xref: /linux/arch/powerpc/platforms/pseries/lpar.c (revision 6a02124c87f0b61dcaaeb65e7fd406d8afb40fd4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries_lpar.c
4  * Copyright (C) 2001 Todd Inglett, IBM Corporation
5  *
6  * pSeries LPAR support.
7  */
8 
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pgtable.h>
25 #include <linux/debugfs.h>
26 
27 #include <asm/processor.h>
28 #include <asm/mmu.h>
29 #include <asm/page.h>
30 #include <asm/setup.h>
31 #include <asm/mmu_context.h>
32 #include <asm/iommu.h>
33 #include <asm/tlb.h>
34 #include <asm/cputable.h>
35 #include <asm/udbg.h>
36 #include <asm/smp.h>
37 #include <asm/trace.h>
38 #include <asm/firmware.h>
39 #include <asm/plpar_wrappers.h>
40 #include <asm/kexec.h>
41 #include <asm/fadump.h>
42 #include <asm/dtl.h>
43 
44 #include "pseries.h"
45 
46 /* Flag bits for H_BULK_REMOVE */
47 #define HBR_REQUEST	0x4000000000000000UL
48 #define HBR_RESPONSE	0x8000000000000000UL
49 #define HBR_END		0xc000000000000000UL
50 #define HBR_AVPN	0x0200000000000000UL
51 #define HBR_ANDCOND	0x0100000000000000UL
52 
53 
54 /* in hvCall.S */
55 EXPORT_SYMBOL(plpar_hcall);
56 EXPORT_SYMBOL(plpar_hcall9);
57 EXPORT_SYMBOL(plpar_hcall_norets);
58 
59 #ifdef CONFIG_PPC_64S_HASH_MMU
60 /*
61  * H_BLOCK_REMOVE supported block size for this page size in segment who's base
62  * page size is that page size.
63  *
64  * The first index is the segment base page size, the second one is the actual
65  * page size.
66  */
67 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
68 #endif
69 
70 /*
71  * Due to the involved complexity, and that the current hypervisor is only
72  * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
73  * buffer size to 8 size block.
74  */
75 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
76 
77 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
78 static u8 dtl_mask = DTL_LOG_PREEMPT;
79 #else
80 static u8 dtl_mask;
81 #endif
82 
83 void alloc_dtl_buffers(unsigned long *time_limit)
84 {
85 	int cpu;
86 	struct paca_struct *pp;
87 	struct dtl_entry *dtl;
88 
89 	for_each_possible_cpu(cpu) {
90 		pp = paca_ptrs[cpu];
91 		if (pp->dispatch_log)
92 			continue;
93 		dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
94 		if (!dtl) {
95 			pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
96 				cpu);
97 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
98 			pr_warn("Stolen time statistics will be unreliable\n");
99 #endif
100 			break;
101 		}
102 
103 		pp->dtl_ridx = 0;
104 		pp->dispatch_log = dtl;
105 		pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
106 		pp->dtl_curr = dtl;
107 
108 		if (time_limit && time_after(jiffies, *time_limit)) {
109 			cond_resched();
110 			*time_limit = jiffies + HZ;
111 		}
112 	}
113 }
114 
115 void register_dtl_buffer(int cpu)
116 {
117 	long ret;
118 	struct paca_struct *pp;
119 	struct dtl_entry *dtl;
120 	int hwcpu = get_hard_smp_processor_id(cpu);
121 
122 	pp = paca_ptrs[cpu];
123 	dtl = pp->dispatch_log;
124 	if (dtl && dtl_mask) {
125 		pp->dtl_ridx = 0;
126 		pp->dtl_curr = dtl;
127 		lppaca_of(cpu).dtl_idx = 0;
128 
129 		/* hypervisor reads buffer length from this field */
130 		dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
131 		ret = register_dtl(hwcpu, __pa(dtl));
132 		if (ret)
133 			pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
134 			       cpu, hwcpu, ret);
135 
136 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
137 	}
138 }
139 
140 #ifdef CONFIG_PPC_SPLPAR
141 struct dtl_worker {
142 	struct delayed_work work;
143 	int cpu;
144 };
145 
146 struct vcpu_dispatch_data {
147 	int last_disp_cpu;
148 
149 	int total_disp;
150 
151 	int same_cpu_disp;
152 	int same_chip_disp;
153 	int diff_chip_disp;
154 	int far_chip_disp;
155 
156 	int numa_home_disp;
157 	int numa_remote_disp;
158 	int numa_far_disp;
159 };
160 
161 /*
162  * This represents the number of cpus in the hypervisor. Since there is no
163  * architected way to discover the number of processors in the host, we
164  * provision for dealing with NR_CPUS. This is currently 2048 by default, and
165  * is sufficient for our purposes. This will need to be tweaked if
166  * CONFIG_NR_CPUS is changed.
167  */
168 #define NR_CPUS_H	NR_CPUS
169 
170 DEFINE_RWLOCK(dtl_access_lock);
171 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
172 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
173 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
174 static enum cpuhp_state dtl_worker_state;
175 static DEFINE_MUTEX(dtl_enable_mutex);
176 static int vcpudispatch_stats_on __read_mostly;
177 static int vcpudispatch_stats_freq = 50;
178 static __be32 *vcpu_associativity, *pcpu_associativity;
179 
180 
181 static void free_dtl_buffers(unsigned long *time_limit)
182 {
183 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
184 	int cpu;
185 	struct paca_struct *pp;
186 
187 	for_each_possible_cpu(cpu) {
188 		pp = paca_ptrs[cpu];
189 		if (!pp->dispatch_log)
190 			continue;
191 		kmem_cache_free(dtl_cache, pp->dispatch_log);
192 		pp->dtl_ridx = 0;
193 		pp->dispatch_log = 0;
194 		pp->dispatch_log_end = 0;
195 		pp->dtl_curr = 0;
196 
197 		if (time_limit && time_after(jiffies, *time_limit)) {
198 			cond_resched();
199 			*time_limit = jiffies + HZ;
200 		}
201 	}
202 #endif
203 }
204 
205 static int init_cpu_associativity(void)
206 {
207 	vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
208 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
209 	pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
210 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
211 
212 	if (!vcpu_associativity || !pcpu_associativity) {
213 		pr_err("error allocating memory for associativity information\n");
214 		return -ENOMEM;
215 	}
216 
217 	return 0;
218 }
219 
220 static void destroy_cpu_associativity(void)
221 {
222 	kfree(vcpu_associativity);
223 	kfree(pcpu_associativity);
224 	vcpu_associativity = pcpu_associativity = 0;
225 }
226 
227 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
228 {
229 	__be32 *assoc;
230 	int rc = 0;
231 
232 	assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
233 	if (!assoc[0]) {
234 		rc = hcall_vphn(cpu, flag, &assoc[0]);
235 		if (rc)
236 			return NULL;
237 	}
238 
239 	return assoc;
240 }
241 
242 static __be32 *get_pcpu_associativity(int cpu)
243 {
244 	return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
245 }
246 
247 static __be32 *get_vcpu_associativity(int cpu)
248 {
249 	return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
250 }
251 
252 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
253 {
254 	__be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
255 
256 	if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
257 		return -EINVAL;
258 
259 	last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
260 	cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
261 
262 	if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
263 		return -EIO;
264 
265 	return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
266 }
267 
268 static int cpu_home_node_dispatch_distance(int disp_cpu)
269 {
270 	__be32 *disp_cpu_assoc, *vcpu_assoc;
