1 /* 2 * Copyright (C) 2001 Mike Corrigan & Dave Engebretsen, IBM Corporation 3 * 4 * Rewrite, cleanup: 5 * 6 * Copyright (C) 2004 Olof Johansson <olof@lixom.net>, IBM Corporation 7 * Copyright (C) 2006 Olof Johansson <olof@lixom.net> 8 * 9 * Dynamic DMA mapping support, pSeries-specific parts, both SMP and LPAR. 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 */ 26 27 #include <linux/init.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/spinlock.h> 32 #include <linux/sched.h> /* for show_stack */ 33 #include <linux/string.h> 34 #include <linux/pci.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/crash_dump.h> 37 #include <linux/memory.h> 38 #include <asm/io.h> 39 #include <asm/prom.h> 40 #include <asm/rtas.h> 41 #include <asm/iommu.h> 42 #include <asm/pci-bridge.h> 43 #include <asm/machdep.h> 44 #include <asm/abs_addr.h> 45 #include <asm/pSeries_reconfig.h> 46 #include <asm/firmware.h> 47 #include <asm/tce.h> 48 #include <asm/ppc-pci.h> 49 #include <asm/udbg.h> 50 #include <asm/mmzone.h> 51 52 #include "plpar_wrappers.h" 53 54 55 static void tce_invalidate_pSeries_sw(struct iommu_table *tbl, 56 u64 *startp, u64 *endp) 57 { 58 u64 __iomem *invalidate = (u64 __iomem *)tbl->it_index; 59 unsigned long start, end, inc; 60 61 start = __pa(startp); 62 end = __pa(endp); 63 inc = L1_CACHE_BYTES; /* invalidate a cacheline of TCEs at a time */ 64 65 /* If this is non-zero, change the format. We shift the 66 * address and or in the magic from the device tree. */ 67 if (tbl->it_busno) { 68 start <<= 12; 69 end <<= 12; 70 inc <<= 12; 71 start |= tbl->it_busno; 72 end |= tbl->it_busno; 73 } 74 75 end |= inc - 1; /* round up end to be different than start */ 76 77 mb(); /* Make sure TCEs in memory are written */ 78 while (start <= end) { 79 out_be64(invalidate, start); 80 start += inc; 81 } 82 } 83 84 static int tce_build_pSeries(struct iommu_table *tbl, long index, 85 long npages, unsigned long uaddr, 86 enum dma_data_direction direction, 87 struct dma_attrs *attrs) 88 { 89 u64 proto_tce; 90 u64 *tcep, *tces; 91 u64 rpn; 92 93 proto_tce = TCE_PCI_READ; // Read allowed 94 95 if (direction != DMA_TO_DEVICE) 96 proto_tce |= TCE_PCI_WRITE; 97 98 tces = tcep = ((u64 *)tbl->it_base) + index; 99 100 while (npages--) { 101 /* can't move this out since we might cross MEMBLOCK boundary */ 102 rpn = (virt_to_abs(uaddr)) >> TCE_SHIFT; 103 *tcep = proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT; 104 105 uaddr += TCE_PAGE_SIZE; 106 tcep++; 107 } 108 109 if (tbl->it_type == TCE_PCI_SWINV_CREATE) 110 tce_invalidate_pSeries_sw(tbl, tces, tcep - 1); 111 return 0; 112 } 113 114 115 static void tce_free_pSeries(struct iommu_table *tbl, long index, long npages) 116 { 117 u64 *tcep, *tces; 118 119 tces = tcep = ((u64 *)tbl->it_base) + index; 120 121 while (npages--) 122 *(tcep++) = 0; 123 124 if (tbl->it_type == TCE_PCI_SWINV_FREE) 125 tce_invalidate_pSeries_sw(tbl, tces, tcep - 1); 126 } 127 128 static unsigned long tce_get_pseries(struct iommu_table *tbl, long index) 129 { 130 u64 *tcep; 131 132 tcep = ((u64 *)tbl->it_base) + index; 133 134 return *tcep; 135 } 136 137 static void tce_free_pSeriesLP(struct iommu_table*, long, long); 138 static void tce_freemulti_pSeriesLP(struct iommu_table*, long, long); 139 140 static int