1 /* 2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/interrupt.h> 21 #include <linux/irq.h> 22 #include <linux/of.h> 23 #include <linux/fs.h> 24 #include <linux/reboot.h> 25 26 #include <asm/machdep.h> 27 #include <asm/rtas.h> 28 #include <asm/firmware.h> 29 30 #include "pseries.h" 31 32 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX]; 33 static DEFINE_SPINLOCK(ras_log_buf_lock); 34 35 static char global_mce_data_buf[RTAS_ERROR_LOG_MAX]; 36 static DEFINE_PER_CPU(__u64, mce_data_buf); 37 38 static int ras_check_exception_token; 39 40 #define EPOW_SENSOR_TOKEN 9 41 #define EPOW_SENSOR_INDEX 0 42 43 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id); 44 static irqreturn_t ras_error_interrupt(int irq, void *dev_id); 45 46 47 /* 48 * Initialize handlers for the set of interrupts caused by hardware errors 49 * and power system events. 50 */ 51 static int __init init_ras_IRQ(void) 52 { 53 struct device_node *np; 54 55 ras_check_exception_token = rtas_token("check-exception"); 56 57 /* Internal Errors */ 58 np = of_find_node_by_path("/event-sources/internal-errors"); 59 if (np != NULL) { 60 request_event_sources_irqs(np, ras_error_interrupt, 61 "RAS_ERROR"); 62 of_node_put(np); 63 } 64 65 /* EPOW Events */ 66 np = of_find_node_by_path("/event-sources/epow-events"); 67 if (np != NULL) { 68 request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW"); 69 of_node_put(np); 70 } 71 72 return 0; 73 } 74 subsys_initcall(init_ras_IRQ); 75 76 #define EPOW_SHUTDOWN_NORMAL 1 77 #define EPOW_SHUTDOWN_ON_UPS 2 78 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3 79 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4 80 81 static void handle_system_shutdown(char event_modifier) 82 { 83 switch (event_modifier) { 84 case EPOW_SHUTDOWN_NORMAL: 85 pr_emerg("Firmware initiated power off"); 86 orderly_poweroff(1); 87 break; 88 89 case EPOW_SHUTDOWN_ON_UPS: 90 pr_emerg("Loss of power reported by firmware, system is " 91 "running on UPS/battery"); 92 break; 93 94 case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS: 95 pr_emerg("Loss of system critical functions reported by " 96 "firmware"); 97 pr_emerg("Check RTAS error log for details"); 98 orderly_poweroff(1); 99 break; 100 101 case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH: 102 pr_emerg("Ambient temperature too high reported by firmware"); 103 pr_emerg("Check RTAS error log for details"); 104 orderly_poweroff(1); 105 break; 106 107 default: 108 pr_err("Unknown power/cooling shutdown event (modifier %d)", 109 event_modifier); 110 } 111 } 112 113 struct epow_errorlog { 114 unsigned char sensor_value; 115 unsigned char event_modifier; 116 unsigned char extended_modifier; 117 unsigned char reserved; 118 unsigned char platform_reason; 119 }; 120 121 #define EPOW_RESET 0 122 #define EPOW_WARN_COOLING 1 123 #define EPOW_WARN_POWER 2 124 #define EPOW_SYSTEM_SHUTDOWN 3 125 #define EPOW_SYSTEM_HALT 4 126 #define EPOW_MAIN_ENCLOSURE 5 127 #define EPOW_POWER_OFF 7 128 129 void rtas_parse_epow_errlog(struct rtas_error_log *log) 130 { 131 struct pseries_errorlog *pseries_log; 132 struct epow_errorlog *epow_log; 133 char action_code; 134 char modifier; 135 136 pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW); 137 if (pseries_log == NULL) 138 return; 139 140 epow_log = (struct epow_errorlog *)pseries_log->data; 141 action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */ 142 modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */ 143 144 switch (action_code) { 145 case EPOW_RESET: 146 pr_err("Non critical power or cooling issue cleared"); 147 break; 148 149 case EPOW_WARN_COOLING: 150 pr_err("Non critical cooling issue reported by firmware"); 151 pr_err("Check RTAS error log for details"); 152 break; 153 154 case EPOW_WARN_POWER: 155 pr_err("Non critical power issue reported by firmware"); 156 pr_err("Check RTAS error log for details"); 157 break; 158 