xref: /linux/arch/powerpc/platforms/pseries/msi.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2006 Jake Moilanen <moilanen@austin.ibm.com>, IBM Corp.
4  * Copyright 2006-2007 Michael Ellerman, IBM Corp.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/device.h>
9 #include <linux/irq.h>
10 #include <linux/msi.h>
11 
12 #include <asm/rtas.h>
13 #include <asm/hw_irq.h>
14 #include <asm/ppc-pci.h>
15 #include <asm/machdep.h>
16 #include <asm/xive.h>
17 
18 #include "pseries.h"
19 
20 static int query_token, change_token;
21 
22 #define RTAS_QUERY_FN		0
23 #define RTAS_CHANGE_FN		1
24 #define RTAS_RESET_FN		2
25 #define RTAS_CHANGE_MSI_FN	3
26 #define RTAS_CHANGE_MSIX_FN	4
27 #define RTAS_CHANGE_32MSI_FN	5
28 
29 /* RTAS Helpers */
30 
31 static int rtas_change_msi(struct pci_dn *pdn, u32 func, u32 num_irqs)
32 {
33 	u32 addr, seq_num, rtas_ret[3];
34 	unsigned long buid;
35 	int rc;
36 
37 	addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
38 	buid = pdn->phb->buid;
39 
40 	seq_num = 1;
41 	do {
42 		if (func == RTAS_CHANGE_MSI_FN || func == RTAS_CHANGE_MSIX_FN ||
43 		    func == RTAS_CHANGE_32MSI_FN)
44 			rc = rtas_call(change_token, 6, 4, rtas_ret, addr,
45 					BUID_HI(buid), BUID_LO(buid),
46 					func, num_irqs, seq_num);
47 		else
48 			rc = rtas_call(change_token, 6, 3, rtas_ret, addr,
49 					BUID_HI(buid), BUID_LO(buid),
50 					func, num_irqs, seq_num);
51 
52 		seq_num = rtas_ret[1];
53 	} while (rtas_busy_delay(rc));
54 
55 	/*
56 	 * If the RTAS call succeeded, return the number of irqs allocated.
57 	 * If not, make sure we return a negative error code.
58 	 */
59 	if (rc == 0)
60 		rc = rtas_ret[0];
61 	else if (rc > 0)
62 		rc = -rc;
63 
64 	pr_debug("rtas_msi: ibm,change_msi(func=%d,num=%d), got %d rc = %d\n",
65 		 func, num_irqs, rtas_ret[0], rc);
66 
67 	return rc;
68 }
69 
70 static void rtas_disable_msi(struct pci_dev *pdev)
71 {
72 	struct pci_dn *pdn;
73 
74 	pdn = pci_get_pdn(pdev);
75 	if (!pdn)
76 		return;
77 
78 	/*
79 	 * disabling MSI with the explicit interface also disables MSI-X
80 	 */
81 	if (rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, 0) != 0) {
82 		/*
83 		 * may have failed because explicit interface is not
84 		 * present
85 		 */
86 		if (rtas_change_msi(pdn, RTAS_CHANGE_FN, 0) != 0) {
87 			pr_debug("rtas_msi: Setting MSIs to 0 failed!\n");
88 		}
89 	}
90 }
91 
92 static int rtas_query_irq_number(struct pci_dn *pdn, int offset)
93 {
94 	u32 addr, rtas_ret[2];
95 	unsigned long buid;
96 	int rc;
97 
98 	addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
99 	buid = pdn->phb->buid;
100 
101 	do {
102 		rc = rtas_call(query_token, 4, 3, rtas_ret, addr,
103 			       BUID_HI(buid), BUID_LO(buid), offset);
104 	} while (rtas_busy_delay(rc));
105 
106 	if (rc) {
107 		pr_debug("rtas_msi: error (%d) querying source number\n", rc);
108 		return rc;
109 	}
110 
111 	return rtas_ret[0];
112 }
113 
114 static int check_req(struct pci_dev *pdev, int nvec, char *prop_name)
115 {
116 	struct device_node *dn;
117 	const __be32 *p;
118 	u32 req_msi;
119 
120 	dn = pci_device_to_OF_node(pdev);
121 
122 	p = of_get_property(dn, prop_name, NULL);
123 	if (!p) {
124 		pr_debug("rtas_msi: No %s on %pOF\n", prop_name, dn);
125 		return -ENOENT;