tce_build_pSeriesLP(struct iommu_table *tbl, long tcenum, 141 long npages, unsigned long uaddr, 142 enum dma_data_direction direction, 143 struct dma_attrs *attrs) 144 { 145 u64 rc = 0; 146 u64 proto_tce, tce; 147 u64 rpn; 148 int ret = 0; 149 long tcenum_start = tcenum, npages_start = npages; 150 151 rpn = (virt_to_abs(uaddr)) >> TCE_SHIFT; 152 proto_tce = TCE_PCI_READ; 153 if (direction != DMA_TO_DEVICE) 154 proto_tce |= TCE_PCI_WRITE; 155 156 while (npages--) { 157 tce = proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT; 158 rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, tce); 159 160 if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) { 161 ret = (int)rc; 162 tce_free_pSeriesLP(tbl, tcenum_start, 163 (npages_start - (npages + 1))); 164 break; 165 } 166 167 if (rc && printk_ratelimit()) { 168 printk("tce_build_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc); 169 printk("\tindex = 0x%llx\n", (u64)tbl->it_index); 170 printk("\ttcenum = 0x%llx\n", (u64)tcenum); 171 printk("\ttce val = 0x%llx\n", tce ); 172 show_stack(current, (unsigned long *)__get_SP()); 173 } 174 175 tcenum++; 176 rpn++; 177 } 178 return ret; 179 } 180 181 static DEFINE_PER_CPU(u64 *, tce_page); 182 183 static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum, 184 long npages, unsigned long uaddr, 185 enum dma_data_direction direction, 186 struct dma_attrs *attrs) 187 { 188 u64 rc = 0; 189 u64 proto_tce; 190 u64 *tcep; 191 u64 rpn; 192 long l, limit; 193 long tcenum_start = tcenum, npages_start = npages; 194 int ret = 0; 195 196 if (npages == 1) { 197 return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr, 198 direction, attrs); 199 } 200 201 tcep = __get_cpu_var(tce_page); 202 203 /* This is safe to do since interrupts are off when we're called 204 * from iommu_alloc{,_sg}() 205 */ 206 if (!tcep) { 207 tcep = (u64 *)__get_free_page(GFP_ATOMIC); 208 /* If allocation fails, fall back to the loop implementation */ 209 if (!tcep) { 210 return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr, 211 direction, attrs); 212 } 213 __get_cpu_var(tce_page) = tcep; 214 } 215 216 rpn = (virt_to_abs(uaddr)) >> TCE_SHIFT; 217 proto_tce = TCE_PCI_READ; 218 if (direction != DMA_TO_DEVICE) 219 proto_tce |= TCE_PCI_WRITE; 220 221 /* We can map max one pageful of TCEs at a time */ 222 do { 223 /* 224 * Set up the page with TCE data, looping through and setting 225 * the values. 226 */ 227 limit = min_t(long, npages, 4096/TCE_ENTRY_SIZE); 228 229 for (l = 0; l < limit; l++) { 230 tcep[l] = proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT; 231 rpn++; 232 } 233 234 rc = plpar_tce_put_indirect((u64)tbl->it_index, 235 (u64)tcenum << 12, 236 (u64)virt_to_abs(tcep), 237 limit); 238 239 npages -= limit; 240 tcenum += limit; 241 } while (npages > 0 && !rc); 242 243 if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) { 244 ret = (int)rc; 245 tce_freemulti_pSeriesLP(tbl, tcenum_start, 246 (npages_start - (npages + limit))); 247 return ret; 248 } 249 250 if (rc && printk_ratelimit()) { 251 printk("tce_buildmulti_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc); 252 printk("\tindex = 0x%llx\n", (u64)tbl->it_index); 253 printk("\tnpages = 0x%llx\n", (u64)npages); 254 printk("\ttce[0] val = 0x%llx\n", tcep[0]); 255 show_stack(current, (unsigned