1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Support for Partition Mobility/Migration 4 * 5 * Copyright (C) 2010 Nathan Fontenot 6 * Copyright (C) 2010 IBM Corporation 7 */ 8 9 10 #define pr_fmt(fmt) "mobility: " fmt 11 12 #include <linux/cpu.h> 13 #include <linux/kernel.h> 14 #include <linux/kobject.h> 15 #include <linux/nmi.h> 16 #include <linux/sched.h> 17 #include <linux/smp.h> 18 #include <linux/stat.h> 19 #include <linux/stop_machine.h> 20 #include <linux/completion.h> 21 #include <linux/device.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/stringify.h> 25 26 #include <asm/machdep.h> 27 #include <asm/rtas.h> 28 #include "pseries.h" 29 #include "vas.h" /* vas_migration_handler() */ 30 #include "../../kernel/cacheinfo.h" 31 32 static struct kobject *mobility_kobj; 33 34 struct update_props_workarea { 35 __be32 phandle; 36 __be32 state; 37 __be64 reserved; 38 __be32 nprops; 39 } __packed; 40 41 #define NODE_ACTION_MASK 0xff000000 42 #define NODE_COUNT_MASK 0x00ffffff 43 44 #define DELETE_DT_NODE 0x01000000 45 #define UPDATE_DT_NODE 0x02000000 46 #define ADD_DT_NODE 0x03000000 47 48 #define MIGRATION_SCOPE (1) 49 #define PRRN_SCOPE -2 50 51 #ifdef CONFIG_PPC_WATCHDOG 52 static unsigned int nmi_wd_lpm_factor = 200; 53 54 #ifdef CONFIG_SYSCTL 55 static struct ctl_table nmi_wd_lpm_factor_ctl_table[] = { 56 { 57 .procname = "nmi_wd_lpm_factor", 58 .data = &nmi_wd_lpm_factor, 59 .maxlen = sizeof(int), 60 .mode = 0644, 61 .proc_handler = proc_douintvec_minmax, 62 }, 63 {} 64 }; 65 66 static int __init register_nmi_wd_lpm_factor_sysctl(void) 67 { 68 register_sysctl("kernel", nmi_wd_lpm_factor_ctl_table); 69 70 return 0; 71 } 72 device_initcall(register_nmi_wd_lpm_factor_sysctl); 73 #endif /* CONFIG_SYSCTL */ 74 #endif /* CONFIG_PPC_WATCHDOG */ 75 76 static int mobility_rtas_call(int token, char *buf, s32 scope) 77 { 78 int rc; 79 80 spin_lock(&rtas_data_buf_lock); 81 82 memcpy(rtas_data_buf, buf, RTAS_DATA_BUF_SIZE); 83 rc = rtas_call(token, 2, 1, NULL, rtas_data_buf, scope); 84 memcpy(buf, rtas_data_buf, RTAS_DATA_BUF_SIZE); 85 86 spin_unlock(&rtas_data_buf_lock); 87 return rc; 88 } 89 90 static int delete_dt_node(struct device_node *dn) 91 { 92 struct device_node *pdn; 93 bool is_platfac; 94 95 pdn = of_get_parent(dn); 96 is_platfac = of_node_is_type(dn, "ibm,platform-facilities") || 97 of_node_is_type(pdn, "ibm,platform-facilities"); 98 of_node_put(pdn); 99 100 /* 101 * The drivers that bind to nodes in the platform-facilities 102 * hierarchy don't support node removal, and the removal directive 103 * from firmware is always followed by an add of an equivalent 104 * node. The capability (e.g. RNG, encryption, compression) 105 * represented by the node is never interrupted by the migration. 106 * So ignore changes to this part of the tree. 107 */ 108 if (is_platfac) { 109 pr_notice("ignoring remove operation for %pOFfp\n", dn); 110 return 0; 111 } 112 113 pr_debug("removing node %pOFfp\n", dn); 114 dlpar_detach_node(dn); 115 return 0; 116 } 117 118 static int update_dt_property(struct device_node *dn, struct property **prop, 119 const char *name, u32 vd, char *value) 120 { 121 struct property *new_prop = *prop; 122 int more = 0; 123 124 /* A negative 'vd' value indicates that only part of the new property 125 * value is contained in the buffer and we need to call 126 * ibm,update-properties again to get the rest of the value. 127 * 128 * A negative value is also the two's compliment of the actual value. 