159 case EPOW_SYSTEM_SHUTDOWN: 160 handle_system_shutdown(epow_log->event_modifier); 161 break; 162 163 case EPOW_SYSTEM_HALT: 164 pr_emerg("Firmware initiated power off"); 165 orderly_poweroff(1); 166 break; 167 168 case EPOW_MAIN_ENCLOSURE: 169 case EPOW_POWER_OFF: 170 pr_emerg("Critical power/cooling issue reported by firmware"); 171 pr_emerg("Check RTAS error log for details"); 172 pr_emerg("Immediate power off"); 173 emergency_sync(); 174 kernel_power_off(); 175 break; 176 177 default: 178 pr_err("Unknown power/cooling event (action code %d)", 179 action_code); 180 } 181 } 182 183 /* Handle environmental and power warning (EPOW) interrupts. */ 184 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id) 185 { 186 int status; 187 int state; 188 int critical; 189 190 status = rtas_get_sensor(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, &state); 191 192 if (state > 3) 193 critical = 1; /* Time Critical */ 194 else 195 critical = 0; 196 197 spin_lock(&ras_log_buf_lock); 198 199 status = rtas_call(ras_check_exception_token, 6, 1, NULL, 200 RTAS_VECTOR_EXTERNAL_INTERRUPT, 201 virq_to_hw(irq), 202 RTAS_EPOW_WARNING, 203 critical, __pa(&ras_log_buf), 204 rtas_get_error_log_max()); 205 206 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0); 207 208 rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf); 209 210 spin_unlock(&ras_log_buf_lock); 211 return IRQ_HANDLED; 212 } 213 214 /* 215 * Handle hardware error interrupts. 216 * 217 * RTAS check-exception is called to collect data on the exception. If 218 * the error is deemed recoverable, we log a warning and return. 219 * For nonrecoverable errors, an error is logged and we stop all processing 220 * as quickly as possible in order to prevent propagation of the failure. 221 */ 222 static irqreturn_t ras_error_interrupt(int irq, void *dev_id) 223 { 224 struct rtas_error_log *rtas_elog; 225 int status; 226 int fatal; 227 228 spin_lock(&ras_log_buf_lock); 229 230 status = rtas_call(ras_check_exception_token, 6, 1, NULL, 231 RTAS_VECTOR_EXTERNAL_INTERRUPT, 232 virq_to_hw(irq), 233 RTAS_INTERNAL_ERROR, 1 /* Time Critical */, 234 __pa(&ras_log_buf), 235 rtas_get_error_log_max()); 236 237 rtas_elog = (struct rtas_error_log *)ras_log_buf; 238 239 if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC)) 240 fatal = 1; 241 else 242 fatal = 0; 243 244 /* format and print the extended information */ 245 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal); 246 247 if (fatal) { 248 pr_emerg("Fatal hardware error reported by firmware"); 249 pr_emerg("Check RTAS error log for details"); 250 pr_emerg("Immediate power off"); 251 emergency_sync(); 252 kernel_power_off(); 253 } else { 254 pr_err("Recoverable hardware error reported by firmware"); 255 } 256 257 spin_unlock(&ras_log_buf_lock); 258 return IRQ_HANDLED; 259 } 260 261 /* 262 * Some versions of FWNMI place the buffer inside the 4kB page starting at 263 * 0x7000. Other versions place it inside the rtas buffer. We check both. 264 */ 265 #define VALID_FWNMI_BUFFER(A) \ 266 ((((A) >= 0x7000) && ((A) < 0x7ff0)) || \ 267 (((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16)))) 268 269 /* 270 * Get the error information for errors coming through the 271 * FWNMI vectors. The pt_regs' r3 will be updated to reflect 272 * the actual r3 if possible, and a ptr to the error log entry 273 * will be returned if found. 