long *)__get_SP()); 256 } 257 return ret; 258 } 259 260 static void tce_free_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages) 261 { 262 u64 rc; 263 264 while (npages--) { 265 rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, 0); 266 267 if (rc && printk_ratelimit()) { 268 printk("tce_free_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc); 269 printk("\tindex = 0x%llx\n", (u64)tbl->it_index); 270 printk("\ttcenum = 0x%llx\n", (u64)tcenum); 271 show_stack(current, (unsigned long *)__get_SP()); 272 } 273 274 tcenum++; 275 } 276 } 277 278 279 static void tce_freemulti_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages) 280 { 281 u64 rc; 282 283 rc = plpar_tce_stuff((u64)tbl->it_index, (u64)tcenum << 12, 0, npages); 284 285 if (rc && printk_ratelimit()) { 286 printk("tce_freemulti_pSeriesLP: plpar_tce_stuff failed\n"); 287 printk("\trc = %lld\n", rc); 288 printk("\tindex = 0x%llx\n", (u64)tbl->it_index); 289 printk("\tnpages = 0x%llx\n", (u64)npages); 290 show_stack(current, (unsigned long *)__get_SP()); 291 } 292 } 293 294 static unsigned long tce_get_pSeriesLP(struct iommu_table *tbl, long tcenum) 295 { 296 u64 rc; 297 unsigned long tce_ret; 298 299 rc = plpar_tce_get((u64)tbl->it_index, (u64)tcenum << 12, &tce_ret); 300 301 if (rc && printk_ratelimit()) { 302 printk("tce_get_pSeriesLP: plpar_tce_get failed. rc=%lld\n", rc); 303 printk("\tindex = 0x%llx\n", (u64)tbl->it_index); 304 printk("\ttcenum = 0x%llx\n", (u64)tcenum); 305 show_stack(current, (unsigned long *)__get_SP()); 306 } 307 308 return tce_ret; 309 } 310 311 /* this is compatible with cells for the device tree property */ 312 struct dynamic_dma_window_prop { 313 __be32 liobn; /* tce table number */ 314 __be64 dma_base; /* address hi,lo */ 315 __be32 tce_shift; /* ilog2(tce_page_size) */ 316 __be32 window_shift; /* ilog2(tce_window_size) */ 317 }; 318 319 struct direct_window { 320 struct device_node *device; 321 const struct dynamic_dma_window_prop *prop; 322 struct list_head list; 323 }; 324 325 /* Dynamic DMA Window support */ 326 struct ddw_query_response { 327 u32 windows_available; 328 u32 largest_available_block; 329 u32 page_size; 330 u32 migration_capable; 331 }; 332 333 struct ddw_create_response { 334 u32 liobn; 335 u32 addr_hi; 336 u32 addr_lo; 337 }; 338 339 static LIST_HEAD(direct_window_list); 340 /* prevents races between memory on/offline and window creation */ 341 static DEFINE_SPINLOCK(direct_window_list_lock); 342 /* protects initializing window twice for same device */ 343 static DEFINE_MUTEX(direct_window_init_mutex); 344 #define DIRECT64_PROPNAME "linux,direct64-ddr-window-info" 345 346 static int tce_clearrange_multi_pSeriesLP(unsigned long start_pfn, 347 unsigned long num_pfn, const void *arg) 348 { 349 const struct dynamic_dma_window_prop *maprange = arg; 350 int rc; 351 u64 tce_size, num_tce, dma_offset, next; 352 u32 tce_shift; 353 long limit; 354 355 tce_shift = be32_to_cpu(maprange->tce_shift); 356 tce_size = 1ULL << tce_shift; 357 next = start_pfn << PAGE_SHIFT; 358 num_tce = num_pfn << PAGE_SHIFT; 359 360 /* round back to the beginning of the tce page size */ 361 num_tce += next & (tce_size - 1); 362 next &= ~(tce_size - 1); 363 364 /* covert to number of tces */ 365 num_tce |= tce_size - 1; 366 num_tce >>= tce_shift; 367 368 do { 369 /* 370 * Set up the page with TCE data, looping through and setting 371 * the values. 