129 */ 130 if (vd & 0x80000000) { 131 vd = ~vd + 1; 132 more = 1; 133 } 134 135 if (new_prop) { 136 /* partial property fixup */ 137 char *new_data = kzalloc(new_prop->length + vd, GFP_KERNEL); 138 if (!new_data) 139 return -ENOMEM; 140 141 memcpy(new_data, new_prop->value, new_prop->length); 142 memcpy(new_data + new_prop->length, value, vd); 143 144 kfree(new_prop->value); 145 new_prop->value = new_data; 146 new_prop->length += vd; 147 } else { 148 new_prop = kzalloc(sizeof(*new_prop), GFP_KERNEL); 149 if (!new_prop) 150 return -ENOMEM; 151 152 new_prop->name = kstrdup(name, GFP_KERNEL); 153 if (!new_prop->name) { 154 kfree(new_prop); 155 return -ENOMEM; 156 } 157 158 new_prop->length = vd; 159 new_prop->value = kzalloc(new_prop->length, GFP_KERNEL); 160 if (!new_prop->value) { 161 kfree(new_prop->name); 162 kfree(new_prop); 163 return -ENOMEM; 164 } 165 166 memcpy(new_prop->value, value, vd); 167 *prop = new_prop; 168 } 169 170 if (!more) { 171 pr_debug("updating node %pOF property %s\n", dn, name); 172 of_update_property(dn, new_prop); 173 *prop = NULL; 174 } 175 176 return 0; 177 } 178 179 static int update_dt_node(struct device_node *dn, s32 scope) 180 { 181 struct update_props_workarea *upwa; 182 struct property *prop = NULL; 183 int i, rc, rtas_rc; 184 char *prop_data; 185 char *rtas_buf; 186 int update_properties_token; 187 u32 nprops; 188 u32 vd; 189 190 update_properties_token = rtas_function_token(RTAS_FN_IBM_UPDATE_PROPERTIES); 191 if (update_properties_token == RTAS_UNKNOWN_SERVICE) 192 return -EINVAL; 193 194 rtas_buf = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL); 195 if (!rtas_buf) 196 return -ENOMEM; 197 198 upwa = (struct update_props_workarea *)&rtas_buf[0]; 199 upwa->phandle = cpu_to_be32(dn->phandle); 200 201 do { 202 rtas_rc = mobility_rtas_call(update_properties_token, rtas_buf, 203 scope); 204 if (rtas_rc < 0) 205 break; 206 207 prop_data = rtas_buf + sizeof(*upwa); 208 nprops = be32_to_cpu(upwa->nprops); 209 210 /* On the first call to ibm,update-properties for a node the 211 * first property value descriptor contains an empty 212 * property name, the property value length encoded as u32, 213 * and the property value is the node path being updated. 214 */ 215 if (*prop_data == 0) { 216 prop_data++; 217 vd = be32_to_cpu(*(__be32 *)prop_data); 218 prop_data += vd + sizeof(vd); 219 nprops--; 220 } 221 222 for (i = 0; i < nprops; i++) { 223 char *prop_name; 224 225 prop_name = prop_data; 226 prop_data += strlen(prop_name) + 1; 227 vd = be32_to_cpu(*(__be32 *)prop_data); 228 prop_data += sizeof(vd); 229 230 switch (vd) { 231 case 0x00000000: 232 /* name only property, nothing to do */ 233 break; 234 235 case 0x80000000: 236 of_remove_property(dn, of_find_property(dn, 237 prop_name, NULL)); 238 prop = NULL; 239 break; 240 241 default: 242 rc = update_dt_property(dn, &prop, prop_name, 243 vd, prop_data); 244 if (rc) { 245 pr_err("updating %s property failed: %d\n", 246 prop_name, rc); 247 } 248 249 prop_data += vd; 250 break; 251 } 252 253 cond_resched(); 254 } 255 256 cond_resched(); 257 } while (rtas_rc == 1); 258 259 kfree(rtas_buf); 260 return 0; 261 } 262 263 static int add_dt_node(struct device_node *parent_dn, __be32 drc_index) 264 { 265 struct device_node *dn; 266 int rc; 267 268 dn = dlpar_configure_connector(drc_index, parent_dn); 269 if (!dn) 270 return -ENOENT; 271 272 /* 273 * Since delete_dt_node() ignores this node type, this is the 274 * necessary counterpart. We also know that a platform-facilities 