126 	}
127 
128 	req_msi = be32_to_cpup(p);
129 	if (req_msi < nvec) {
130 		pr_debug("rtas_msi: %s requests < %d MSIs\n", prop_name, nvec);
131 
132 		if (req_msi == 0) /* Be paranoid */
133 			return -ENOSPC;
134 
135 		return req_msi;
136 	}
137 
138 	return 0;
139 }
140 
141 static int check_req_msi(struct pci_dev *pdev, int nvec)
142 {
143 	return check_req(pdev, nvec, "ibm,req#msi");
144 }
145 
146 static int check_req_msix(struct pci_dev *pdev, int nvec)
147 {
148 	return check_req(pdev, nvec, "ibm,req#msi-x");
149 }
150 
151 /* Quota calculation */
152 
153 static struct device_node *__find_pe_total_msi(struct device_node *node, int *total)
154 {
155 	struct device_node *dn;
156 	const __be32 *p;
157 
158 	dn = of_node_get(node);
159 	while (dn) {
160 		p = of_get_property(dn, "ibm,pe-total-#msi", NULL);
161 		if (p) {
162 			pr_debug("rtas_msi: found prop on dn %pOF\n",
163 				dn);
164 			*total = be32_to_cpup(p);
165 			return dn;
166 		}
167 
168 		dn = of_get_next_parent(dn);
169 	}
170 
171 	return NULL;
172 }
173 
174 static struct device_node *find_pe_total_msi(struct pci_dev *dev, int *total)
175 {
176 	return __find_pe_total_msi(pci_device_to_OF_node(dev), total);
177 }
178 
179 static struct device_node *find_pe_dn(struct pci_dev *dev, int *total)
180 {
181 	struct device_node *dn;
182 	struct eeh_dev *edev;
183 
184 	/* Found our PE and assume 8 at that point. */
185 
186 	dn = pci_device_to_OF_node(dev);
187 	if (!dn)
188 		return NULL;
189 
190 	/* Get the top level device in the PE */
191 	edev = pdn_to_eeh_dev(PCI_DN(dn));
192 	if (edev->pe)
193 		edev = list_first_entry(&edev->pe->edevs, struct eeh_dev,
194 					entry);
195 	dn = pci_device_to_OF_node(edev->pdev);
196 	if (!dn)
197 		return NULL;
198 
199 	/* We actually want the parent */
200 	dn = of_get_parent(dn);
201 	if (!dn)
202 		return NULL;
203 
204 	/* Hardcode of 8 for old firmwares */
205 	*total = 8;
206 	pr_debug("rtas_msi: using PE dn %pOF\n", dn);
207 
208 	return dn;
209 }
210 
211 struct msi_counts {
212 	struct device_node *requestor;
213 	int num_devices;
214 	int request;
215 	int quota;
216 	int spare;
217 	int over_quota;
218 };
219 
220 static void *count_non_bridge_devices(struct device_node *dn, void *data)
221 {
222 	struct msi_counts *counts = data;
223 	const __be32 *p;
224 	u32 class;
225 
226 	pr_debug("rtas_msi: counting %pOF\n", dn);
227 
228 	p = of_get_property(dn, "class-code", NULL);
229 	class = p ? be32_to_cpup(p) : 0;
230 
231 	if ((class >> 8) != PCI_CLASS_BRIDGE_PCI)
232 		counts->num_devices++;
233 
234 	return NULL;
235 }
236 
237 static void *count_spare_msis(struct device_node *dn, void *data)
238 {
239 	struct msi_counts *counts = data;
240 	const __be32 *p;
241 	int req;
242 
243 	if (dn == counts->requestor)
244 		req = counts->request;
245 	else {
246 		/* We don't know if a driver will try to use MSI or MSI-X,
247 		 * so we just have to punt and use the larger of the two. */
248 		req = 0;
249 		p = of_get_property(dn, "ibm,req#msi", NULL);
250 		if (p)
251 			req = be32_to_cpup(p);
252 
253 		p = of_get_property(dn, "ibm,req#msi-x", NULL);
254 		if (p)
255 			req = max(req, (int)be32_to_cpup(p));
256 	}
257 
258 	if (req < counts->quota)