271 	int vcpu_id = smp_processor_id();
272 
273 	if (disp_cpu >= NR_CPUS_H) {
274 		pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
275 						disp_cpu, NR_CPUS_H);
276 		return -EINVAL;
277 	}
278 
279 	disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
280 	vcpu_assoc = get_vcpu_associativity(vcpu_id);
281 
282 	if (!disp_cpu_assoc || !vcpu_assoc)
283 		return -EIO;
284 
285 	return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
286 }
287 
288 static void update_vcpu_disp_stat(int disp_cpu)
289 {
290 	struct vcpu_dispatch_data *disp;
291 	int distance;
292 
293 	disp = this_cpu_ptr(&vcpu_disp_data);
294 	if (disp->last_disp_cpu == -1) {
295 		disp->last_disp_cpu = disp_cpu;
296 		return;
297 	}
298 
299 	disp->total_disp++;
300 
301 	if (disp->last_disp_cpu == disp_cpu ||
302 		(cpu_first_thread_sibling(disp->last_disp_cpu) ==
303 					cpu_first_thread_sibling(disp_cpu)))
304 		disp->same_cpu_disp++;
305 	else {
306 		distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
307 								disp_cpu);
308 		if (distance < 0)
309 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
310 					smp_processor_id());
311 		else {
312 			switch (distance) {
313 			case 0:
314 				disp->same_chip_disp++;
315 				break;
316 			case 1:
317 				disp->diff_chip_disp++;
318 				break;
319 			case 2:
320 				disp->far_chip_disp++;
321 				break;
322 			default:
323 				pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
324 						 smp_processor_id(),
325 						 disp->last_disp_cpu,
326 						 disp_cpu,
327 						 distance);
328 			}
329 		}
330 	}
331 
332 	distance = cpu_home_node_dispatch_distance(disp_cpu);
333 	if (distance < 0)
334 		pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
335 				smp_processor_id());
336 	else {
337 		switch (distance) {
338 		case 0:
339 			disp->numa_home_disp++;
340 			break;
341 		case 1:
342 			disp->numa_remote_disp++;
343 			break;
344 		case 2:
345 			disp->numa_far_disp++;
346 			break;
347 		default:
348 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
349 						 smp_processor_id(),
350 						 disp_cpu,
351 						 distance);
352 		}
353 	}
354 
355 	disp->last_disp_cpu = disp_cpu;
356 }
357 
358 static void process_dtl_buffer(struct work_struct *work)
359 {
360 	struct dtl_entry dtle;
361 	u64 i = __this_cpu_read(dtl_entry_ridx);
362 	struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
363 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
364 	struct lppaca *vpa = local_paca->lppaca_ptr;
365 	struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
366 
367 	if (!local_paca->dispatch_log)
368 		return;
369 
370 	/* if we have been migrated away, we cancel ourself */
371 	if (d->cpu != smp_processor_id()) {
372 		pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
373 						smp_processor_id());
374 		return;
375 	}
376 
377 	if (i == be64_to_cpu(vpa->dtl_idx))
378 		goto out;
379 
380 	while (i < be64_to_cpu(vpa->dtl_idx)) {
381 		dtle = *dtl;
382 		barrier();
383 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
384 			/* buffer has overflowed */
385 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
386 				d->cpu,
387 				be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
388 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
389 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
390 			continue;
391 		}
392 		update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
393 		++i;
394 		++dtl;
395 		if (dtl == dtl_end)
396 			dtl = local_paca->dispatch_log;
397 	}
398 
399 	__this_cpu_write(dtl_entry_ridx, i);
400 
401 out:
402 	schedule_delayed_work_on(d->cpu, to_delayed_work(work),
403 					HZ / vcpudispatch_stats_freq);
404 }
405 
406 static int dtl_worker_online(unsigned int cpu)
407 {
408 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
409 
410 	memset(d, 0, sizeof(*d));
411 	INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
412 	d->cpu = cpu;
413 
414 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
415 	per_cpu(dtl_entry_ridx, cpu) = 0;
416 	register_dtl_buffer(cpu);
417 #else
418 	per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
419 #endif
420 
421 	schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
422 	return 0;
423 }
424 
425 static int dtl_worker_offline(unsigned int cpu)
426 {
427 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
428 
429 	cancel_delayed_work_sync(&d->work);
430 
431 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
432 	unregister_dtl(get_hard_smp_processor_id(cpu));
433 #endif
434 
435 	return 0;
436 }
437 
438 static void set_global_dtl_mask(u8 mask)
439 {
440 	int cpu;
441 
442 	dtl_mask = mask;
443 	for_each_present_cpu(cpu)
444 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
445 }
446 
447 static void reset_global_dtl_mask(void)
448 {
449 	int cpu;
450 
451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
452 	dtl_mask = DTL_LOG_PREEMPT;
453 #else
454 	dtl_mask = 0;
455 #endif
456 	for_each_present_cpu(cpu)
457 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
458 }
459 
460 static int dtl_worker_enable(unsigned long *time_limit)
461 {
462 	int rc = 0, state;
463 
464 	if (!write_trylock(&dtl_access_lock)) {
465 		rc = -EBUSY;
466 		goto out;
467 	}
468 
469 	set_global_dtl_mask(DTL_LOG_ALL);
470 
471 	/* Setup dtl buffers and register those */
472 	alloc_dtl_buffers(time_limit);
473 
474 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
475 					dtl_worker_online, dtl_worker_offline);
476 	if (state < 0) {
477 		pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
478 		free_dtl_buffers(time_limit);
479 		reset_global_dtl_mask();
480 		write_unlock(&dtl_access_lock);
481 		rc = -EINVAL;
482 		goto out;
483 	}
484 	dtl_worker_state = state;
485 
486 out:
487 	return rc;
488 }
489 
490 static void dtl_worker_disable(unsigned long *time_limit)
491 {
492 	cpuhp_remove_state(dtl_worker_state);
493 	free_dtl_buffers(time_limit);
494 	reset_global_dtl_mask();
495 	write_unlock(&dtl_access_lock);
496 }
497 
498 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
499 		size_t count, loff_t *ppos)
500 {
501 	unsigned long time_limit = jiffies + HZ;
502 	struct vcpu_dispatch_data *disp;
503 	int rc, cmd, cpu;
504 	char buf[16];
505 
506 	if (count > 15)
507 		return -EINVAL;
508 
509 	if (copy_from_user(buf, p, count))
510 		return -EFAULT;
511 
512 	buf[count] = 0;
513 	rc = kstrtoint(buf, 0, &cmd);
514 	if (rc || cmd < 0 || cmd > 1) {
515 		pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
516 		return rc ? rc : -EINVAL;
517 	}
518 
519 	mutex_lock(&dtl_enable_mutex);
520 
521 	if ((cmd == 0 && !vcpudispatch_stats_on) ||
522 			(cmd == 1 && vcpudispatch_stats_on))
523 		goto out;
524 
525 	if (cmd) {
526 		rc = init_cpu_associativity();
527 		if (rc)
528 			goto out;
529 
530 		for_each_possible_cpu(cpu) {
531 			disp = per_cpu_ptr(&vcpu_disp_data, cpu);
532 			memset(disp, 0, sizeof(*disp));
533 			disp->last_disp_cpu = -1;
534 		}
535 
536 		rc = dtl_worker_enable(&time_limit);
537 		if (rc) {
538 			destroy_cpu_associativity();
539 			goto out;
540 		}
541 	} else {
542 		dtl_worker_disable(&time_limit);
543 		destroy_cpu_associativity();
544 	}
545 