275 * node returned from dlpar_configure_connector() has children 276 * attached, and dlpar_attach_node() only adds the parent, leaking 277 * the children. So ignore these on the add side for now. 278 */ 279 if (of_node_is_type(dn, "ibm,platform-facilities")) { 280 pr_notice("ignoring add operation for %pOF\n", dn); 281 dlpar_free_cc_nodes(dn); 282 return 0; 283 } 284 285 rc = dlpar_attach_node(dn, parent_dn); 286 if (rc) 287 dlpar_free_cc_nodes(dn); 288 289 pr_debug("added node %pOFfp\n", dn); 290 291 return rc; 292 } 293 294 static int pseries_devicetree_update(s32 scope) 295 { 296 char *rtas_buf; 297 __be32 *data; 298 int update_nodes_token; 299 int rc; 300 301 update_nodes_token = rtas_function_token(RTAS_FN_IBM_UPDATE_NODES); 302 if (update_nodes_token == RTAS_UNKNOWN_SERVICE) 303 return 0; 304 305 rtas_buf = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL); 306 if (!rtas_buf) 307 return -ENOMEM; 308 309 do { 310 rc = mobility_rtas_call(update_nodes_token, rtas_buf, scope); 311 if (rc && rc != 1) 312 break; 313 314 data = (__be32 *)rtas_buf + 4; 315 while (be32_to_cpu(*data) & NODE_ACTION_MASK) { 316 int i; 317 u32 action = be32_to_cpu(*data) & NODE_ACTION_MASK; 318 u32 node_count = be32_to_cpu(*data) & NODE_COUNT_MASK; 319 320 data++; 321 322 for (i = 0; i < node_count; i++) { 323 struct device_node *np; 324 __be32 phandle = *data++; 325 __be32 drc_index; 326 327 np = of_find_node_by_phandle(be32_to_cpu(phandle)); 328 if (!np) { 329 pr_warn("Failed lookup: phandle 0x%x for action 0x%x\n", 330 be32_to_cpu(phandle), action); 331 continue; 332 } 333 334 switch (action) { 335 case DELETE_DT_NODE: 336 delete_dt_node(np); 337 break; 338 case UPDATE_DT_NODE: 339 update_dt_node(np, scope); 340 break; 341 case ADD_DT_NODE: 342 drc_index = *data++; 343 add_dt_node(np, drc_index); 344 break; 345 } 346 347 of_node_put(np); 348 cond_resched(); 349 } 350 } 351 352 cond_resched(); 353 } while (rc == 1); 354 355 kfree(rtas_buf); 356 return rc; 357 } 358 359 void post_mobility_fixup(void) 360 { 361 int rc; 362 363 rtas_activate_firmware(); 364 365 /* 366 * We don't want CPUs to go online/offline while the device 367 * tree is being updated. 368 */ 369 cpus_read_lock(); 370 371 /* 372 * It's common for the destination firmware to replace cache 373 * nodes. Release all of the cacheinfo hierarchy's references 374 * before updating the device tree. 375 */ 376 cacheinfo_teardown(); 377 378 rc = pseries_devicetree_update(MIGRATION_SCOPE); 379 if (rc) 380 pr_err("device tree update failed: %d\n", rc); 381 382 cacheinfo_rebuild(); 383 384 cpus_read_unlock(); 385 386 /* Possibly switch to a new L1 flush type */ 387 pseries_setup_security_mitigations(); 388 389 /* Reinitialise system information for hv-24x7 */ 390 read_24x7_sys_info(); 391 392 return; 393 } 394 395 static int poll_vasi_state(u64 handle, unsigned long *res) 396 { 397 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 398 long hvrc; 399 int ret; 400 401 hvrc = plpar_hcall(H_VASI_STATE, retbuf, handle); 402 switch (hvrc) { 403 case H_SUCCESS: 404 ret = 0; 405 *res = retbuf[0]; 406 break; 407 case H_PARAMETER: 408 ret = -EINVAL; 409 break; 410 case H_FUNCTION: 411 ret = -EOPNOTSUPP; 412 break; 413 case H_HARDWARE: 414 default: 415 pr_err("unexpected H_VASI_STATE result %ld\n", hvrc); 416 ret = -EIO; 417 break; 418 } 419 return ret; 420 } 421 422 static int wait_for_vasi_session_suspending(u64 handle) 423 { 424 unsigned long state; 425 int ret; 426 427 /* 428 * Wait for transition from H_VASI_ENABLED to 429 * H_VASI_SUSPENDING. Treat anything else as an error. 