259 		counts->spare += counts->quota - req;
260 	else if (req > counts->quota)
261 		counts->over_quota++;
262 
263 	return NULL;
264 }
265 
266 static int msi_quota_for_device(struct pci_dev *dev, int request)
267 {
268 	struct device_node *pe_dn;
269 	struct msi_counts counts;
270 	int total;
271 
272 	pr_debug("rtas_msi: calc quota for %s, request %d\n", pci_name(dev),
273 		  request);
274 
275 	pe_dn = find_pe_total_msi(dev, &total);
276 	if (!pe_dn)
277 		pe_dn = find_pe_dn(dev, &total);
278 
279 	if (!pe_dn) {
280 		pr_err("rtas_msi: couldn't find PE for %s\n", pci_name(dev));
281 		goto out;
282 	}
283 
284 	pr_debug("rtas_msi: found PE %pOF\n", pe_dn);
285 
286 	memset(&counts, 0, sizeof(struct msi_counts));
287 
288 	/* Work out how many devices we have below this PE */
289 	pci_traverse_device_nodes(pe_dn, count_non_bridge_devices, &counts);
290 
291 	if (counts.num_devices == 0) {
292 		pr_err("rtas_msi: found 0 devices under PE for %s\n",
293 			pci_name(dev));
294 		goto out;
295 	}
296 
297 	counts.quota = total / counts.num_devices;
298 	if (request <= counts.quota)
299 		goto out;
300 
301 	/* else, we have some more calculating to do */
302 	counts.requestor = pci_device_to_OF_node(dev);
303 	counts.request = request;
304 	pci_traverse_device_nodes(pe_dn, count_spare_msis, &counts);
305 
306 	/* If the quota isn't an integer multiple of the total, we can
307 	 * use the remainder as spare MSIs for anyone that wants them. */
308 	counts.spare += total % counts.num_devices;
309 
310 	/* Divide any spare by the number of over-quota requestors */
311 	if (counts.over_quota)
312 		counts.quota += counts.spare / counts.over_quota;
313 
314 	/* And finally clamp the request to the possibly adjusted quota */
315 	request = min(counts.quota, request);
316 
317 	pr_debug("rtas_msi: request clamped to quota %d\n", request);
318 out:
319 	of_node_put(pe_dn);
320 
321 	return request;
322 }
323 
324 static void rtas_hack_32bit_msi_gen2(struct pci_dev *pdev)
325 {
326 	u32 addr_hi, addr_lo;
327 
328 	/*
329 	 * We should only get in here for IODA1 configs. This is based on the
330 	 * fact that we using RTAS for MSIs, we don't have the 32 bit MSI RTAS
331 	 * support, and we are in a PCIe Gen2 slot.
332 	 */
333 	dev_info(&pdev->dev,
334 		 "rtas_msi: No 32 bit MSI firmware support, forcing 32 bit MSI\n");
335 	pci_read_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, &addr_hi);
336 	addr_lo = 0xffff0000 | ((addr_hi >> (48 - 32)) << 4);
337 	pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_LO, addr_lo);
338 	pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, 0);
339 }
340 
341 static int rtas_prepare_msi_irqs(struct pci_dev *pdev, int nvec_in, int type,
342 				 msi_alloc_info_t *arg)
343 {
344 	struct pci_dn *pdn;
345 	int quota, rc;
346 	int nvec = nvec_in;
347 	int use_32bit_msi_hack = 0;
348 
349 	if (type == PCI_CAP_ID_MSIX)
350 		rc = check_req_msix(pdev, nvec);
351 	else
352 		rc = check_req_msi(pdev, nvec);
353 
354 	if (rc)
355 		return rc;
356 
357 	quota = msi_quota_for_device(pdev, nvec);
358 
359 	if (quota && quota < nvec)
360 		return quota;
361 
362 	/*
363 	 * Firmware currently refuse any non power of two allocation
364 	 * so we round up if the quota will allow it.
