xref: /linux/arch/powerpc/platforms/pseries/ras.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/interrupt.h>
21 #include <linux/irq.h>
22 #include <linux/of.h>
23 #include <linux/fs.h>
24 #include <linux/reboot.h>
25 
26 #include <asm/machdep.h>
27 #include <asm/rtas.h>
28 #include <asm/firmware.h>
29 
30 #include "pseries.h"
31 
32 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
33 static DEFINE_SPINLOCK(ras_log_buf_lock);
34 
35 static char global_mce_data_buf[RTAS_ERROR_LOG_MAX];
36 static DEFINE_PER_CPU(__u64, mce_data_buf);
37 
38 static int ras_check_exception_token;
39 
40 #define EPOW_SENSOR_TOKEN	9
41 #define EPOW_SENSOR_INDEX	0
42 
43 /* EPOW events counter variable */
44 static int num_epow_events;
45 
46 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
47 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
48 
49 
50 /*
51  * Initialize handlers for the set of interrupts caused by hardware errors
52  * and power system events.
53  */
54 static int __init init_ras_IRQ(void)
55 {
56 	struct device_node *np;
57 
58 	ras_check_exception_token = rtas_token("check-exception");
59 
60 	/* Internal Errors */
61 	np = of_find_node_by_path("/event-sources/internal-errors");
62 	if (np != NULL) {
63 		request_event_sources_irqs(np, ras_error_interrupt,
64 					   "RAS_ERROR");
65 		of_node_put(np);
66 	}
67 
68 	/* EPOW Events */
69 	np = of_find_node_by_path("/event-sources/epow-events");
70 	if (np != NULL) {
71 		request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
72 		of_node_put(np);
73 	}
74 
75 	return 0;
76 }
77 machine_subsys_initcall(pseries, init_ras_IRQ);
78 
79 #define EPOW_SHUTDOWN_NORMAL				1
80 #define EPOW_SHUTDOWN_ON_UPS				2
81 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS	3
82 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH	4
83 
84 static void handle_system_shutdown(char event_modifier)
85 {
86 	switch (event_modifier) {
87 	case EPOW_SHUTDOWN_NORMAL:
88 		pr_emerg("Power off requested\n");
89 		orderly_poweroff(true);
90 		break;
91 
92 	case EPOW_SHUTDOWN_ON_UPS:
93 		pr_emerg("Loss of system power detected. System is running on"
94 			 " UPS/battery. Check RTAS error log for details\n");
95 		orderly_poweroff(true);
96 		break;
97 
98 	case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
99 		pr_emerg("Loss of system critical functions detected. Check"
100 			 " RTAS error log for details\n");
101 		orderly_poweroff(true);
102 		break;
103 
104 	case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
105 		pr_emerg("High ambient temperature detected. Check RTAS"
106 			 " error log for details\n");
107 		orderly_poweroff(true);
108 		break;
109 
110 	default:
111 		pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
112 			event_modifier);
113 	}
114 }
115 
116 struct epow_errorlog {
117 	unsigned char sensor_value;
118 	unsigned char event_modifier;
119 	unsigned char extended_modifier;
120 	unsigned char reserved;
121 	unsigned char platform_reason;
122 };
123 
124 #define EPOW_RESET			0
125 #define EPOW_WARN_COOLING		1
126 #define EPOW_WARN_POWER			2
127 #define EPOW_SYSTEM_SHUTDOWN		3
128 #define EPOW_SYSTEM_HALT		4
129 #define EPOW_MAIN_ENCLOSURE		5
130 #define EPOW_POWER_OFF			7
131 
132 static void rtas_parse_epow_errlog(struct rtas_error_log *log)
133 {
134 	struct pseries_errorlog *pseries_log;
135 	struct epow_errorlog *epow_log;
136 	char action_code;
137 	char modifier;
138 
139 	pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
140 	if (pseries_log == NULL)
141 		return;
142 
143 	epow_log = (struct epow_errorlog *)pseries_log->data;
144 	action_code = epow_log->sensor_value & 0xF;	/* bottom 4 bits */
145 	modifier = epow_log->event_modifier & 0xF;	/* bottom 4 bits */
146 
147 	switch (action_code) {
148 	case EPOW_RESET:
149 		if (num_epow_events) {
150 			pr_info("Non critical power/cooling issue cleared\n");
151 			num_epow_events--;
152 		}
153 		break;
154 
155 	case EPOW_WARN_COOLING:
156 		pr_info("Non-critical cooling issue detected. Check RTAS error"
157 			" log for details\n");
158 		break;
159 
160 	case EPOW_WARN_POWER:
161 		pr_info("Non-critical power issue detected. Check RTAS error"
162 			" log for details\n");
163 		break;
164 
165 	case EPOW_SYSTEM_SHUTDOWN:
166 		handle_system_shutdown(epow_log->event_modifier);
167 		break;
168 
169 	case EPOW_SYSTEM_HALT:
170 		pr_emerg("Critical power/cooling issue detected. Check RTAS"
171 			 " error log for details. Powering off.\n");
172 		orderly_poweroff(true);
173 		break;
174 
175 	case EPOW_MAIN_ENCLOSURE:
176 	case EPOW_POWER_OFF:
177 		pr_emerg("System about to lose power. Check RTAS error log "
178 			 " for details. Powering off immediately.\n");
179 		emergency_sync();
180 		kernel_power_off();
181 		break;
182 
183 	default:
184 		pr_err("Unknown power/cooling event (action code  = %d)\n",
185 			action_code);
186 	}
187 
188 	/* Increment epow events counter variable */
189 	if (action_code != EPOW_RESET)
190 		num_epow_events++;
191 }
192 
193 /* Handle environmental and power warning (EPOW) interrupts. */
194 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
195 {
196 	int status;
197 	int state;
198 	int critical;
199 
200 	status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX,
201 				      &state);
202 
203 	if (state > 3)
204 		critical = 1;		/* Time Critical */
205 	else
206 		critical = 0;
207 
208 	spin_lock(&ras_log_buf_lock);
209 
210 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
211 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
212 			   virq_to_hw(irq),
213 			   RTAS_EPOW_WARNING,
214 			   critical, __pa(&ras_log_buf),
215 				rtas_get_error_log_max());
216 
217 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
218 
219 	rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
220 
221 	spin_unlock(&ras_log_buf_lock);
222 	return IRQ_HANDLED;
223 }
224 
225 /*
226  * Handle hardware error interrupts.
227  *
228  * RTAS check-exception is called to collect data on the exception.  If
229  * the error is deemed recoverable, we log a warning and return.
230  * For nonrecoverable errors, an error is logged and we stop all processing
231  * as quickly as possible in order to prevent propagation of the failure.
232  */
233 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
234 {
235 	struct rtas_error_log *rtas_elog;
236 	int status;
237 	int fatal;
238 
239 	spin_lock(&ras_log_buf_lock);
240 
241 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
242 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
243 			   virq_to_hw(irq),
244 			   RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
245 			   __pa(&ras_log_buf),
246 				rtas_get_error_log_max());
247 
248 	rtas_elog = (struct rtas_error_log *)ras_log_buf;
249 
250 	if (status == 0 &&
251 	    rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
252 		fatal = 1;
253 	else
254 		fatal = 0;
255 
256 	/* format and print the extended information */
257 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
258 
259 	if (fatal) {
260 		pr_emerg("Fatal hardware error detected. Check RTAS error"
261 			 " log for details. Powering off immediately\n");
262 		emergency_sync();
263 		kernel_power_off();
264 	} else {
265 		pr_err("Recoverable hardware error detected\n");
266 	}
267 
268 	spin_unlock(&ras_log_buf_lock);
269 	return IRQ_HANDLED;
270 }
271 
272 /*
273  * Some versions of FWNMI place the buffer inside the 4kB page starting at
274  * 0x7000. Other versions place it inside the rtas buffer. We check both.
275  */
276 #define VALID_FWNMI_BUFFER(A) \
277 	((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
278 	(((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
279 
280 /*
281  * Get the error information for errors coming through the
282  * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
283  * the actual r3 if possible, and a ptr to the error log entry
284  * will be returned if found.
285  *
286  * If the RTAS error is not of the extended type, then we put it in a per
287  * cpu 64bit buffer. If it is the extended type we use global_mce_data_buf.
288  *
289  * The global_mce_data_buf does not have any locks or protection around it,
290  * if a second machine check comes in, or a system reset is done
291  * before we have logged the error, then we will get corruption in the
292  * error log.  This is preferable over holding off on calling
293  * ibm,nmi-interlock which would result in us checkstopping if a
294  * second machine check did come in.