430 */ 431 while (true) { 432 ret = poll_vasi_state(handle, &state); 433 434 if (ret != 0 || state == H_VASI_SUSPENDING) { 435 break; 436 } else if (state == H_VASI_ENABLED) { 437 ssleep(1); 438 } else { 439 pr_err("unexpected H_VASI_STATE result %lu\n", state); 440 ret = -EIO; 441 break; 442 } 443 } 444 445 /* 446 * Proceed even if H_VASI_STATE is unavailable. If H_JOIN or 447 * ibm,suspend-me are also unimplemented, we'll recover then. 448 */ 449 if (ret == -EOPNOTSUPP) 450 ret = 0; 451 452 return ret; 453 } 454 455 static void wait_for_vasi_session_completed(u64 handle) 456 { 457 unsigned long state = 0; 458 int ret; 459 460 pr_info("waiting for memory transfer to complete...\n"); 461 462 /* 463 * Wait for transition from H_VASI_RESUMED to H_VASI_COMPLETED. 464 */ 465 while (true) { 466 ret = poll_vasi_state(handle, &state); 467 468 /* 469 * If the memory transfer is already complete and the migration 470 * has been cleaned up by the hypervisor, H_PARAMETER is return, 471 * which is translate in EINVAL by poll_vasi_state(). 472 */ 473 if (ret == -EINVAL || (!ret && state == H_VASI_COMPLETED)) { 474 pr_info("memory transfer completed.\n"); 475 break; 476 } 477 478 if (ret) { 479 pr_err("H_VASI_STATE return error (%d)\n", ret); 480 break; 481 } 482 483 if (state != H_VASI_RESUMED) { 484 pr_err("unexpected H_VASI_STATE result %lu\n", state); 485 break; 486 } 487 488 msleep(500); 489 } 490 } 491 492 static void prod_single(unsigned int target_cpu) 493 { 494 long hvrc; 495 int hwid; 496 497 hwid = get_hard_smp_processor_id(target_cpu); 498 hvrc = plpar_hcall_norets(H_PROD, hwid); 499 if (hvrc == H_SUCCESS) 500 return; 501 pr_err_ratelimited("H_PROD of CPU %u (hwid %d) error: %ld\n", 502 target_cpu, hwid, hvrc); 503 } 504 505 static void prod_others(void) 506 { 507 unsigned int cpu; 508 509 for_each_online_cpu(cpu) { 510 if (cpu != smp_processor_id()) 511 prod_single(cpu); 512 } 513 } 514 515 static u16 clamp_slb_size(void) 516 { 517 #ifdef CONFIG_PPC_64S_HASH_MMU 518 u16 prev = mmu_slb_size; 519 520 slb_set_size(SLB_MIN_SIZE); 521 522 return prev; 523 #else 524 return 0; 525 #endif 526 } 527 528 static int do_suspend(void) 529 { 530 u16 saved_slb_size; 531 int status; 532 int ret; 533 534 pr_info("calling ibm,suspend-me on CPU %i\n", smp_processor_id()); 535 536 /* 537 * The destination processor model may have fewer SLB entries 538 * than the source. We reduce mmu_slb_size to a safe minimum 539 * before suspending in order to minimize the possibility of 540 * programming non-existent entries on the destination. If 541 * suspend fails, we restore it before returning. On success 542 * the OF reconfig path will update it from the new device 543 * tree after resuming on the destination. 544 */ 545 saved_slb_size = clamp_slb_size(); 546 547 ret = rtas_ibm_suspend_me(&status); 548 if (ret != 0) { 549 pr_err("ibm,suspend-me error: %d\n", status); 550 slb_set_size(saved_slb_size); 551 } 552 553 return ret; 554 } 555 556 /** 557 * struct pseries_suspend_info - State shared between CPUs for join/suspend. 558 * @counter: Threads are to increment this upon resuming from suspend 559 * or if an error is received from H_JOIN. The thread which performs 560 * the first increment (i.e. sets it to 1) is responsible for 561 * waking the other threads. 562 * @done: False if join/suspend is in progress. True if the operation is 563 * complete (successful or not). 