274 * 275 * If the RTAS error is not of the extended type, then we put it in a per 276 * cpu 64bit buffer. If it is the extended type we use global_mce_data_buf. 277 * 278 * The global_mce_data_buf does not have any locks or protection around it, 279 * if a second machine check comes in, or a system reset is done 280 * before we have logged the error, then we will get corruption in the 281 * error log. This is preferable over holding off on calling 282 * ibm,nmi-interlock which would result in us checkstopping if a 283 * second machine check did come in. 284 */ 285 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs) 286 { 287 unsigned long *savep; 288 struct rtas_error_log *h, *errhdr = NULL; 289 290 if (!VALID_FWNMI_BUFFER(regs->gpr[3])) { 291 printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]); 292 return NULL; 293 } 294 295 savep = __va(regs->gpr[3]); 296 regs->gpr[3] = savep[0]; /* restore original r3 */ 297 298 /* If it isn't an extended log we can use the per cpu 64bit buffer */ 299 h = (struct rtas_error_log *)&savep[1]; 300 if (!h->extended) { 301 memcpy(&__get_cpu_var(mce_data_buf), h, sizeof(__u64)); 302 errhdr = (struct rtas_error_log *)&__get_cpu_var(mce_data_buf); 303 } else { 304 int len; 305 306 len = max_t(int, 8+h->extended_log_length, RTAS_ERROR_LOG_MAX); 307 memset(global_mce_data_buf, 0, RTAS_ERROR_LOG_MAX); 308 memcpy(global_mce_data_buf, h, len); 309 errhdr = (struct rtas_error_log *)global_mce_data_buf; 310 } 311 312 return errhdr; 313 } 314 315 /* Call this when done with the data returned by FWNMI_get_errinfo. 316 * It will release the saved data area for other CPUs in the 317 * partition to receive FWNMI errors. 318 */ 319 static void fwnmi_release_errinfo(void) 320 { 321 int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL); 322 if (ret != 0) 323 printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret); 324 } 325 326 int pSeries_system_reset_exception(struct pt_regs *regs) 327 { 328 if (fwnmi_active) { 329 struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs); 330 if (errhdr) { 331 /* XXX Should look at FWNMI information */ 332 } 333 fwnmi_release_errinfo(); 334 } 335 return 0; /* need to perform reset */ 336 } 337 338 /* 339 * See if we can recover from a machine check exception. 340 * This is only called on power4 (or above) and only via 341 * the Firmware Non-Maskable Interrupts (fwnmi) handler 342 * which provides the error analysis for us. 343 * 344 * Return 1 if corrected (or delivered a signal). 345 * Return 0 if there is nothing we can do. 346 */ 347 static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err) 348 { 349 int recovered = 0; 350 351 if (!(regs->msr & MSR_RI)) { 352 /* If MSR_RI isn't set, we cannot recover */ 353 recovered = 0; 354 355 } else if (err->disposition == RTAS_DISP_FULLY_RECOVERED) { 356 /* Platform corrected itself */ 357 recovered = 1; 358 359 } else if (err->disposition == RTAS_DISP_LIMITED_RECOVERY) { 360 /* Platform corrected itself but could be degraded */ 361 printk(KERN_ERR "MCE: limited recovery, system may " 362 "be degraded\n"); 363 recovered = 1; 364 365 } else if (user_mode(regs) && !is_global_init(current) && 366 err->severity == RTAS_SEVERITY_ERROR_SYNC) { 367 368 /* 369 * If we received a synchronous error when in userspace 370 * kill the task. Firmware may report details of the fail 371 * asynchronously, so we can't rely on the target and type 372 * fields being valid here. 373 */ 374 printk(KERN_ERR "MCE: uncorrectable error, killing task " 375 "%s:%d\n", current->comm, current->pid); 376 377 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); 378 recovered = 1; 379 } 380 381 log_error((char *)err, ERR_TYPE_RTAS_LOG, 0); 382 383 return recovered; 384 } 385 386 /* 387 * Handle a machine check. 388 * 389 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi) 390 * should be present. If so the handler which called us tells us if the 391 * error was recovered (never true if RI=0). 392 * 393 * On hardware prior to Power 4 these exceptions were asynchronous which 394 * means we can't tell exactly where it occurred and so we can't recover. 395 */ 396 int pSeries_machine_check_exception(struct pt_regs *regs) 397 { 398 struct rtas_error_log *errp; 399 400 if (fwnmi_active) { 401 errp = fwnmi_get_errinfo(regs); 402 fwnmi_release_errinfo(); 403 if (errp && recover_mce(regs, errp)) 404 return 1; 405 } 406 407 return 0; 408 } 409