546 	vcpudispatch_stats_on = cmd;
547 
548 out:
549 	mutex_unlock(&dtl_enable_mutex);
550 	if (rc)
551 		return rc;
552 	return count;
553 }
554 
555 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
556 {
557 	int cpu;
558 	struct vcpu_dispatch_data *disp;
559 
560 	if (!vcpudispatch_stats_on) {
561 		seq_puts(p, "off\n");
562 		return 0;
563 	}
564 
565 	for_each_online_cpu(cpu) {
566 		disp = per_cpu_ptr(&vcpu_disp_data, cpu);
567 		seq_printf(p, "cpu%d", cpu);
568 		seq_put_decimal_ull(p, " ", disp->total_disp);
569 		seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
570 		seq_put_decimal_ull(p, " ", disp->same_chip_disp);
571 		seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
572 		seq_put_decimal_ull(p, " ", disp->far_chip_disp);
573 		seq_put_decimal_ull(p, " ", disp->numa_home_disp);
574 		seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
575 		seq_put_decimal_ull(p, " ", disp->numa_far_disp);
576 		seq_puts(p, "\n");
577 	}
578 
579 	return 0;
580 }
581 
582 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
583 {
584 	return single_open(file, vcpudispatch_stats_display, NULL);
585 }
586 
587 static const struct proc_ops vcpudispatch_stats_proc_ops = {
588 	.proc_open	= vcpudispatch_stats_open,
589 	.proc_read	= seq_read,
590 	.proc_write	= vcpudispatch_stats_write,
591 	.proc_lseek	= seq_lseek,
592 	.proc_release	= single_release,
593 };
594 
595 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
596 		const char __user *p, size_t count, loff_t *ppos)
597 {
598 	int rc, freq;
599 	char buf[16];
600 
601 	if (count > 15)
602 		return -EINVAL;
603 
604 	if (copy_from_user(buf, p, count))
605 		return -EFAULT;
606 
607 	buf[count] = 0;
608 	rc = kstrtoint(buf, 0, &freq);
609 	if (rc || freq < 1 || freq > HZ) {
610 		pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
611 				HZ);
612 		return rc ? rc : -EINVAL;
613 	}
614 
615 	vcpudispatch_stats_freq = freq;
616 
617 	return count;
618 }
619 
620 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
621 {
622 	seq_printf(p, "%d\n", vcpudispatch_stats_freq);
623 	return 0;
624 }
625 
626 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
627 {
628 	return single_open(file, vcpudispatch_stats_freq_display, NULL);
629 }
630 
631 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
632 	.proc_open	= vcpudispatch_stats_freq_open,
633 	.proc_read	= seq_read,
634 	.proc_write	= vcpudispatch_stats_freq_write,
635 	.proc_lseek	= seq_lseek,
636 	.proc_release	= single_release,
637 };
638 
639 static int __init vcpudispatch_stats_procfs_init(void)
640 {
641 	/*
642 	 * Avoid smp_processor_id while preemptible. All CPUs should have
643 	 * the same value for lppaca_shared_proc.
644 	 */
645 	preempt_disable();
646 	if (!lppaca_shared_proc(get_lppaca())) {
647 		preempt_enable();
648 		return 0;
649 	}
650 	preempt_enable();
651 
652 	if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
653 					&vcpudispatch_stats_proc_ops))
654 		pr_err("vcpudispatch_stats: error creating procfs file\n");
655 	else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
656 					&vcpudispatch_stats_freq_proc_ops))
657 		pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
658 
659 	return 0;
660 }
661 
662 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
663 #endif /* CONFIG_PPC_SPLPAR */
664 
665 void vpa_init(int cpu)
666 {
667 	int hwcpu = get_hard_smp_processor_id(cpu);
668 	unsigned long addr;
669 	long ret;
670 
671 	/*
672 	 * The spec says it "may be problematic" if CPU x registers the VPA of
673 	 * CPU y. We should never do that, but wail if we ever do.
674 	 */
675 	WARN_ON(cpu != smp_processor_id());
676 
677 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
678 		lppaca_of(cpu).vmxregs_in_use = 1;
679 
680 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
681 		lppaca_of(cpu).ebb_regs_in_use = 1;
682 
683 	addr = __pa(&lppaca_of(cpu));
684 	ret = register_vpa(hwcpu, addr);
685 
686 	if (ret) {
687 		pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
688 		       "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
689 		return;
690 	}
691 
692 #ifdef CONFIG_PPC_64S_HASH_MMU
693 	/*
694 	 * PAPR says this feature is SLB-Buffer but firmware never
695 	 * reports that.  All SPLPAR support SLB shadow buffer.
696 	 */
697 	if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
698 		addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
699 		ret = register_slb_shadow(hwcpu, addr);
700 		if (ret)
701 			pr_err("WARNING: SLB shadow buffer registration for "
702 			       "cpu %d (hw %d) of area %lx failed with %ld\n",
703 			       cpu, hwcpu, addr, ret);
704 	}
705 #endif /* CONFIG_PPC_64S_HASH_MMU */
706 
707 	/*
708 	 * Register dispatch trace log, if one has been allocated.
709 	 */
710 	register_dtl_buffer(cpu);
711 }
712 
713 #ifdef CONFIG_PPC_BOOK3S_64
714 
715 static int __init pseries_lpar_register_process_table(unsigned long base,
716 			unsigned long page_size, unsigned long table_size)
717 {
718 	long rc;
719 	unsigned long flags = 0;
720 
721 	if (table_size)
722 		flags |= PROC_TABLE_NEW;
723 	if (radix_enabled()) {
724 		flags |= PROC_TABLE_RADIX;
725 		if (mmu_has_feature(MMU_FTR_GTSE))
726 			flags |= PROC_TABLE_GTSE;
727 	} else
728 		flags |= PROC_TABLE_HPT_SLB;
729 	for (;;) {
730 		rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
731 					page_size, table_size);
732 		if (!H_IS_LONG_BUSY(rc))
733 			break;
734 		mdelay(get_longbusy_msecs(rc));
735 	}
736 	if (rc != H_SUCCESS) {
737 		pr_err("Failed to register process table (rc=%ld)\n", rc);
738 		BUG();
739 	}
740 	return rc;
741 }
742 
743 #ifdef CONFIG_PPC_64S_HASH_MMU
744 
745 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
746 				     unsigned long vpn, unsigned long pa,
747 				     unsigned long rflags, unsigned long vflags,
748 				     int psize, int apsize, int ssize)
749 {
750 	unsigned long lpar_rc;
751 	unsigned long flags;
752 	unsigned long slot;
753 	unsigned long hpte_v, hpte_r;
754 
755 	if (!(vflags & HPTE_V_BOLTED))
756 		pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
757 			 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
758 			 hpte_group, vpn,  pa, rflags, vflags, psize);
759 
760 	hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
761 	hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
762 
763 	if (!(vflags & HPTE_V_BOLTED))
764 		pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
765 
766 	/* Now fill in the actual HPTE */
767 	/* Set CEC cookie to 0         */
768 	/* Zero page = 0               */
769 	/* I-cache Invalidate = 0      */
770 	/* I-cache synchronize = 0     */
771 	/* Exact = 0                   */
772 	flags = 0;
773 
774 	if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
775 		flags |= H_COALESCE_CAND;
776 
777 	lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
778 	if (unlikely(lpar_rc == H_PTEG_FULL)) {
779 		pr_devel("Hash table group is full\n");
780 		return -1;
781 	}
782 
783 	/*
784 	 * Since we try and ioremap PHBs we don't own, the pte insert
785 	 * will fail. However we must catch the failure in hash_page
786 	 * or we will loop forever, so return -2 in this case.