564 */ 565 struct pseries_suspend_info { 566 atomic_t counter; 567 bool done; 568 }; 569 570 static int do_join(void *arg) 571 { 572 struct pseries_suspend_info *info = arg; 573 atomic_t *counter = &info->counter; 574 long hvrc; 575 int ret; 576 577 retry: 578 /* Must ensure MSR.EE off for H_JOIN. */ 579 hard_irq_disable(); 580 hvrc = plpar_hcall_norets(H_JOIN); 581 582 switch (hvrc) { 583 case H_CONTINUE: 584 /* 585 * All other CPUs are offline or in H_JOIN. This CPU 586 * attempts the suspend. 587 */ 588 ret = do_suspend(); 589 break; 590 case H_SUCCESS: 591 /* 592 * The suspend is complete and this cpu has received a 593 * prod, or we've received a stray prod from unrelated 594 * code (e.g. paravirt spinlocks) and we need to join 595 * again. 596 * 597 * This barrier orders the return from H_JOIN above vs 598 * the load of info->done. It pairs with the barrier 599 * in the wakeup/prod path below. 600 */ 601 smp_mb(); 602 if (READ_ONCE(info->done) == false) { 603 pr_info_ratelimited("premature return from H_JOIN on CPU %i, retrying", 604 smp_processor_id()); 605 goto retry; 606 } 607 ret = 0; 608 break; 609 case H_BAD_MODE: 610 case H_HARDWARE: 611 default: 612 ret = -EIO; 613 pr_err_ratelimited("H_JOIN error %ld on CPU %i\n", 614 hvrc, smp_processor_id()); 615 break; 616 } 617 618 if (atomic_inc_return(counter) == 1) { 619 pr_info("CPU %u waking all threads\n", smp_processor_id()); 620 WRITE_ONCE(info->done, true); 621 /* 622 * This barrier orders the store to info->done vs subsequent 623 * H_PRODs to wake the other CPUs. It pairs with the barrier 624 * in the H_SUCCESS case above. 625 */ 626 smp_mb(); 627 prod_others(); 628 } 629 /* 630 * Execution may have been suspended for several seconds, so reset 631 * the watchdogs. touch_nmi_watchdog() also touches the soft lockup 632 * watchdog. 633 */ 634 rcu_cpu_stall_reset(); 635 touch_nmi_watchdog(); 636 637 return ret; 638 } 639 640 /* 641 * Abort reason code byte 0. We use only the 'Migrating partition' value. 642 */ 643 enum vasi_aborting_entity { 644 ORCHESTRATOR = 1, 645 VSP_SOURCE = 2, 646 PARTITION_FIRMWARE = 3, 647 PLATFORM_FIRMWARE = 4, 648 VSP_TARGET = 5, 649 MIGRATING_PARTITION = 6, 650 }; 651 652 static void pseries_cancel_migration(u64 handle, int err) 653 { 654 u32 reason_code; 655 u32 detail; 656 u8 entity; 657 long hvrc; 658 659 entity = MIGRATING_PARTITION; 660 detail = abs(err) & 0xffffff; 661 reason_code = (entity << 24) | detail; 662 663 hvrc = plpar_hcall_norets(H_VASI_SIGNAL, handle, 664 H_VASI_SIGNAL_CANCEL, reason_code); 665 if (hvrc) 666 pr_err("H_VASI_SIGNAL error: %ld\n", hvrc); 667 } 668 669 static int pseries_suspend(u64 handle) 670 { 671 const unsigned int max_attempts = 5; 672 unsigned int retry_interval_ms = 1; 673 unsigned int attempt = 1; 674 int ret; 675 676 while (true) { 677 struct pseries_suspend_info info; 678 unsigned long vasi_state; 679 int vasi_err; 680 681 info = (struct pseries_suspend_info) { 682 .counter = ATOMIC_INIT(0), 683 .done = false, 684 }; 685 686 ret = stop_machine(do_join, &info, cpu_online_mask); 687 if (ret == 0) 688 break; 689 /* 690 * Encountered an error. If the VASI stream is still 691 * in Suspending state, it's likely a transient 692 * condition related to some device in the partition 693 * and we can retry in the hope that the cause has 694 * cleared after some delay. 695 * 696 * A better design would allow drivers etc to prepare 697 * for the suspend and avoid conditions which prevent 698 * the suspend from succeeding. For now, we have this 699 * mitigation. 