1 /* 2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/interrupt.h> 21 #include <linux/irq.h> 22 #include <linux/of.h> 23 #include <linux/fs.h> 24 #include <linux/reboot.h> 25 #include <linux/irq_work.h> 26 27 #include <asm/machdep.h> 28 #include <asm/rtas.h> 29 #include <asm/firmware.h> 30 31 #include "pseries.h" 32 33 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX]; 34 static DEFINE_SPINLOCK(ras_log_buf_lock); 35 36 static int ras_check_exception_token; 37 38 static void mce_process_errlog_event(struct irq_work *work); 39 static struct irq_work mce_errlog_process_work = { 40 .func = mce_process_errlog_event, 41 }; 42 43 #define EPOW_SENSOR_TOKEN 9 44 #define EPOW_SENSOR_INDEX 0 45 46 /* EPOW events counter variable */ 47 static int num_epow_events; 48 49 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id); 50 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id); 51 static irqreturn_t ras_error_interrupt(int irq, void *dev_id); 52 53 54 /* 55 * Enable the hotplug interrupt late because processing them may touch other 56 * devices or systems (e.g. hugepages) that have not been initialized at the 57 * subsys stage. 58 */ 59 int __init init_ras_hotplug_IRQ(void) 60 { 61 struct device_node *np; 62 63 /* Hotplug Events */ 64 np = of_find_node_by_path("/event-sources/hot-plug-events"); 65 if (np != NULL) { 66 if (dlpar_workqueue_init() == 0) 67 request_event_sources_irqs(np, ras_hotplug_interrupt, 68 "RAS_HOTPLUG"); 69 of_node_put(np); 70 } 71 72 return 0; 73 } 74 machine_late_initcall(pseries, init_ras_hotplug_IRQ); 75 76 /* 77 * Initialize handlers for the set of interrupts caused by hardware errors 78 * and power system events. 79 */ 80 static int __init init_ras_IRQ(void) 81 { 82 struct device_node *np; 83 84 ras_check_exception_token = rtas_token("check-exception"); 85 86 /* Internal Errors */ 87 np = of_find_node_by_path("/event-sources/internal-errors"); 88 if (np != NULL) { 89 request_event_sources_irqs(np, ras_error_interrupt, 90 "RAS_ERROR"); 91 of_node_put(np); 92 } 93 94 /* EPOW Events */ 95 np = of_find_node_by_path("/event-sources/epow-events"); 96 if (np != NULL) { 97 request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW"); 98 of_node_put(np); 99 } 100 101 return 0; 102 } 103 machine_subsys_initcall(pseries, init_ras_IRQ); 104 105 #define EPOW_SHUTDOWN_NORMAL 1 106 #define EPOW_SHUTDOWN_ON_UPS 2 107 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3 108 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4 109 110 static void handle_system_shutdown(char event_modifier) 111 { 112 switch (event_modifier) { 113 case EPOW_SHUTDOWN_NORMAL: 114 pr_emerg("Power off requested\n"); 115 orderly_poweroff(true); 116 break; 117 118 case EPOW_SHUTDOWN_ON_UPS: 119 pr_emerg("Loss of system power detected. System is running on" 120 " UPS/battery. Check RTAS error log for details\n"); 121 orderly_poweroff(true); 122 break; 123 124 case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS: 125 pr_emerg("Loss of system critical functions detected. Check" 126 " RTAS error log for details\n"); 127 orderly_poweroff(true); 128 break; 129 130 case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH: 131 pr_emerg("High ambient temperature detected. Check RTAS" 132 " error log for details\n"); 133 orderly_poweroff(true); 134 break; 135 136 default: 137 pr_err("Unknown power/cooling shutdown event (modifier = %d)\n", 138 event_modifier); 139 } 140 } 141 142 struct epow_errorlog { 143 unsigned char sensor_value; 144 unsigned char event_modifier; 145 unsigned char extended_modifier; 146 unsigned char reserved; 147 unsigned char platform_reason; 148 }; 149 150 #define EPOW_RESET 0 151 #define EPOW_WARN_COOLING 1 152 #define