365 	 */
366 	if (type == PCI_CAP_ID_MSIX) {
367 		int m = roundup_pow_of_two(nvec);
368 		quota = msi_quota_for_device(pdev, m);
369 
370 		if (quota >= m)
371 			nvec = m;
372 	}
373 
374 	pdn = pci_get_pdn(pdev);
375 
376 	/*
377 	 * Try the new more explicit firmware interface, if that fails fall
378 	 * back to the old interface. The old interface is known to never
379 	 * return MSI-Xs.
380 	 */
381 again:
382 	if (type == PCI_CAP_ID_MSI) {
383 		if (pdev->no_64bit_msi) {
384 			rc = rtas_change_msi(pdn, RTAS_CHANGE_32MSI_FN, nvec);
385 			if (rc < 0) {
386 				/*
387 				 * We only want to run the 32 bit MSI hack below if
388 				 * the max bus speed is Gen2 speed
389 				 */
390 				if (pdev->bus->max_bus_speed != PCIE_SPEED_5_0GT)
391 					return rc;
392 
393 				use_32bit_msi_hack = 1;
394 			}
395 		} else
396 			rc = -1;
397 
398 		if (rc < 0)
399 			rc = rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, nvec);
400 
401 		if (rc < 0) {
402 			pr_debug("rtas_msi: trying the old firmware call.\n");
403 			rc = rtas_change_msi(pdn, RTAS_CHANGE_FN, nvec);
404 		}
405 
406 		if (use_32bit_msi_hack && rc > 0)
407 			rtas_hack_32bit_msi_gen2(pdev);
408 	} else
409 		rc = rtas_change_msi(pdn, RTAS_CHANGE_MSIX_FN, nvec);
410 
411 	if (rc != nvec) {
412 		if (nvec != nvec_in) {
413 			nvec = nvec_in;
414 			goto again;
415 		}
416 		pr_debug("rtas_msi: rtas_change_msi() failed\n");
417 		return rc;
418 	}
419 
420 	return 0;
421 }
422 
423 static int pseries_msi_ops_prepare(struct irq_domain *domain, struct device *dev,
424 				   int nvec, msi_alloc_info_t *arg)
425 {
426 	struct pci_dev *pdev = to_pci_dev(dev);
427 	int type = pdev->msix_enabled ? PCI_CAP_ID_MSIX : PCI_CAP_ID_MSI;
428 
429 	return rtas_prepare_msi_irqs(pdev, nvec, type, arg);
430 }
431 
432 /*
433  * ->msi_free() is called before irq_domain_free_irqs_top() when the
434  * handler data is still available. Use that to clear the XIVE
435  * controller data.
436  */
437 static void pseries_msi_ops_msi_free(struct irq_domain *domain,
438 				     struct msi_domain_info *info,
439 				     unsigned int irq)
440 {
441 	if (xive_enabled())
442 		xive_irq_free_data(irq);
443 }
444 
445 /*
446  * RTAS can not disable one MSI at a time. It's all or nothing. Do it
447  * at the end after all IRQs have been freed.
448  */
449 static void pseries_msi_domain_free_irqs(struct irq_domain *domain,
450 					 struct device *dev)
451 {
452 	if (WARN_ON_ONCE(!dev_is_pci(dev)))
453 		return;
454 
455 	__msi_domain_free_irqs(domain, dev);
456 
457 	rtas_disable_msi(to_pci_dev(dev));
458 }
459 
460 static struct msi_domain_ops pseries_pci_msi_domain_ops = {
461 	.msi_prepare	= pseries_msi_ops_prepare,
462 	.msi_free	= pseries_msi_ops_msi_free,
463 	.domain_free_irqs = pseries_msi_domain_free_irqs,
464 };
465 
466 static void pseries_msi_shutdown(struct irq_data *d)
467 {
468 	d = d->parent_data;
469 	if (d->chip->irq_shutdown)
470 		d->chip->irq_shutdown(d);
471 }
472 
473 static void pseries_msi_mask(struct irq_data *d)
474 {
475 	pci_msi_mask_irq(d);
476 	irq_chip_mask_parent(d);
477 }
478 
479 static void pseries_msi_unmask(struct irq_data *d)
480 {
481 	pci_msi_unmask_irq(d);
482 	irq_chip_unmask_parent(d);
483 }
484 
485 static void pseries_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
486 {
487 	struct msi_desc *entry = irq_data_get_msi_desc(data);
488 
489 	/*
490 	 * Do not update the MSIx vector table. It's not strictly necessary
491 	 * because the table is initialized by the underlying hypervisor, PowerVM
492 	 * or QEMU/KVM. However, if the MSIx vector entry is cleared, any further
493 	 * activation will fail. This can happen in some drivers (eg. IPR) which
494 	 * deactivate an IRQ used for testing MSI support.
