xref: /linux/arch/powerpc/platforms/pseries/ras.c (revision 89661adaaee2f85116b399e642129ccd4dafd195)
1 /*
2  * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  */
18 
19 /* Change Activity:
20  * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
21  * End Change Activity
22  */
23 
24 #include <linux/errno.h>
25 #include <linux/threads.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/signal.h>
28 #include <linux/sched.h>
29 #include <linux/ioport.h>
30 #include <linux/interrupt.h>
31 #include <linux/timex.h>
32 #include <linux/init.h>
33 #include <linux/slab.h>
34 #include <linux/delay.h>
35 #include <linux/irq.h>
36 #include <linux/random.h>
37 #include <linux/sysrq.h>
38 #include <linux/bitops.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/system.h>
42 #include <asm/io.h>
43 #include <asm/pgtable.h>
44 #include <asm/irq.h>
45 #include <asm/cache.h>
46 #include <asm/prom.h>
47 #include <asm/ptrace.h>
48 #include <asm/machdep.h>
49 #include <asm/rtas.h>
50 #include <asm/udbg.h>
51 #include <asm/firmware.h>
52 
53 #include "pseries.h"
54 
55 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
56 static DEFINE_SPINLOCK(ras_log_buf_lock);
57 
58 char mce_data_buf[RTAS_ERROR_LOG_MAX];
59 
60 static int ras_get_sensor_state_token;
61 static int ras_check_exception_token;
62 
63 #define EPOW_SENSOR_TOKEN	9
64 #define EPOW_SENSOR_INDEX	0
65 #define RAS_VECTOR_OFFSET	0x500
66 
67 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
68 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
69 
70 /* #define DEBUG */
71 
72 
73 static void request_ras_irqs(struct device_node *np,
74 			irq_handler_t handler,
75 			const char *name)
76 {
77 	int i, index, count = 0;
78 	struct of_irq oirq;
79 	const u32 *opicprop;
80 	unsigned int opicplen;
81 	unsigned int virqs[16];
82 
83 	/* Check for obsolete "open-pic-interrupt" property. If present, then
84 	 * map those interrupts using the default interrupt host and default
85 	 * trigger
86 	 */
87 	opicprop = of_get_property(np, "open-pic-interrupt", &opicplen);
88 	if (opicprop) {
89 		opicplen /= sizeof(u32);
90 		for (i = 0; i < opicplen; i++) {
91 			if (count > 15)
92 				break;
93 			virqs[count] = irq_create_mapping(NULL, *(opicprop++));
94 			if (virqs[count] == NO_IRQ)
95 				printk(KERN_ERR "Unable to allocate interrupt "
96 				       "number for %s\n", np->full_name);
97 			else
98 				count++;
99 
100 		}
101 	}
102 	/* Else use normal interrupt tree parsing */
103 	else {
104 		/* First try to do a proper OF tree parsing */
105 		for (index = 0; of_irq_map_one(np, index, &oirq) == 0;
106 		     index++) {
107 			if (count > 15)
108 				break;
109 			virqs[count] = irq_create_of_mapping(oirq.controller,
110 							    oirq.specifier,
111 							    oirq.size);
112 			if (virqs[count] == NO_IRQ)
113 				printk(KERN_ERR "Unable to allocate interrupt "
114 				       "number for %s\n", np->full_name);
115 			else
116 				count++;
117 		}
118 	}
119 
120 	/* Now request them */
121 	for (i = 0; i < count; i++) {
122 		if (request_irq(virqs[i], handler, 0, name, NULL)) {
123 			printk(KERN_ERR "Unable to request interrupt %d for "
124 			       "%s\n", virqs[i], np->full_name);
125 			return;
126 		}
127 	}
128 }
129 
130 /*
131  * Initialize handlers for the set of interrupts caused by hardware errors
132  * and power system events.
133  */
134 static int __init init_ras_IRQ(void)
135 {
136 	struct device_node *np;
137 
138 	ras_get_sensor_state_token = rtas_token("get-sensor-state");
139 	ras_check_exception_token = rtas_token("check-exception");
140 
141 	/* Internal Errors */
142 	np = of_find_node_by_path("/event-sources/internal-errors");
143 	if (np != NULL) {
144 		request_ras_irqs(np, ras_error_interrupt, "RAS_ERROR");
145 		of_node_put(np);
146 	}
147 
148 	/* EPOW Events */
149 	np = of_find_node_by_path("/event-sources/epow-events");
150 	if (np != NULL) {
151 		request_ras_irqs(np, ras_epow_interrupt, "RAS_EPOW");
152 		of_node_put(np);
153 	}
154 
155 	return 0;
156 }
157 __initcall(init_ras_IRQ);
158 
159 /*
160  * Handle power subsystem events (EPOW).
161  *
162  * Presently we just log the event has occurred.  This should be fixed
163  * to examine the type of power failure and take appropriate action where
164  * the time horizon permits something useful to be done.
165  */
166 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
167 {
168 	int status = 0xdeadbeef;
169 	int state = 0;
170 	int critical;
171 
172 	status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
173 			   EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
174 
175 	if (state > 3)
176 		critical = 1;  /* Time Critical */
177 	else
178 		critical = 0;
179 
180 	spin_lock(&ras_log_buf_lock);
181 
182 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
183 			   RAS_VECTOR_OFFSET,
184 			   irq_map[irq].hwirq,
185 			   RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
186 			   critical, __pa(&ras_log_buf),
187 				rtas_get_error_log_max());
188 
189 	udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
190 		    *((unsigned long *)&ras_log_buf), status, state);
191 	printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
192 	       *((unsigned long *)&ras_log_buf), status, state);
193 
194 	/* format and print the extended information */
195 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
196 
197 	spin_unlock(&ras_log_buf_lock);
198 	return IRQ_HANDLED;
199 }
200 
201 /*
202  * Handle hardware error interrupts.