EPOW_WARN_POWER 2 153 #define EPOW_SYSTEM_SHUTDOWN 3 154 #define EPOW_SYSTEM_HALT 4 155 #define EPOW_MAIN_ENCLOSURE 5 156 #define EPOW_POWER_OFF 7 157 158 static void rtas_parse_epow_errlog(struct rtas_error_log *log) 159 { 160 struct pseries_errorlog *pseries_log; 161 struct epow_errorlog *epow_log; 162 char action_code; 163 char modifier; 164 165 pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW); 166 if (pseries_log == NULL) 167 return; 168 169 epow_log = (struct epow_errorlog *)pseries_log->data; 170 action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */ 171 modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */ 172 173 switch (action_code) { 174 case EPOW_RESET: 175 if (num_epow_events) { 176 pr_info("Non critical power/cooling issue cleared\n"); 177 num_epow_events--; 178 } 179 break; 180 181 case EPOW_WARN_COOLING: 182 pr_info("Non-critical cooling issue detected. Check RTAS error" 183 " log for details\n"); 184 break; 185 186 case EPOW_WARN_POWER: 187 pr_info("Non-critical power issue detected. Check RTAS error" 188 " log for details\n"); 189 break; 190 191 case EPOW_SYSTEM_SHUTDOWN: 192 handle_system_shutdown(epow_log->event_modifier); 193 break; 194 195 case EPOW_SYSTEM_HALT: 196 pr_emerg("Critical power/cooling issue detected. Check RTAS" 197 " error log for details. Powering off.\n"); 198 orderly_poweroff(true); 199 break; 200 201 case EPOW_MAIN_ENCLOSURE: 202 case EPOW_POWER_OFF: 203 pr_emerg("System about to lose power. Check RTAS error log " 204 " for details. Powering off immediately.\n"); 205 emergency_sync(); 206 kernel_power_off(); 207 break; 208 209 default: 210 pr_err("Unknown power/cooling event (action code = %d)\n", 211 action_code); 212 } 213 214 /* Increment epow events counter variable */ 215 if (action_code != EPOW_RESET) 216 num_epow_events++; 217 } 218 219 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id) 220 { 221 struct pseries_errorlog *pseries_log; 222 struct pseries_hp_errorlog *hp_elog; 223 224 spin_lock(&ras_log_buf_lock); 225 226 rtas_call(ras_check_exception_token, 6, 1, NULL, 227 RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq), 228 RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf), 229 rtas_get_error_log_max()); 230 231 pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf, 232 PSERIES_ELOG_SECT_ID_HOTPLUG); 233 hp_elog = (struct pseries_hp_errorlog *)pseries_log->data; 234 235 /* 236 * Since PCI hotplug is not currently supported on pseries, put PCI 237 * hotplug events on the ras_log_buf to be handled by rtas_errd. 238 */ 239 if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM || 240 hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU) 241 queue_hotplug_event(hp_elog, NULL, NULL); 242 else 243 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0); 244 245 spin_unlock(&ras_log_buf_lock); 246 return IRQ_HANDLED; 247 } 248 249 /* Handle environmental and power warning (EPOW) interrupts. */ 250 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id) 251 { 252 int status; 253 int state; 254 int critical; 255 256 status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, 257 &state); 258 259 if (state > 3) 260 critical = 1; /* Time Critical */ 261 else 262 critical = 0; 263 264 spin_lock(&ras_log_buf_lock); 265 266 status = rtas_call(ras_check_exception_token, 6, 1, NULL, 267 RTAS_VECTOR_EXTERNAL_INTERRUPT, 268 virq_to_hw(irq), 269 RTAS_EPOW_WARNING, 270 critical, __pa(&ras_log_buf), 271 rtas_get_error_log_max()); 272 273 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0); 274 275 rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf); 276 277 spin_unlock(&ras_log_buf_lock); 278 return IRQ_HANDLED; 279 } 280 281 /* 282 * Handle hardware error interrupts. 