787 	 */
788 	if (unlikely(lpar_rc != H_SUCCESS)) {
789 		pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
790 		return -2;
791 	}
792 	if (!(vflags & HPTE_V_BOLTED))
793 		pr_devel(" -> slot: %lu\n", slot & 7);
794 
795 	/* Because of iSeries, we have to pass down the secondary
796 	 * bucket bit here as well
797 	 */
798 	return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
799 }
800 
801 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
802 
803 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
804 {
805 	unsigned long slot_offset;
806 	unsigned long lpar_rc;
807 	int i;
808 	unsigned long dummy1, dummy2;
809 
810 	/* pick a random slot to start at */
811 	slot_offset = mftb() & 0x7;
812 
813 	for (i = 0; i < HPTES_PER_GROUP; i++) {
814 
815 		/* don't remove a bolted entry */
816 		lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
817 					   HPTE_V_BOLTED, &dummy1, &dummy2);
818 		if (lpar_rc == H_SUCCESS)
819 			return i;
820 
821 		/*
822 		 * The test for adjunct partition is performed before the
823 		 * ANDCOND test.  H_RESOURCE may be returned, so we need to
824 		 * check for that as well.
825 		 */
826 		BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
827 
828 		slot_offset++;
829 		slot_offset &= 0x7;
830 	}
831 
832 	return -1;
833 }
834 
835 /* Called during kexec sequence with MMU off */
836 static notrace void manual_hpte_clear_all(void)
837 {
838 	unsigned long size_bytes = 1UL << ppc64_pft_size;
839 	unsigned long hpte_count = size_bytes >> 4;
840 	struct {
841 		unsigned long pteh;
842 		unsigned long ptel;
843 	} ptes[4];
844 	long lpar_rc;
845 	unsigned long i, j;
846 
847 	/* Read in batches of 4,
848 	 * invalidate only valid entries not in the VRMA
849 	 * hpte_count will be a multiple of 4
850          */
851 	for (i = 0; i < hpte_count; i += 4) {
852 		lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
853 		if (lpar_rc != H_SUCCESS) {
854 			pr_info("Failed to read hash page table at %ld err %ld\n",
855 				i, lpar_rc);
856 			continue;
857 		}
858 		for (j = 0; j < 4; j++){
859 			if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
860 				HPTE_V_VRMA_MASK)
861 				continue;
862 			if (ptes[j].pteh & HPTE_V_VALID)
863 				plpar_pte_remove_raw(0, i + j, 0,
864 					&(ptes[j].pteh), &(ptes[j].ptel));
865 		}
866 	}
867 }
868 
869 /* Called during kexec sequence with MMU off */
870 static notrace int hcall_hpte_clear_all(void)
871 {
872 	int rc;
873 
874 	do {
875 		rc = plpar_hcall_norets(H_CLEAR_HPT);
876 	} while (rc == H_CONTINUE);
877 
878 	return rc;
879 }
880 
881 /* Called during kexec sequence with MMU off */
882 static notrace void pseries_hpte_clear_all(void)
883 {
884 	int rc;
885 
886 	rc = hcall_hpte_clear_all();
887 	if (rc != H_SUCCESS)
888 		manual_hpte_clear_all();
889 
890 #ifdef __LITTLE_ENDIAN__
891 	/*
892 	 * Reset exceptions to big endian.
893 	 *
894 	 * FIXME this is a hack for kexec, we need to reset the exception
895 	 * endian before starting the new kernel and this is a convenient place
896 	 * to do it.
897 	 *
898 	 * This is also called on boot when a fadump happens. In that case we
899 	 * must not change the exception endian mode.
900 	 */
901 	if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
902 		pseries_big_endian_exceptions();
903 #endif
904 }
905 
906 /*
907  * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
908  * the low 3 bits of flags happen to line up.  So no transform is needed.
909  * We can probably optimize here and assume the high bits of newpp are
910  * already zero.  For now I am paranoid.
911  */
912 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
913 				       unsigned long newpp,
914 				       unsigned long vpn,
915 				       int psize, int apsize,
916 				       int ssize, unsigned long inv_flags)
917 {
918 	unsigned long lpar_rc;
919 	unsigned long flags;
920 	unsigned long want_v;
921 
922 	want_v = hpte_encode_avpn(vpn, psize, ssize);
923 
924 	flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN;
925 	flags |= (newpp & HPTE_R_KEY_HI) >> 48;
926 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
927 		/* Move pp0 into bit 8 (IBM 55) */
928 		flags |= (newpp & HPTE_R_PP0) >> 55;
929 
930 	pr_devel("    update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
931 		 want_v, slot, flags, psize);
932 
933 	lpar_rc = plpar_pte_protect(flags, slot, want_v);
934 
935 	if (lpar_rc == H_NOT_FOUND) {
936 		pr_devel("not found !\n");
937 		return -1;
938 	}
939 
940 	pr_devel("ok\n");
941 
942 	BUG_ON(lpar_rc != H_SUCCESS);
943 
944 	return 0;
945 }
946 
947 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
948 {
949 	long lpar_rc;
950 	unsigned long i, j;
951 	struct {
952 		unsigned long pteh;
953 		unsigned long ptel;
954 	} ptes[4];
955 
956 	for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
957 
958 		lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
959 		if (lpar_rc != H_SUCCESS) {
960 			pr_info("Failed to read hash page table at %ld err %ld\n",
961 				hpte_group, lpar_rc);
962 			continue;
963 		}
964 
965 		for (j = 0; j < 4; j++) {
966 			if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
967 			    (ptes[j].pteh & HPTE_V_VALID))
968 				return i + j;
969 		}
970 	}
971 
972 	return -1;
973 }
974 
975 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
976 {
977 	long slot;
978 	unsigned long hash;
979 	unsigned long want_v;
980 	unsigned long hpte_group;
981 
982 	hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
983 	want_v = hpte_encode_avpn(vpn, psize, ssize);
984 
985 	/*
986 	 * We try to keep bolted entries always in primary hash
987 	 * But in some case we can find them in secondary too.
988 	 */
989 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
990 	slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
991 	if (slot < 0) {
992 		/* Try in secondary */
993 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
994 		slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
995 		if (slot < 0)
996 			return -1;
997 	}
998 	return hpte_group + slot;
999 }
1000 
1001 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
1002 					     unsigned long ea,
1003 					     int psize, int ssize)
1004 {
1005 	unsigned long vpn;
1006 	unsigned long lpar_rc, slot, vsid, flags;
1007 
1008 	vsid = get_kernel_vsid(ea, ssize);
1009 	vpn = hpt_vpn(ea, vsid, ssize);
1010 
1011 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1012 	BUG_ON(slot == -1);
1013 
1014 	flags = newpp & (HPTE_R_PP | HPTE_R_N);
1015 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
1016 		/* Move pp0 into bit 8 (IBM 55) */
1017 		flags |= (newpp & HPTE_R_PP0) >> 55;
1018 
1019 	flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO);
1020 
1021 	lpar_rc = plpar_pte_protect(flags, slot, 0);
1022 
1023 	BUG_ON(lpar_rc != H_SUCCESS);
1024 }
1025 
1026 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
1027 					 int psize, int apsize,
1028 					 int ssize, int local)
1029 {
1030 	unsigned long want_v;
1031 	unsigned long lpar_rc;
1032 	unsigned long dummy1, dummy2;
1033 
1034 	pr_devel("    inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
1035 		 slot, vpn, psize, local);
1036 
1037 	want_v = hpte_encode_avpn(vpn, psize, ssize);
1038 	lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1039 	if (lpar_rc == H_NOT_FOUND)
1040 		return;
1041 
1042 	BUG_ON(lpar_rc != H_SUCCESS);
1043 }
1044 
1045 
1046 /*
1047  * As defined in the PAPR's section 14.5.4.1.8
1048  * The control mask doesn't include the returned reference and change bit from
1049  * the processed PTE.