295  */
296 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
297 {
298 	unsigned long *savep;
299 	struct rtas_error_log *h, *errhdr = NULL;
300 
301 	/* Mask top two bits */
302 	regs->gpr[3] &= ~(0x3UL << 62);
303 
304 	if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
305 		printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
306 		return NULL;
307 	}
308 
309 	savep = __va(regs->gpr[3]);
310 	regs->gpr[3] = savep[0];	/* restore original r3 */
311 
312 	/* If it isn't an extended log we can use the per cpu 64bit buffer */
313 	h = (struct rtas_error_log *)&savep[1];
314 	if (!rtas_error_extended(h)) {
315 		memcpy(this_cpu_ptr(&mce_data_buf), h, sizeof(__u64));
316 		errhdr = (struct rtas_error_log *)this_cpu_ptr(&mce_data_buf);
317 	} else {
318 		int len, error_log_length;
319 
320 		error_log_length = 8 + rtas_error_extended_log_length(h);
321 		len = max_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
322 		memset(global_mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
323 		memcpy(global_mce_data_buf, h, len);
324 		errhdr = (struct rtas_error_log *)global_mce_data_buf;
325 	}
326 
327 	return errhdr;
328 }
329 
330 /* Call this when done with the data returned by FWNMI_get_errinfo.
331  * It will release the saved data area for other CPUs in the
332  * partition to receive FWNMI errors.
333  */
334 static void fwnmi_release_errinfo(void)
335 {
336 	int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
337 	if (ret != 0)
338 		printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
339 }
340 
341 int pSeries_system_reset_exception(struct pt_regs *regs)
342 {
343 	if (fwnmi_active) {
344 		struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
345 		if (errhdr) {
346 			/* XXX Should look at FWNMI information */
347 		}
348 		fwnmi_release_errinfo();
349 	}
350 	return 0; /* need to perform reset */
351 }
352 
353 /*
354  * See if we can recover from a machine check exception.
355  * This is only called on power4 (or above) and only via
356  * the Firmware Non-Maskable Interrupts (fwnmi) handler
357  * which provides the error analysis for us.
358  *
359  * Return 1 if corrected (or delivered a signal).
360  * Return 0 if there is nothing we can do.
361  */
362 static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err)
363 {
364 	int recovered = 0;
365 	int disposition = rtas_error_disposition(err);
366 
367 	if (!(regs->msr & MSR_RI)) {
368 		/* If MSR_RI isn't set, we cannot recover */
369 		recovered = 0;
370 
371 	} else if (disposition == RTAS_DISP_FULLY_RECOVERED) {
372 		/* Platform corrected itself */
373 		recovered = 1;
374 
375 	} else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
376 		/* Platform corrected itself but could be degraded */
377 		printk(KERN_ERR "MCE: limited recovery, system may "
378 		       "be degraded\n");
379 		recovered = 1;
380 
381 	} else if (user_mode(regs) && !is_global_init(current) &&
382 		   rtas_error_severity(err) == RTAS_SEVERITY_ERROR_SYNC) {
383 
384 		/*
385 		 * If we received a synchronous error when in userspace
386 		 * kill the task. Firmware may report details of the fail
387 		 * asynchronously, so we can't rely on the target and type
388 		 * fields being valid here.
389 		 */
390 		printk(KERN_ERR "MCE: uncorrectable error, killing task "
391 		       "%s:%d\n", current->comm, current->pid);
392 
393 		_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
394 		recovered = 1;
395 	}
396 
397 	log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
398 
399 	return recovered;
400 }
401 
402 /*
403  * Handle a machine check.
404  *
405  * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
406  * should be present.  If so the handler which called us tells us if the
407  * error was recovered (never true if RI=0).
408  *
409  * On hardware prior to Power 4 these exceptions were asynchronous which
410  * means we can't tell exactly where it occurred and so we can't recover.
411  */
412 int pSeries_machine_check_exception(struct pt_regs *regs)
413 {
414 	struct rtas_error_log *errp;
415 
416 	if (fwnmi_active) {
417 		errp = fwnmi_get_errinfo(regs);
418 		fwnmi_release_errinfo();
419 		if (errp && recover_mce(regs, errp))
420 			return 1;
421 	}
422 
423 	return 0;
424 }
425