283 * 284 * RTAS check-exception is called to collect data on the exception. If 285 * the error is deemed recoverable, we log a warning and return. 286 * For nonrecoverable errors, an error is logged and we stop all processing 287 * as quickly as possible in order to prevent propagation of the failure. 288 */ 289 static irqreturn_t ras_error_interrupt(int irq, void *dev_id) 290 { 291 struct rtas_error_log *rtas_elog; 292 int status; 293 int fatal; 294 295 spin_lock(&ras_log_buf_lock); 296 297 status = rtas_call(ras_check_exception_token, 6, 1, NULL, 298 RTAS_VECTOR_EXTERNAL_INTERRUPT, 299 virq_to_hw(irq), 300 RTAS_INTERNAL_ERROR, 1 /* Time Critical */, 301 __pa(&ras_log_buf), 302 rtas_get_error_log_max()); 303 304 rtas_elog = (struct rtas_error_log *)ras_log_buf; 305 306 if (status == 0 && 307 rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC) 308 fatal = 1; 309 else 310 fatal = 0; 311 312 /* format and print the extended information */ 313 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal); 314 315 if (fatal) { 316 pr_emerg("Fatal hardware error detected. Check RTAS error" 317 " log for details. Powering off immediately\n"); 318 emergency_sync(); 319 kernel_power_off(); 320 } else { 321 pr_err("Recoverable hardware error detected\n"); 322 } 323 324 spin_unlock(&ras_log_buf_lock); 325 return IRQ_HANDLED; 326 } 327 328 /* 329 * Some versions of FWNMI place the buffer inside the 4kB page starting at 330 * 0x7000. Other versions place it inside the rtas buffer. We check both. 331 */ 332 #define VALID_FWNMI_BUFFER(A) \ 333 ((((A) >= 0x7000) && ((A) < 0x7ff0)) || \ 334 (((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16)))) 335 336 static inline struct rtas_error_log *fwnmi_get_errlog(void) 337 { 338 return (struct rtas_error_log *)local_paca->mce_data_buf; 339 } 340 341 /* 342 * Get the error information for errors coming through the 343 * FWNMI vectors. The pt_regs' r3 will be updated to reflect 344 * the actual r3 if possible, and a ptr to the error log entry 345 * will be returned if found. 346 * 347 * Use one buffer mce_data_buf per cpu to store RTAS error. 348 * 349 * The mce_data_buf does not have any locks or protection around it, 350 * if a second machine check comes in, or a system reset is done 351 * before we have logged the error, then we will get corruption in the 352 * error log. This is preferable over holding off on calling 353 * ibm,nmi-interlock which would result in us checkstopping if a 354 * second machine check did come in. 355 */ 356 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs) 357 { 358 unsigned long *savep; 359 struct rtas_error_log *h; 360 361 /* Mask top two bits */ 362 regs->gpr[3] &= ~(0x3UL << 62); 363 364 if (!VALID_FWNMI_BUFFER(regs->gpr[3])) { 365 printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]); 366 return NULL; 367 } 368 369 savep = __va(regs->gpr[3]); 370 regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */ 371 372 h = (struct rtas_error_log *)&savep[1]; 373 /* Use the per cpu buffer from paca to store rtas error log */ 374 memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX); 375 if (!rtas_error_extended(h)) { 376 memcpy(local_paca->mce_data_buf, h, sizeof(__u64)); 377 } else { 378 int len, error_log_length; 379 380 error_log_length = 8 + rtas_error_extended_log_length(h); 381 len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX); 382 memcpy(local_paca->mce_data_buf, h, len); 383 } 384 385 return (struct rtas_error_log *)local_paca->mce_data_buf; 386 } 387 388 /* Call this when done with the data returned by FWNMI_get_errinfo. 389 * It will release the saved data area for other CPUs in the 390 * partition to receive FWNMI errors. 