203  *
204  * RTAS check-exception is called to collect data on the exception.  If
205  * the error is deemed recoverable, we log a warning and return.
206  * For nonrecoverable errors, an error is logged and we stop all processing
207  * as quickly as possible in order to prevent propagation of the failure.
208  */
209 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
210 {
211 	struct rtas_error_log *rtas_elog;
212 	int status = 0xdeadbeef;
213 	int fatal;
214 
215 	spin_lock(&ras_log_buf_lock);
216 
217 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
218 			   RAS_VECTOR_OFFSET,
219 			   irq_map[irq].hwirq,
220 			   RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
221 			   __pa(&ras_log_buf),
222 				rtas_get_error_log_max());
223 
224 	rtas_elog = (struct rtas_error_log *)ras_log_buf;
225 
226 	if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
227 		fatal = 1;
228 	else
229 		fatal = 0;
230 
231 	/* format and print the extended information */
232 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
233 
234 	if (fatal) {
235 		udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
236 			    *((unsigned long *)&ras_log_buf), status);
237 		printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
238 		       *((unsigned long *)&ras_log_buf), status);
239 
240 #ifndef DEBUG
241 		/* Don't actually power off when debugging so we can test
242 		 * without actually failing while injecting errors.
243 		 * Error data will not be logged to syslog.
244 		 */
245 		ppc_md.power_off();
246 #endif
247 	} else {
248 		udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
249 			    *((unsigned long *)&ras_log_buf), status);
250 		printk(KERN_WARNING
251 		       "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
252 		       *((unsigned long *)&ras_log_buf), status);
253 	}
254 
255 	spin_unlock(&ras_log_buf_lock);
256 	return IRQ_HANDLED;
257 }
258 
259 /* Get the error information for errors coming through the
260  * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
261  * the actual r3 if possible, and a ptr to the error log entry
262  * will be returned if found.
263  *
264  * The mce_data_buf does not have any locks or protection around it,
265  * if a second machine check comes in, or a system reset is done
266  * before we have logged the error, then we will get corruption in the
267  * error log.  This is preferable over holding off on calling
268  * ibm,nmi-interlock which would result in us checkstopping if a
269  * second machine check did come in.
270  */
271 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
272 {
273 	unsigned long errdata = regs->gpr[3];
274 	struct rtas_error_log *errhdr = NULL;
275 	unsigned long *savep;
276 
277 	if ((errdata >= 0x7000 && errdata < 0x7fff0) ||
278 	    (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) {
279 		savep = __va(errdata);
280 		regs->gpr[3] = savep[0];	/* restore original r3 */
281 		memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
282 		memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX);
283 		errhdr = (struct rtas_error_log *)mce_data_buf;
284 	} else {
285 		printk("FWNMI: corrupt r3\n");
286 	}
287 	return errhdr;
288 }
289 
290 /* Call this when done with the data returned by FWNMI_get_errinfo.
291  * It will release the saved data area for other CPUs in the
292  * partition to receive FWNMI errors.
293  */
294 static void fwnmi_release_errinfo(void)
295 {
296 	int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
297 	if (ret != 0)
298 		printk("FWNMI: nmi-interlock failed: %d\n", ret);
299 }
300 
301 int pSeries_system_reset_exception(struct pt_regs *regs)
302 {
303 	if (fwnmi_active) {
304 		struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
305 		if (errhdr) {
306 			/* XXX Should look at FWNMI information */
307 		}
308 		fwnmi_release_errinfo();
309 	}
310 	return 0; /* need to perform reset */
311 }
312 
313 /*
314  * See if we can recover from a machine check exception.
315  * This is only called on power4 (or above) and only via
316  * the Firmware Non-Maskable Interrupts (fwnmi) handler
317  * which provides the error analysis for us.
318  *
319  * Return 1 if corrected (or delivered a signal).
320  * Return 0 if there is nothing we can do.
321  */
322 static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err)
323 {
324 	int nonfatal = 0;
325 
326 	if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
327 		/* Platform corrected itself */
328 		nonfatal = 1;
329 	} else if ((regs->msr & MSR_RI) &&
330 		   user_mode(regs) &&
331 		   err->severity == RTAS_SEVERITY_ERROR_SYNC &&
332 		   err->disposition == RTAS_DISP_NOT_RECOVERED &&
333 		   err->target == RTAS_TARGET_MEMORY &&
334 		   err->type == RTAS_TYPE_ECC_UNCORR &&
335 		   !(current->pid == 0 || is_init(current))) {
336 		/* Kill off a user process with an ECC error */
337 		printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n",
338 		       current->pid);
339 		/* XXX something better for ECC error? */
340 		_exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
341 		nonfatal = 1;
342 	}
343 
344 	log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal);
345 
346 	return nonfatal;
347 }
348 
349 /*
350  * Handle a machine check.
351  *
352  * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
353  * should be present.  If so the handler which called us tells us if the
354  * error was recovered (never true if RI=0).
355  *
356  * On hardware prior to Power 4 these exceptions were asynchronous which
357  * means we can't tell exactly where it occurred and so we can't recover.
358  */
359 int pSeries_machine_check_exception(struct pt_regs *regs)
360 {
361 	struct rtas_error_log *errp;
362 
363 	if (fwnmi_active) {
364 		errp = fwnmi_get_errinfo(regs);
365 		fwnmi_release_errinfo();
366 		if (errp && recover_mce(regs, errp))
367 			return 1;
368 	}
369 
370 	return 0;
371 }
372