1050  */
1051 #define HBLKR_AVPN		0x0100000000000000UL
1052 #define HBLKR_CTRL_MASK		0xf800000000000000UL
1053 #define HBLKR_CTRL_SUCCESS	0x8000000000000000UL
1054 #define HBLKR_CTRL_ERRNOTFOUND	0x8800000000000000UL
1055 #define HBLKR_CTRL_ERRBUSY	0xa000000000000000UL
1056 
1057 /*
1058  * Returned true if we are supporting this block size for the specified segment
1059  * base page size and actual page size.
1060  *
1061  * Currently, we only support 8 size block.
1062  */
1063 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1064 {
1065 	return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1066 }
1067 
1068 /**
1069  * H_BLOCK_REMOVE caller.
1070  * @idx should point to the latest @param entry set with a PTEX.
1071  * If PTE cannot be processed because another CPUs has already locked that
1072  * group, those entries are put back in @param starting at index 1.
1073  * If entries has to be retried and @retry_busy is set to true, these entries
1074  * are retried until success. If @retry_busy is set to false, the returned
1075  * is the number of entries yet to process.
1076  */
1077 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1078 				       bool retry_busy)
1079 {
1080 	unsigned long i, rc, new_idx;
1081 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1082 
1083 	if (idx < 2) {
1084 		pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1085 		return 0;
1086 	}
1087 again:
1088 	new_idx = 0;
1089 	if (idx > PLPAR_HCALL9_BUFSIZE) {
1090 		pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1091 		idx = PLPAR_HCALL9_BUFSIZE;
1092 	} else if (idx < PLPAR_HCALL9_BUFSIZE)
1093 		param[idx] = HBR_END;
1094 
1095 	rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1096 			  param[0], /* AVA */
1097 			  param[1],  param[2],  param[3],  param[4], /* TS0-7 */
1098 			  param[5],  param[6],  param[7],  param[8]);
1099 	if (rc == H_SUCCESS)
1100 		return 0;
1101 
1102 	BUG_ON(rc != H_PARTIAL);
1103 
1104 	/* Check that the unprocessed entries were 'not found' or 'busy' */
1105 	for (i = 0; i < idx-1; i++) {
1106 		unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1107 
1108 		if (ctrl == HBLKR_CTRL_ERRBUSY) {
1109 			param[++new_idx] = param[i+1];
1110 			continue;
1111 		}
1112 
1113 		BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1114 		       && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1115 	}
1116 
1117 	/*
1118 	 * If there were entries found busy, retry these entries if requested,
1119 	 * of if all the entries have to be retried.
1120 	 */
1121 	if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1122 		idx = new_idx + 1;
1123 		goto again;
1124 	}
1125 
1126 	return new_idx;
1127 }
1128 
1129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1130 /*
1131  * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1132  * to make sure that we avoid bouncing the hypervisor tlbie lock.
1133  */
1134 #define PPC64_HUGE_HPTE_BATCH 12
1135 
1136 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1137 				      int count, int psize, int ssize)
1138 {
1139 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1140 	unsigned long shift, current_vpgb, vpgb;
1141 	int i, pix = 0;
1142 
1143 	shift = mmu_psize_defs[psize].shift;
1144 
1145 	for (i = 0; i < count; i++) {
1146 		/*
1147 		 * Shifting 3 bits more on the right to get a
1148 		 * 8 pages aligned virtual addresse.
1149 		 */
1150 		vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1151 		if (!pix || vpgb != current_vpgb) {
1152 			/*
1153 			 * Need to start a new 8 pages block, flush
1154 			 * the current one if needed.
1155 			 */
1156 			if (pix)
1157 				(void)call_block_remove(pix, param, true);
1158 			current_vpgb = vpgb;
1159 			param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1160 			pix = 1;
1161 		}
1162 
1163 		param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1164 		if (pix == PLPAR_HCALL9_BUFSIZE) {
1165 			pix = call_block_remove(pix, param, false);
1166 			/*
1167 			 * pix = 0 means that all the entries were
1168 			 * removed, we can start a new block.
1169 			 * Otherwise, this means that there are entries
1170 			 * to retry, and pix points to latest one, so
1171 			 * we should increment it and try to continue
1172 			 * the same block.
1173 			 */
1174 			if (pix)
1175 				pix++;
1176 		}
1177 	}
1178 	if (pix)
1179 		(void)call_block_remove(pix, param, true);
1180 }
1181 
1182 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1183 				     int count, int psize, int ssize)
1184 {
1185 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1186 	int i = 0, pix = 0, rc;
1187 
1188 	for (i = 0; i < count; i++) {
1189 
1190 		if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1191 			pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1192 						     ssize, 0);
1193 		} else {
1194 			param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1195 			param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1196 			pix += 2;
1197 			if (pix == 8) {
1198 				rc = plpar_hcall9(H_BULK_REMOVE, param,
1199 						  param[0], param[1], param[2],
1200 						  param[3], param[4], param[5],
1201 						  param[6], param[7]);
1202 				BUG_ON(rc != H_SUCCESS);
1203 				pix = 0;
1204 			}
1205 		}
1206 	}
1207 	if (pix) {
1208 		param[pix] = HBR_END;
1209 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1210 				  param[2], param[3], param[4], param[5],
1211 				  param[6], param[7]);
1212 		BUG_ON(rc != H_SUCCESS);
1213 	}
1214 }
1215 
1216 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1217 						      unsigned long *vpn,
1218 						      int count, int psize,
1219 						      int ssize)
1220 {
1221 	unsigned long flags = 0;
1222 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1223 
1224 	if (lock_tlbie)
1225 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1226 
1227 	/* Assuming THP size is 16M */
1228 	if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1229 		hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1230 	else
1231 		hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1232 
1233 	if (lock_tlbie)
1234 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1235 }
1236 
1237 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1238 					     unsigned long addr,
1239 					     unsigned char *hpte_slot_array,
1240 					     int psize, int ssize, int local)
1241 {
1242 	int i, index = 0;
1243 	unsigned long s_addr = addr;
1244 	unsigned int max_hpte_count, valid;
1245 	unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1246 	unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1247 	unsigned long shift, hidx, vpn = 0, hash, slot;
1248 
1249 	shift = mmu_psize_defs[psize].shift;
1250 	max_hpte_count = 1U << (PMD_SHIFT - shift);
1251 
1252 	for (i = 0; i < max_hpte_count; i++) {
1253 		valid = hpte_valid(hpte_slot_array, i);
1254 		if (!valid)
1255 			continue;
1256 		hidx =  hpte_hash_index(hpte_slot_array, i);
1257 
1258 		/* get the vpn */
1259 		addr = s_addr + (i * (1ul << shift));
1260 		vpn = hpt_vpn(addr, vsid, ssize);
1261 		hash = hpt_hash(vpn, shift, ssize);
1262 		if (hidx & _PTEIDX_SECONDARY)
1263 			hash = ~hash;
1264 
1265 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1266 		slot += hidx & _PTEIDX_GROUP_IX;
1267 
1268 		slot_array[index] = slot;
1269 		vpn_array[index] = vpn;
1270 		if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1271 			/*
1272 			 * Now do a bluk invalidate
1273 			 */
1274 			__pSeries_lpar_hugepage_invalidate(slot_array,
1275 							   vpn_array,
1276 							   PPC64_HUGE_HPTE_BATCH,
1277 							   psize, ssize);
1278 			index = 0;
1279 		} else
1280 			index++;
1281 	}
1282 	if (index)
1283 		__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1284 						   index, psize, ssize);
1285 }
1286 #else
1287 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1288 					     unsigned long addr,
1289 					     unsigned char *hpte_slot_array,
1290 					     int psize, int ssize, int local)
1291 {
1292 	WARN(1, "%s called without THP support\n", __func__);
1293 }
1294 #endif
1295 
1296 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1297 					  int psize, int ssize)
1298 {
1299 	unsigned long vpn;
1300 	unsigned long slot, vsid;
1301 
1302 	vsid = get_kernel_vsid(ea, ssize);
1303 	vpn = hpt_vpn(ea, vsid, ssize);
1304 
1305 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1306 	if (slot == -1)
1307 		return -ENOENT;
1308 
1309 	/*
1310 	 * lpar doesn't use the passed actual page size
1311 	 */
1312 	pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1313 	return 0;
1314 }
1315 
1316 
1317 static inline unsigned long compute_slot(real_pte_t pte,
1318 					 unsigned long vpn,
1319 					 unsigned long index,
1320 					 unsigned long shift,
1321 					 int ssize)
1322 {
1323 	unsigned long slot, hash, hidx;
1324 
1325 	hash = hpt_hash(vpn, shift, ssize);
1326 	hidx = __rpte_to_hidx(pte, index);
1327 	if (hidx & _PTEIDX_SECONDARY)
1328 		hash = ~hash;
1329 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1330 	slot += hidx & _PTEIDX_GROUP_IX;
1331 	return slot;
1332 }
1333 
1334 /**
1335  * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1336  * "all within the same naturally aligned 8 page virtual address block".