391 */ 392 static void fwnmi_release_errinfo(void) 393 { 394 int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL); 395 if (ret != 0) 396 printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret); 397 } 398 399 int pSeries_system_reset_exception(struct pt_regs *regs) 400 { 401 #ifdef __LITTLE_ENDIAN__ 402 /* 403 * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try 404 * to detect the bad SRR1 pattern here. Flip the NIP back to correct 405 * endian for reporting purposes. Unfortunately the MSR can't be fixed, 406 * so clear it. It will be missing MSR_RI so we won't try to recover. 407 */ 408 if ((be64_to_cpu(regs->msr) & 409 (MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR| 410 MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) { 411 regs->nip = be64_to_cpu((__be64)regs->nip); 412 regs->msr = 0; 413 } 414 #endif 415 416 if (fwnmi_active) { 417 struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs); 418 if (errhdr) { 419 /* XXX Should look at FWNMI information */ 420 } 421 fwnmi_release_errinfo(); 422 } 423 424 if (smp_handle_nmi_ipi(regs)) 425 return 1; 426 427 return 0; /* need to perform reset */ 428 } 429 430 /* 431 * Process MCE rtas errlog event. 432 */ 433 static void mce_process_errlog_event(struct irq_work *work) 434 { 435 struct rtas_error_log *err; 436 437 err = fwnmi_get_errlog(); 438 log_error((char *)err, ERR_TYPE_RTAS_LOG, 0); 439 } 440 441 /* 442 * See if we can recover from a machine check exception. 443 * This is only called on power4 (or above) and only via 444 * the Firmware Non-Maskable Interrupts (fwnmi) handler 445 * which provides the error analysis for us. 446 * 447 * Return 1 if corrected (or delivered a signal). 448 * Return 0 if there is nothing we can do. 449 */ 450 static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err) 451 { 452 int recovered = 0; 453 int disposition = rtas_error_disposition(err); 454 455 if (!(regs->msr & MSR_RI)) { 456 /* If MSR_RI isn't set, we cannot recover */ 457 recovered = 0; 458 459 } else if (disposition == RTAS_DISP_FULLY_RECOVERED) { 460 /* Platform corrected itself */ 461 recovered = 1; 462 463 } else if (disposition == RTAS_DISP_LIMITED_RECOVERY) { 464 /* Platform corrected itself but could be degraded */ 465 printk(KERN_ERR "MCE: limited recovery, system may " 466 "be degraded\n"); 467 recovered = 1; 468 469 } else if (user_mode(regs) && !is_global_init(current) && 470 rtas_error_severity(err) == RTAS_SEVERITY_ERROR_SYNC) { 471 472 /* 473 * If we received a synchronous error when in userspace 474 * kill the task. Firmware may report details of the fail 475 * asynchronously, so we can't rely on the target and type 476 * fields being valid here. 477 */ 478 printk(KERN_ERR "MCE: uncorrectable error, killing task " 479 "%s:%d\n", current->comm, current->pid); 480 481 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); 482 recovered = 1; 483 } 484 485 /* Queue irq work to log this rtas event later. */ 486 irq_work_queue(&mce_errlog_process_work); 487 488 return recovered; 489 } 490 491 /* 492 * Handle a machine check. 493 * 494 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi) 495 * should be present. If so the handler which called us tells us if the 496 * error was recovered (never true if RI=0). 497 * 498 * On hardware prior to Power 4 these exceptions were asynchronous which 499 * means we can't tell exactly where it occurred and so we can't recover. 500 */ 501 int pSeries_machine_check_exception(struct pt_regs *regs) 502 { 503 struct rtas_error_log *errp; 504 505 if (fwnmi_active) { 506 errp = fwnmi_get_errinfo(regs); 507 fwnmi_release_errinfo(); 508 if (errp && recover_mce(regs, errp)) 509 return 1; 510 } 511 512 return 0; 513 } 514