372 */ 373 limit = min_t(long, num_tce, 512); 374 dma_offset = next + be64_to_cpu(maprange->dma_base); 375 376 rc = plpar_tce_stuff((u64)be32_to_cpu(maprange->liobn), 377 dma_offset, 378 0, limit); 379 num_tce -= limit; 380 } while (num_tce > 0 && !rc); 381 382 return rc; 383 } 384 385 static int tce_setrange_multi_pSeriesLP(unsigned long start_pfn, 386 unsigned long num_pfn, const void *arg) 387 { 388 const struct dynamic_dma_window_prop *maprange = arg; 389 u64 *tcep, tce_size, num_tce, dma_offset, next, proto_tce, liobn; 390 u32 tce_shift; 391 u64 rc = 0; 392 long l, limit; 393 394 local_irq_disable(); /* to protect tcep and the page behind it */ 395 tcep = __get_cpu_var(tce_page); 396 397 if (!tcep) { 398 tcep = (u64 *)__get_free_page(GFP_ATOMIC); 399 if (!tcep) { 400 local_irq_enable(); 401 return -ENOMEM; 402 } 403 __get_cpu_var(tce_page) = tcep; 404 } 405 406 proto_tce = TCE_PCI_READ | TCE_PCI_WRITE; 407 408 liobn = (u64)be32_to_cpu(maprange->liobn); 409 tce_shift = be32_to_cpu(maprange->tce_shift); 410 tce_size = 1ULL << tce_shift; 411 next = start_pfn << PAGE_SHIFT; 412 num_tce = num_pfn << PAGE_SHIFT; 413 414 /* round back to the beginning of the tce page size */ 415 num_tce += next & (tce_size - 1); 416 next &= ~(tce_size - 1); 417 418 /* covert to number of tces */ 419 num_tce |= tce_size - 1; 420 num_tce >>= tce_shift; 421 422 /* We can map max one pageful of TCEs at a time */ 423 do { 424 /* 425 * Set up the page with TCE data, looping through and setting 426 * the values. 427 */ 428 limit = min_t(long, num_tce, 4096/TCE_ENTRY_SIZE); 429 dma_offset = next + be64_to_cpu(maprange->dma_base); 430 431 for (l = 0; l < limit; l++) { 432 tcep[l] = proto_tce | next; 433 next += tce_size; 434 } 435 436 rc = plpar_tce_put_indirect(liobn, 437 dma_offset, 438 (u64)virt_to_abs(tcep), 439 limit); 440 441 num_tce -= limit; 442 } while (num_tce > 0 && !rc); 443 444 /* error cleanup: caller will clear whole range */ 445 446 local_irq_enable(); 447 return rc; 448 } 449 450 static int tce_setrange_multi_pSeriesLP_walk(unsigned long start_pfn, 451 unsigned long num_pfn, void *arg) 452 { 453 return tce_setrange_multi_pSeriesLP(start_pfn, num_pfn, arg); 454 } 455 456 457 #ifdef CONFIG_PCI 458 static void iommu_table_setparms(struct pci_controller *phb, 459 struct device_node *dn, 460 struct iommu_table *tbl) 461 { 462 struct device_node *node; 463 const unsigned long *basep, *sw_inval; 464 const u32 *sizep; 465 466 node = phb->dn; 467 468 basep = of_get_property(node, "linux,tce-base", NULL); 469 sizep = of_get_property(node, "linux,tce-size", NULL); 470 if (basep == NULL || sizep == NULL) { 471 printk(KERN_ERR "PCI_DMA: iommu_table_setparms: %s has " 472 "missing tce entries !\n", dn->full_name); 473 return; 474 } 475 476 tbl->it_base = (unsigned long)__va(*basep); 477 478 if (!is_kdump_kernel()) 479 memset((void *)tbl->it_base, 0, *sizep); 480 481 tbl->it_busno = phb->bus->number; 482 483 /* Units of tce entries */ 484 tbl->it_offset = phb->dma_window_base_cur >> IOMMU_PAGE_SHIFT; 485 486 /* Test if we are going over 2GB of DMA space */ 487 if (phb->dma_window_base_cur + phb->dma_window_size > 0x80000000ul) { 488 udbg_printf("PCI_DMA: Unexpected number of IOAs under this PHB.