mode(regs) &&
271 		   err->severity == RTAS_SEVERITY_ERROR_SYNC &&
272 		   err->disposition == RTAS_DISP_NOT_RECOVERED &&
273 		   err->target == RTAS_TARGET_MEMORY &&
274 		   err->type == RTAS_TYPE_ECC_UNCORR &&
275 		   !(current->pid == 0 || is_global_init(current))) {
276 		/* Kill off a user process with an ECC error */
277 		printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n",
278 		       current->pid);
279 		/* XXX something better for ECC error? */
280 		_exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
281 		nonfatal = 1;
282 	}
283 
284 	log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal);
285 
286 	return nonfatal;
287 }
288 
289 /*
290  * Handle a machine check.
291  *
292  * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
293  * should be present.  If so the handler which called us tells us if the
294  * error was recovered (never true if RI=0).
295  *
296  * On hardware prior to Power 4 these exceptions were asynchronous which
297  * means we can't tell exactly where it occurred and so we can't recover.
298  */
299 int pSeries_machine_check_exception(struct pt_regs *regs)
300 {
301 	struct rtas_error_log *errp;
302 
303 	if (fwnmi_active) {
304 		errp = fwnmi_get_errinfo(regs);
305 		fwnmi_release_errinfo();
306 		if (errp && recover_mce(regs, errp))
307 			return 1;
308 	}
309 
310 	return 0;
311 }
312