495 	 */
496 	entry->msg = *msg;
497 }
498 
499 static struct irq_chip pseries_pci_msi_irq_chip = {
500 	.name		= "pSeries-PCI-MSI",
501 	.irq_shutdown	= pseries_msi_shutdown,
502 	.irq_mask	= pseries_msi_mask,
503 	.irq_unmask	= pseries_msi_unmask,
504 	.irq_eoi	= irq_chip_eoi_parent,
505 	.irq_write_msi_msg	= pseries_msi_write_msg,
506 };
507 
508 
509 /*
510  * Set MSI_FLAG_MSIX_CONTIGUOUS as there is no way to express to
511  * firmware to request a discontiguous or non-zero based range of
512  * MSI-X entries. Core code will reject such setup attempts.
513  */
514 static struct msi_domain_info pseries_msi_domain_info = {
515 	.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
516 		  MSI_FLAG_MULTI_PCI_MSI  | MSI_FLAG_PCI_MSIX |
517 		  MSI_FLAG_MSIX_CONTIGUOUS),
518 	.ops   = &pseries_pci_msi_domain_ops,
519 	.chip  = &pseries_pci_msi_irq_chip,
520 };
521 
522 static void pseries_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
523 {
524 	__pci_read_msi_msg(irq_data_get_msi_desc(data), msg);
525 }
526 
527 static struct irq_chip pseries_msi_irq_chip = {
528 	.name			= "pSeries-MSI",
529 	.irq_shutdown		= pseries_msi_shutdown,
530 	.irq_mask		= irq_chip_mask_parent,
531 	.irq_unmask		= irq_chip_unmask_parent,
532 	.irq_eoi		= irq_chip_eoi_parent,
533 	.irq_set_affinity	= irq_chip_set_affinity_parent,
534 	.irq_compose_msi_msg	= pseries_msi_compose_msg,
535 };
536 
537 static int pseries_irq_parent_domain_alloc(struct irq_domain *domain, unsigned int virq,
538 					   irq_hw_number_t hwirq)
539 {
540 	struct irq_fwspec parent_fwspec;
541 	int ret;
542 
543 	parent_fwspec.fwnode = domain->parent->fwnode;
544 	parent_fwspec.param_count = 2;
545 	parent_fwspec.param[0] = hwirq;
546 	parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
547 
548 	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
549 	if (ret)
550 		return ret;
551 
552 	return 0;
553 }
554 
555 static int pseries_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
556 				    unsigned int nr_irqs, void *arg)
557 {
558 	struct pci_controller *phb = domain->host_data;
559 	msi_alloc_info_t *info = arg;
560 	struct msi_desc *desc = info->desc;
561 	struct pci_dev *pdev = msi_desc_to_pci_dev(desc);
562 	int hwirq;
563 	int i, ret;
564 
565 	hwirq = rtas_query_irq_number(pci_get_pdn(pdev), desc->msi_index);
566 	if (hwirq < 0) {
567 		dev_err(&pdev->dev, "Failed to query HW IRQ: %d\n", hwirq);
568 		return hwirq;
569 	}
570 
571 	dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
572 		phb->dn, virq, hwirq, nr_irqs);
573 
574 	for (i = 0; i < nr_irqs; i++) {
575 		ret = pseries_irq_parent_domain_alloc(domain, virq + i, hwirq + i);
576 		if (ret)
577 			goto out;
578 
579 		irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
580 					      &pseries_msi_irq_chip, domain->host_data);
581 	}
582 
583 	return 0;
584 
585 out:
586 	/* TODO: handle RTAS cleanup in ->msi_finish() ? */
587 	irq_domain_free_irqs_parent(domain, virq, i - 1);
588 	return ret;
589 }
590 
591 static void pseries_irq_domain_free(struct irq_domain *domain, unsigned int virq,
592 				    unsigned int nr_irqs)
593 {
594 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
595 	struct pci_controller *phb = irq_data_get_irq_chip_data(d);