700 */ 701 pr_notice("Partition suspend attempt %u of %u error: %d\n", 702 attempt, max_attempts, ret); 703 704 if (attempt == max_attempts) 705 break; 706 707 vasi_err = poll_vasi_state(handle, &vasi_state); 708 if (vasi_err == 0) { 709 if (vasi_state != H_VASI_SUSPENDING) { 710 pr_notice("VASI state %lu after failed suspend\n", 711 vasi_state); 712 break; 713 } 714 } else if (vasi_err != -EOPNOTSUPP) { 715 pr_err("VASI state poll error: %d", vasi_err); 716 break; 717 } 718 719 pr_notice("Will retry partition suspend after %u ms\n", 720 retry_interval_ms); 721 722 msleep(retry_interval_ms); 723 retry_interval_ms *= 10; 724 attempt++; 725 } 726 727 return ret; 728 } 729 730 static int pseries_migrate_partition(u64 handle) 731 { 732 int ret; 733 unsigned int factor = 0; 734 735 #ifdef CONFIG_PPC_WATCHDOG 736 factor = nmi_wd_lpm_factor; 737 #endif 738 /* 739 * When the migration is initiated, the hypervisor changes VAS 740 * mappings to prepare before OS gets the notification and 741 * closes all VAS windows. NX generates continuous faults during 742 * this time and the user space can not differentiate these 743 * faults from the migration event. So reduce this time window 744 * by closing VAS windows at the beginning of this function. 745 */ 746 vas_migration_handler(VAS_SUSPEND); 747 748 ret = wait_for_vasi_session_suspending(handle); 749 if (ret) 750 goto out; 751 752 if (factor) 753 watchdog_hardlockup_set_timeout_pct(factor); 754 755 ret = pseries_suspend(handle); 756 if (ret == 0) { 757 post_mobility_fixup(); 758 /* 759 * Wait until the memory transfer is complete, so that the user 760 * space process returns from the syscall after the transfer is 761 * complete. This allows the user hooks to be executed at the 762 * right time. 763 */ 764 wait_for_vasi_session_completed(handle); 765 } else 766 pseries_cancel_migration(handle, ret); 767 768 if (factor) 769 watchdog_hardlockup_set_timeout_pct(0); 770 771 out: 772 vas_migration_handler(VAS_RESUME); 773 774 return ret; 775 } 776 777 int rtas_syscall_dispatch_ibm_suspend_me(u64 handle) 778 { 779 return pseries_migrate_partition(handle); 780 } 781 782 static ssize_t migration_store(const struct class *class, 783 const struct class_attribute *attr, const char *buf, 784 size_t count) 785 { 786 u64 streamid; 787 int rc; 788 789 rc = kstrtou64(buf, 0, &streamid); 790 if (rc) 791 return rc; 792 793 rc = pseries_migrate_partition(streamid); 794 if (rc) 795 return rc; 796 797 return count; 798 } 799 800 /* 801 * Used by drmgr to determine the kernel behavior of the migration interface. 802 * 803 * Version 1: Performs all PAPR requirements for migration including 804 * firmware activation and device tree update. 805 */ 806 #define MIGRATION_API_VERSION 1 807 808 static CLASS_ATTR_WO(migration); 809 static CLASS_ATTR_STRING(api_version, 0444, __stringify(MIGRATION_API_VERSION)); 810 811 static int __init mobility_sysfs_init(void) 812 { 813 int rc; 814 815 mobility_kobj = kobject_create_and_add("mobility", kernel_kobj); 816 if (!mobility_kobj) 817 return -ENOMEM; 818 819 rc = sysfs_create_file(mobility_kobj, &class_attr_migration.attr); 820 if (rc) 821 pr_err("unable to create migration sysfs file (%d)\n", rc); 822 823 rc = sysfs_create_file(mobility_kobj, &class_attr_api_version.attr.attr); 824 if (rc) 825 pr_err("unable to create api_version sysfs file (%d)\n", rc); 826 827 return 0; 828 } 829 machine_device_initcall(pseries, mobility_sysfs_init); 830