1337  */
1338 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1339 			    unsigned long *param)
1340 {
1341 	unsigned long vpn;
1342 	unsigned long i, pix = 0;
1343 	unsigned long index, shift, slot, current_vpgb, vpgb;
1344 	real_pte_t pte;
1345 	int psize, ssize;
1346 
1347 	psize = batch->psize;
1348 	ssize = batch->ssize;
1349 
1350 	for (i = 0; i < number; i++) {
1351 		vpn = batch->vpn[i];
1352 		pte = batch->pte[i];
1353 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1354 			/*
1355 			 * Shifting 3 bits more on the right to get a
1356 			 * 8 pages aligned virtual addresse.
1357 			 */
1358 			vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1359 			if (!pix || vpgb != current_vpgb) {
1360 				/*
1361 				 * Need to start a new 8 pages block, flush
1362 				 * the current one if needed.
1363 				 */
1364 				if (pix)
1365 					(void)call_block_remove(pix, param,
1366 								true);
1367 				current_vpgb = vpgb;
1368 				param[0] = hpte_encode_avpn(vpn, psize,
1369 							    ssize);
1370 				pix = 1;
1371 			}
1372 
1373 			slot = compute_slot(pte, vpn, index, shift, ssize);
1374 			param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1375 
1376 			if (pix == PLPAR_HCALL9_BUFSIZE) {
1377 				pix = call_block_remove(pix, param, false);
1378 				/*
1379 				 * pix = 0 means that all the entries were
1380 				 * removed, we can start a new block.
1381 				 * Otherwise, this means that there are entries
1382 				 * to retry, and pix points to latest one, so
1383 				 * we should increment it and try to continue
1384 				 * the same block.
1385 				 */
1386 				if (pix)
1387 					pix++;
1388 			}
1389 		} pte_iterate_hashed_end();
1390 	}
1391 
1392 	if (pix)
1393 		(void)call_block_remove(pix, param, true);
1394 }
1395 
1396 /*
1397  * TLB Block Invalidate Characteristics
1398  *
1399  * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1400  * is able to process for each couple segment base page size, actual page size.
1401  *
1402  * The ibm,get-system-parameter properties is returning a buffer with the
1403  * following layout:
1404  *
1405  * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1406  * -----------------
1407  * TLB Block Invalidate Specifiers:
1408  * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1409  * [ 1 byte Number of page sizes (N) that are supported for the specified
1410  *          TLB invalidate block size ]
1411  * [ 1 byte Encoded segment base page size and actual page size
1412  *          MSB=0 means 4k segment base page size and actual page size
1413  *          MSB=1 the penc value in mmu_psize_def ]
1414  * ...
1415  * -----------------
1416  * Next TLB Block Invalidate Specifiers...
1417  * -----------------
1418  * [ 0 ]
1419  */
1420 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1421 					unsigned int block_size)
1422 {
1423 	if (block_size > hblkrm_size[bpsize][psize])
1424 		hblkrm_size[bpsize][psize] = block_size;
1425 }
1426 
1427 /*
1428  * Decode the Encoded segment base page size and actual page size.
1429  * PAPR specifies:
1430  *   - bit 7 is the L bit
1431  *   - bits 0-5 are the penc value
1432  * If the L bit is 0, this means 4K segment base page size and actual page size
1433  * otherwise the penc value should be read.
1434  */
1435 #define HBLKRM_L_MASK		0x80
1436 #define HBLKRM_PENC_MASK	0x3f
1437 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1438 					      unsigned int block_size)
1439 {
1440 	unsigned int bpsize, psize;
1441 
1442 	/* First, check the L bit, if not set, this means 4K */
1443 	if ((lp & HBLKRM_L_MASK) == 0) {
1444 		set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1445 		return;
1446 	}
1447 
1448 	lp &= HBLKRM_PENC_MASK;
1449 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1450 		struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1451 
1452 		for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1453 			if (def->penc[psize] == lp) {
1454 				set_hblkrm_bloc_size(bpsize, psize, block_size);
1455 				return;
1456 			}
1457 		}
1458 	}
1459 }
1460 
1461 #define SPLPAR_TLB_BIC_TOKEN		50
1462 
1463 /*
1464  * The size of the TLB Block Invalidate Characteristics is variable. But at the
1465  * maximum it will be the number of possible page sizes *2 + 10 bytes.
1466  * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1467  * (128 bytes) for the buffer to get plenty of space.
1468  */
1469 #define SPLPAR_TLB_BIC_MAXLENGTH	128
1470 
1471 void __init pseries_lpar_read_hblkrm_characteristics(void)
1472 {
1473 	unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1474 	int call_status, len, idx, bpsize;
1475 
1476 	if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1477 		return;
1478 
1479 	spin_lock(&rtas_data_buf_lock);
1480 	memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1481 	call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
1482 				NULL,
1483 				SPLPAR_TLB_BIC_TOKEN,
1484 				__pa(rtas_data_buf),
1485 				RTAS_DATA_BUF_SIZE);
1486 	memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1487 	local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1488 	spin_unlock(&rtas_data_buf_lock);
1489 
1490 	if (call_status != 0) {
1491 		pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1492 			__FILE__, __func__, call_status);
1493 		return;
1494 	}
1495 
1496 	/*
1497 	 * The first two (2) bytes of the data in the buffer are the length of
1498 	 * the returned data, not counting these first two (2) bytes.
1499 	 */
1500 	len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1501 	if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1502 		pr_warn("%s too large returned buffer %d", __func__, len);
1503 		return;
1504 	}
1505 
1506 	idx = 2;
1507 	while (idx < len) {
1508 		u8 block_shift = local_buffer[idx++];
1509 		u32 block_size;
1510 		unsigned int npsize;
1511 
1512 		if (!block_shift)
1513 			break;
1514 
1515 		block_size = 1 << block_shift;
1516 
1517 		for (npsize = local_buffer[idx++];
1518 		     npsize > 0 && idx < len; npsize--)
1519 			check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1520 					    block_size);
1521 	}
1522 
1523 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1524 		for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1525 			if (hblkrm_size[bpsize][idx])
1526 				pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1527 					bpsize, idx, hblkrm_size[bpsize][idx]);
1528 }
1529 
1530 /*
1531  * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1532  * lock.