\n"); 489 panic("PCI_DMA: Unexpected number of IOAs under this PHB.\n"); 490 } 491 492 phb->dma_window_base_cur += phb->dma_window_size; 493 494 /* Set the tce table size - measured in entries */ 495 tbl->it_size = phb->dma_window_size >> IOMMU_PAGE_SHIFT; 496 497 tbl->it_index = 0; 498 tbl->it_blocksize = 16; 499 tbl->it_type = TCE_PCI; 500 501 sw_inval = of_get_property(node, "linux,tce-sw-invalidate-info", NULL); 502 if (sw_inval) { 503 /* 504 * This property contains information on how to 505 * invalidate the TCE entry. The first property is 506 * the base MMIO address used to invalidate entries. 507 * The second property tells us the format of the TCE 508 * invalidate (whether it needs to be shifted) and 509 * some magic routing info to add to our invalidate 510 * command. 511 */ 512 tbl->it_index = (unsigned long) ioremap(sw_inval[0], 8); 513 tbl->it_busno = sw_inval[1]; /* overload this with magic */ 514 tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE; 515 } 516 } 517 518 /* 519 * iommu_table_setparms_lpar 520 * 521 * Function: On pSeries LPAR systems, return TCE table info, given a pci bus. 522 */ 523 static void iommu_table_setparms_lpar(struct pci_controller *phb, 524 struct device_node *dn, 525 struct iommu_table *tbl, 526 const void *dma_window) 527 { 528 unsigned long offset, size; 529 530 of_parse_dma_window(dn, dma_window, &tbl->it_index, &offset, &size); 531 532 tbl->it_busno = phb->bus->number; 533 tbl->it_base = 0; 534 tbl->it_blocksize = 16; 535 tbl->it_type = TCE_PCI; 536 tbl->it_offset = offset >> IOMMU_PAGE_SHIFT; 537 tbl->it_size = size >> IOMMU_PAGE_SHIFT; 538 } 539 540 static void pci_dma_bus_setup_pSeries(struct pci_bus *bus) 541 { 542 struct device_node *dn; 543 struct iommu_table *tbl; 544 struct device_node *isa_dn, *isa_dn_orig; 545 struct device_node *tmp; 546 struct pci_dn *pci; 547 int children; 548 549 dn = pci_bus_to_OF_node(bus); 550 551 pr_debug("pci_dma_bus_setup_pSeries: setting up bus %s\n", dn->full_name); 552 553 if (bus->self) { 554 /* This is not a root bus, any setup will be done for the 555 * device-side of the bridge in iommu_dev_setup_pSeries(). 556 */ 557 return; 558 } 559 pci = PCI_DN(dn); 560 561 /* Check if the ISA bus on the system is under 562 * this PHB. 563 */ 564 isa_dn = isa_dn_orig = of_find_node_by_type(NULL, "isa"); 565 566 while (isa_dn && isa_dn != dn) 567 isa_dn = isa_dn->parent; 568 569 if (isa_dn_orig) 570 of_node_put(isa_dn_orig); 571 572 /* Count number of direct PCI children of the PHB. */ 573 for (children = 0, tmp = dn->child; tmp; tmp = tmp->sibling) 574 children++; 575 576 pr_debug("Children: %d\n", children); 577 578 /* Calculate amount of DMA window per slot. Each window must be 579 * a power of two (due to pci_alloc_consistent requirements). 580 * 581 * Keep 256MB aside for PHBs with ISA. 582 */ 583 584 if (!isa_dn) { 585 /* No ISA/IDE - just set window size and return */ 586 pci->phb->dma_window_size = 0x80000000ul; /* To be divided */ 587 588 while (pci->phb->dma_window_size * children > 0x80000000ul) 589 pci->phb->dma_window_size >>= 1; 590 pr_debug("No ISA/IDE, window size is 0x%llx\n", 591 pci->phb->dma_window_size); 592 pci->phb->dma_window_base_cur = 0; 593 594 return; 595 } 596 597 /* If we have ISA, then we probably have an IDE 598 * controller too. Allocate a 128MB table but 599 * skip the first 128MB to avoid stepping on ISA 600 * space. 