596 
597 	pr_debug("%s bridge %pOF %d #%d\n", __func__, phb->dn, virq, nr_irqs);
598 
599 	/* XIVE domain data is cleared through ->msi_free() */
600 }
601 
602 static const struct irq_domain_ops pseries_irq_domain_ops = {
603 	.alloc  = pseries_irq_domain_alloc,
604 	.free   = pseries_irq_domain_free,
605 };
606 
607 static int __pseries_msi_allocate_domains(struct pci_controller *phb,
608 					  unsigned int count)
609 {
610 	struct irq_domain *parent = irq_get_default_host();
611 
612 	phb->fwnode = irq_domain_alloc_named_id_fwnode("pSeries-MSI",
613 						       phb->global_number);
614 	if (!phb->fwnode)
615 		return -ENOMEM;
616 
617 	phb->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
618 						      phb->fwnode,
619 						      &pseries_irq_domain_ops, phb);
620 	if (!phb->dev_domain) {
621 		pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
622 		       phb->dn, phb->global_number);
623 		irq_domain_free_fwnode(phb->fwnode);
624 		return -ENOMEM;
625 	}
626 
627 	phb->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(phb->dn),
628 						    &pseries_msi_domain_info,
629 						    phb->dev_domain);
630 	if (!phb->msi_domain) {
631 		pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
632 		       phb->dn, phb->global_number);
633 		irq_domain_free_fwnode(phb->fwnode);
634 		irq_domain_remove(phb->dev_domain);
635 		return -ENOMEM;
636 	}
637 
638 	return 0;
639 }
640 
641 int pseries_msi_allocate_domains(struct pci_controller *phb)
642 {
643 	int count;
644 
645 	if (!__find_pe_total_msi(phb->dn, &count)) {
646 		pr_err("PCI: failed to find MSIs for bridge %pOF (domain %d)\n",
647 		       phb->dn, phb->global_number);
648 		return -ENOSPC;
649 	}
650 
651 	return __pseries_msi_allocate_domains(phb, count);
652 }
653 
654 void pseries_msi_free_domains(struct pci_controller *phb)
655 {
656 	if (phb->msi_domain)
657 		irq_domain_remove(phb->msi_domain);
658 	if (phb->dev_domain)
659 		irq_domain_remove(phb->dev_domain);
660 	if (phb->fwnode)
661 		irq_domain_free_fwnode(phb->fwnode);
662 }
663 
664 static void rtas_msi_pci_irq_fixup(struct pci_dev *pdev)
665 {
666 	/* No LSI -> leave MSIs (if any) configured */
667 	if (!pdev->irq) {
668 		dev_dbg(&pdev->dev, "rtas_msi: no LSI, nothing to do.\n");
669 		return;
670 	}
671 
672 	/* No MSI -> MSIs can't have been assigned by fw, leave LSI */
673 	if (check_req_msi(pdev, 1) && check_req_msix(pdev, 1)) {
674 		dev_dbg(&pdev->dev, "rtas_msi: no req#msi/x, nothing to do.\n");
675 		return;
676 	}
677 
678 	dev_dbg(&pdev->dev, "rtas_msi: disabling existing MSI.\n");
679 	rtas_disable_msi(pdev);
680 }
681 
682 static int rtas_msi_init(void)
683 {
684 	query_token  = rtas_token("ibm,query-interrupt-source-number");
685 	change_token = rtas_token("ibm,change-msi");
686 
687 	if ((query_token == RTAS_UNKNOWN_SERVICE) ||
688 			(change_token == RTAS_UNKNOWN_SERVICE)) {
689 		pr_debug("rtas_msi: no RTAS tokens, no MSI support.\n");
690 		return -1;
691 	}
692 
693 	pr_debug("rtas_msi: Registering RTAS MSI callbacks.\n");
694 
695 	WARN_ON(ppc_md.pci_irq_fixup);
696 	ppc_md.pci_irq_fixup = rtas_msi_pci_irq_fixup;
697 
698 	return 0;
699 }
700 machine_arch_initcall(pseries, rtas_msi_init);
701