1533  */
1534 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1535 {
1536 	unsigned long vpn;
1537 	unsigned long i, pix, rc;
1538 	unsigned long flags = 0;
1539 	struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1540 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1541 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1542 	unsigned long index, shift, slot;
1543 	real_pte_t pte;
1544 	int psize, ssize;
1545 
1546 	if (lock_tlbie)
1547 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1548 
1549 	if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1550 		do_block_remove(number, batch, param);
1551 		goto out;
1552 	}
1553 
1554 	psize = batch->psize;
1555 	ssize = batch->ssize;
1556 	pix = 0;
1557 	for (i = 0; i < number; i++) {
1558 		vpn = batch->vpn[i];
1559 		pte = batch->pte[i];
1560 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1561 			slot = compute_slot(pte, vpn, index, shift, ssize);
1562 			if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1563 				/*
1564 				 * lpar doesn't use the passed actual page size
1565 				 */
1566 				pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1567 							     0, ssize, local);
1568 			} else {
1569 				param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1570 				param[pix+1] = hpte_encode_avpn(vpn, psize,
1571 								ssize);
1572 				pix += 2;
1573 				if (pix == 8) {
1574 					rc = plpar_hcall9(H_BULK_REMOVE, param,
1575 						param[0], param[1], param[2],
1576 						param[3], param[4], param[5],
1577 						param[6], param[7]);
1578 					BUG_ON(rc != H_SUCCESS);
1579 					pix = 0;
1580 				}
1581 			}
1582 		} pte_iterate_hashed_end();
1583 	}
1584 	if (pix) {
1585 		param[pix] = HBR_END;
1586 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1587 				  param[2], param[3], param[4], param[5],
1588 				  param[6], param[7]);
1589 		BUG_ON(rc != H_SUCCESS);
1590 	}
1591 
1592 out:
1593 	if (lock_tlbie)
1594 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1595 }
1596 
1597 static int __init disable_bulk_remove(char *str)
1598 {
1599 	if (strcmp(str, "off") == 0 &&
1600 	    firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1601 		pr_info("Disabling BULK_REMOVE firmware feature");
1602 		powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1603 	}
1604 	return 1;
1605 }
1606 
1607 __setup("bulk_remove=", disable_bulk_remove);
1608 
1609 #define HPT_RESIZE_TIMEOUT	10000 /* ms */
1610 
1611 struct hpt_resize_state {
1612 	unsigned long shift;
1613 	int commit_rc;
1614 };
1615 
1616 static int pseries_lpar_resize_hpt_commit(void *data)
1617 {
1618 	struct hpt_resize_state *state = data;
1619 
1620 	state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1621 	if (state->commit_rc != H_SUCCESS)
1622 		return -EIO;
1623 
1624 	/* Hypervisor has transitioned the HTAB, update our globals */
1625 	ppc64_pft_size = state->shift;
1626 	htab_size_bytes = 1UL << ppc64_pft_size;
1627 	htab_hash_mask = (htab_size_bytes >> 7) - 1;
1628 
1629 	return 0;
1630 }
1631 
1632 /*
1633  * Must be called in process context. The caller must hold the
1634  * cpus_lock.
1635  */
1636 static int pseries_lpar_resize_hpt(unsigned long shift)
1637 {
1638 	struct hpt_resize_state state = {
1639 		.shift = shift,
1640 		.commit_rc = H_FUNCTION,
1641 	};
1642 	unsigned int delay, total_delay = 0;
1643 	int rc;
1644 	ktime_t t0, t1, t2;
1645 
1646 	might_sleep();
1647 
1648 	if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1649 		return -ENODEV;
1650 
1651 	pr_info("Attempting to resize HPT to shift %lu\n", shift);
1652 
1653 	t0 = ktime_get();
1654 
1655 	rc = plpar_resize_hpt_prepare(0, shift);
1656 	while (H_IS_LONG_BUSY(rc)) {
1657 		delay = get_longbusy_msecs(rc);
1658 		total_delay += delay;
1659 		if (total_delay > HPT_RESIZE_TIMEOUT) {
1660 			/* prepare with shift==0 cancels an in-progress resize */
1661 			rc = plpar_resize_hpt_prepare(0, 0);
1662 			if (rc != H_SUCCESS)
1663 				pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1664 				       rc);
1665 			return -ETIMEDOUT;
1666 		}
1667 		msleep(delay);
1668 		rc = plpar_resize_hpt_prepare(0, shift);
1669 	}
1670 
1671 	switch (rc) {
1672 	case H_SUCCESS:
1673 		/* Continue on */
1674 		break;
1675 
1676 	case H_PARAMETER:
1677 		pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1678 		return -EINVAL;
1679 	case H_RESOURCE:
1680 		pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1681 		return -EPERM;
1682 	default:
1683 		pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1684 		return -EIO;
1685 	}
1686 
1687 	t1 = ktime_get();
1688 
1689 	rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1690 				     &state, NULL);
1691 
1692 	t2 = ktime_get();
1693 
1694 	if (rc != 0) {
1695 		switch (state.commit_rc) {
1696 		case H_PTEG_FULL:
1697 			return -ENOSPC;
1698 
1699 		default:
1700 			pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1701 				state.commit_rc);
1702 			return -EIO;
1703 		};
1704 	}
1705 
1706 	pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1707 		shift, (long long) ktime_ms_delta(t1, t0),
1708 		(long long) ktime_ms_delta(t2, t1));
1709 
1710 	return 0;
1711 }
1712 
1713 void __init hpte_init_pseries(void)
1714 {
1715 	mmu_hash_ops.hpte_invalidate	 = pSeries_lpar_hpte_invalidate;
1716 	mmu_hash_ops.hpte_updatepp	 = pSeries_lpar_hpte_updatepp;
1717 	mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1718 	mmu_hash_ops.hpte_insert	 = pSeries_lpar_hpte_insert;
1719 	mmu_hash_ops.hpte_remove	 = pSeries_lpar_hpte_remove;
1720 	mmu_hash_ops.hpte_removebolted   = pSeries_lpar_hpte_removebolted;
1721 	mmu_hash_ops.flush_hash_range	 = pSeries_lpar_flush_hash_range;
1722 	mmu_hash_ops.hpte_clear_all      = pseries_hpte_clear_all;
1723 	mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1724 
1725 	if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1726 		mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1727 
1728 	/*
1729 	 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1730 	 * to inform the hypervisor that we wish to use the HPT.
1731 	 */
1732 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1733 		pseries_lpar_register_process_table(0, 0, 0);
1734 }
1735 #endif /* CONFIG_PPC_64S_HASH_MMU */
1736 
1737 #ifdef CONFIG_PPC_RADIX_MMU
1738 void __init radix_init_pseries(void)
1739 {
1740 	pr_info("Using radix MMU under hypervisor\n");
1741 
1742 	pseries_lpar_register_process_table(__pa(process_tb),
1743 						0, PRTB_SIZE_SHIFT - 12);
1744 }
1745 #endif
1746 
1747 #ifdef CONFIG_PPC_SMLPAR
1748 #define CMO_FREE_HINT_DEFAULT 1
1749 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1750 
1751 static int __init cmo_free_hint(char *str)
1752 {
1753 	char *parm;
1754 	parm = strstrip(str);
1755 
1756 	if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1757 		pr_info("%s: CMO free page hinting is not active.\n", __func__);
1758 		cmo_free_hint_flag = 0;
1759 		return 1;
1760 	}
1761 
1762 	cmo_free_hint_flag = 1;
1763 	pr_info("%s: CMO free page hinting is active.\n", __func__);
1764 
1765 	if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1766 		return 1;
1767 
1768 	return 0;
1769 }
1770 
1771 __setup("cmo_free_hint=", cmo_free_hint);
1772 
1773 static void pSeries_set_page_state(struct page *page, int order,
1774 				   unsigned long state)
1775 {
1776 	int i, j;
1777 	unsigned long cmo_page_sz, addr;
1778 
1779 	cmo_page_sz = cmo_get_page_size();
1780 	addr = __pa((unsigned long)page_address(page));
1781 
1782 	for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1783 		for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1784 			plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1785 	}
1786 }
1787 
1788 void arch_free_page(struct page *page, int order)
1789 {
1790 	if (radix_enabled())
1791 		return;
1792 	if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1793 		return;
1794 
1795 	pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1796 }
1797 EXPORT_SYMBOL(arch_free_page);
1798 
1799 #endif /* CONFIG_PPC_SMLPAR */
1800 #endif /* CONFIG_PPC_BOOK3S_64 */
1801 
1802 #ifdef CONFIG_TRACEPOINTS
1803 #ifdef CONFIG_JUMP_LABEL
1804 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1805 
1806 int hcall_tracepoint_regfunc(void)
1807 {
1808 	static_key_slow_inc(&hcall_tracepoint_key);
1809 	return 0;
1810 }
1811 
1812 void hcall_tracepoint_unregfunc(void)
1813 {
1814 	static_key_slow_dec(&hcall_tracepoint_key);
1815 }
1816 #else
1817 /*
1818  * We optimise our hcall path by placing hcall_tracepoint_refcount
1819  * directly in the TOC so we can check if the hcall tracepoints are
1820  * enabled via a single load.
1821  */
1822 
1823 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1824 extern long hcall_tracepoint_refcount;
1825 
1826 int hcall_tracepoint_regfunc(void)
1827 {
1828 	hcall_tracepoint_refcount++;
1829 	return 0;
1830 }
1831 
1832 void hcall_tracepoint_unregfunc(void)
1833 {
1834 	hcall_tracepoint_refcount--;
1835 }
1836 #endif
1837 
1838 /*
1839  * Keep track of hcall tracing depth and prevent recursion. Warn if any is
1840  * detected because it may indicate a problem. This will not catch all
1841  * problems with tracing code making hcalls, because the tracing might have
1842  * been invoked from a non-hcall, so the first hcall could recurse into it
1843  * without warning here, but this better than nothing.
1844  *
1845  * Hcalls with specific problems being traced should use the _notrace
1846  * plpar_hcall variants.
1847  */
1848 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1849 
1850 
1851 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1852 {
1853 	unsigned long flags;
1854 	unsigned int *depth;
1855 
1856 	local_irq_save(flags);
1857 
1858 	depth = this_cpu_ptr(&hcall_trace_depth);
1859 
1860 	if (WARN_ON_ONCE(*depth))
1861 		goto out;
1862 
1863 	(*depth)++;
1864 	preempt_disable();
1865 	trace_hcall_entry(opcode, args);
1866 	(*depth)--;
1867 
1868 out:
1869 	local_irq_restore(flags);
1870 }
1871 
1872 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1873 {
1874 	unsigned long flags;
1875 	unsigned int *depth;
1876 
1877 	local_irq_save(flags);
1878 
1879 	depth = this_cpu_ptr(&hcall_trace_depth);
1880 
1881 	if (*depth) /* Don't warn again on the way out */
1882 		goto out;
1883 
1884 	(*depth)++;
1885 	trace_hcall_exit(opcode, retval, retbuf);
1886 	preempt_enable();
1887 	(*depth)--;
1888 
1889 out:
1890 	local_irq_restore(flags);
1891 }
1892 #endif
1893 
1894 /**
1895  * h_get_mpp
1896  * H_GET_MPP hcall returns info in 7 parms
1897  */
1898 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1899 {
1900 	int rc;
1901 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1902 
1903 	rc = plpar_hcall9(H_GET_MPP, retbuf);
1904 
1905 	mpp_data->entitled_mem = retbuf[0];
1906 	mpp_data->mapped_mem = retbuf[1];
1907 
1908 	mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1909 	mpp_data->pool_num = retbuf[2] & 0xffff;
1910 
1911 	mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1912 	mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1913 	mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1914 
1915 	mpp_data->pool_size = retbuf[4];
1916 	mpp_data->loan_request = retbuf[5];
1917 	mpp_data->backing_mem = retbuf[6];
1918 
1919 	return rc;
1920 }
1921 EXPORT_SYMBOL(h_get_mpp);
1922 
1923 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1924 {
1925 	int rc;
1926 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1927 
1928 	rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1929 
1930 	mpp_x_data->coalesced_bytes = retbuf[0];
1931 	mpp_x_data->pool_coalesced_bytes = retbuf[1];
1932 	mpp_x_data->pool_purr_cycles = retbuf[2];
1933 	mpp_x_data->pool_spurr_cycles = retbuf[3];
1934 
1935 	return rc;
1936 }
1937 
1938 #ifdef CONFIG_PPC_64S_HASH_MMU
1939 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize)
1940 {
1941 	unsigned long protovsid;
1942 	unsigned long va_bits = VA_BITS;
1943 	unsigned long modinv, vsid_modulus;
1944 	unsigned long max_mod_inv, tmp_modinv;
1945 
1946 	if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1947 		va_bits = 65;
1948 
1949 	if (ssize == MMU_SEGSIZE_256M) {
1950 		modinv = VSID_MULINV_256M;
1951 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1952 	} else {
1953 		modinv = VSID_MULINV_1T;
1954 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1955 	}
1956 
1957 	/*
1958 	 * vsid outside our range.
1959 	 */
1960 	if (vsid >= vsid_modulus)
1961 		return 0;
1962 
1963 	/*
1964 	 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1965 	 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1966 	 *   protovsid = (vsid * modinv) % vsid_modulus
1967 	 */
1968 
1969 	/* Check if (vsid * modinv) overflow (63 bits) */
1970 	max_mod_inv = 0x7fffffffffffffffull / vsid;
1971 	if (modinv < max_mod_inv)
1972 		return (vsid * modinv) % vsid_modulus;
1973 
1974 	tmp_modinv = modinv/max_mod_inv;
1975 	modinv %= max_mod_inv;
1976 
1977 	protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1978 	protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1979 
1980 	return protovsid;
1981 }
1982 
1983 static int __init reserve_vrma_context_id(void)
1984 {
1985 	unsigned long protovsid;
1986 
1987 	/*
1988 	 * Reserve context ids which map to reserved virtual addresses. For now
1989 	 * we only reserve the context id which maps to the VRMA VSID. We ignore
1990 	 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1991 	 * enable adjunct support via the "ibm,client-architecture-support"
1992 	 * interface.
1993 	 */
1994 	protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1995 	hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1996 	return 0;
1997 }
1998 machine_device_initcall(pseries, reserve_vrma_context_id);
1999 #endif
2000 
2001 #ifdef CONFIG_DEBUG_FS
2002 /* debugfs file interface for vpa data */
2003 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
2004 			      loff_t *pos)
2005 {
2006 	int cpu = (long)filp->private_data;
2007 	struct lppaca *lppaca = &lppaca_of(cpu);
2008 
2009 	return simple_read_from_buffer(buf, len, pos, lppaca,
2010 				sizeof(struct lppaca));
2011 }
2012 
2013 static const struct file_operations vpa_fops = {
2014 	.open		= simple_open,
2015 	.read		= vpa_file_read,
2016 	.llseek		= default_llseek,
2017 };
2018 
2019 static int __init vpa_debugfs_init(void)
2020 {
2021 	char name[16];
2022 	long i;
2023 	struct dentry *vpa_dir;
2024 
2025 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2026 		return 0;
2027 
2028 	vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir);
2029 
2030 	/* set up the per-cpu vpa file*/
2031 	for_each_possible_cpu(i) {
2032 		sprintf(name, "cpu-%ld", i);
2033 		debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2034 	}
2035 
2036 	return 0;
2037 }
2038 machine_arch_initcall(pseries, vpa_debugfs_init);
2039 #endif /* CONFIG_DEBUG_FS */
2040