601 */ 602 pci->phb->dma_window_size = 0x8000000ul; 603 pci->phb->dma_window_base_cur = 0x8000000ul; 604 605 tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, 606 pci->phb->node); 607 608 iommu_table_setparms(pci->phb, dn, tbl); 609 pci->iommu_table = iommu_init_table(tbl, pci->phb->node); 610 611 /* Divide the rest (1.75GB) among the children */ 612 pci->phb->dma_window_size = 0x80000000ul; 613 while (pci->phb->dma_window_size * children > 0x70000000ul) 614 pci->phb->dma_window_size >>= 1; 615 616 pr_debug("ISA/IDE, window size is 0x%llx\n", pci->phb->dma_window_size); 617 } 618 619 620 static void pci_dma_bus_setup_pSeriesLP(struct pci_bus *bus) 621 { 622 struct iommu_table *tbl; 623 struct device_node *dn, *pdn; 624 struct pci_dn *ppci; 625 const void *dma_window = NULL; 626 627 dn = pci_bus_to_OF_node(bus); 628 629 pr_debug("pci_dma_bus_setup_pSeriesLP: setting up bus %s\n", 630 dn->full_name); 631 632 /* Find nearest ibm,dma-window, walking up the device tree */ 633 for (pdn = dn; pdn != NULL; pdn = pdn->parent) { 634 dma_window = of_get_property(pdn, "ibm,dma-window", NULL); 635 if (dma_window != NULL) 636 break; 637 } 638 639 if (dma_window == NULL) { 640 pr_debug(" no ibm,dma-window property !\n"); 641 return; 642 } 643 644 ppci = PCI_DN(pdn); 645 646 pr_debug(" parent is %s, iommu_table: 0x%p\n", 647 pdn->full_name, ppci->iommu_table); 648 649 if (!ppci->iommu_table) { 650 tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, 651 ppci->phb->node); 652 iommu_table_setparms_lpar(ppci->phb, pdn, tbl, dma_window); 653 ppci->iommu_table = iommu_init_table(tbl, ppci->phb->node); 654 pr_debug(" created table: %p\n", ppci->iommu_table); 655 } 656 } 657 658 659 static void pci_dma_dev_setup_pSeries(struct pci_dev *dev) 660 { 661 struct device_node *dn; 662 struct iommu_table *tbl; 663 664 pr_debug("pci_dma_dev_setup_pSeries: %s\n", pci_name(dev)); 665 666 dn = dev->dev.of_node; 667 668 /* If we're the direct child of a root bus, then we need to allocate 669 * an iommu table ourselves. The bus setup code should have setup 670 * the window sizes already. 671 */ 672 if (!dev->bus->self) { 673 struct pci_controller *phb = PCI_DN(dn)->phb; 674 675 pr_debug(" --> first child, no bridge. Allocating iommu table.\n"); 676 tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, 677 phb->node); 678 iommu_table_setparms(phb, dn, tbl); 679 PCI_DN(dn)->iommu_table = iommu_init_table(tbl, phb->node); 680 set_iommu_table_base(&dev->dev, PCI_DN(dn)->iommu_table); 681 return; 682 } 683 684 /* If this device is further down the bus tree, search upwards until 685 * an already allocated iommu table is found and use that. 686 */ 687 688 while (dn && PCI_DN(dn) && PCI_DN(dn)->iommu_table == NULL) 689 dn = dn->parent; 690 691 if (dn && PCI_DN(dn)) 692 set_iommu_table_base(&dev->dev, PCI_DN(dn)->iommu_table); 693 else 694 printk(KERN_WARNING "iommu: Device %s has no iommu table\n", 695 pci_name(dev)); 696 } 697 698 static int __read_mostly disable_ddw; 699 700 static int __init disable_ddw_setup(char *str) 701 { 702 disable_ddw = 1; 703 printk(KERN_INFO "ppc iommu: disabling ddw.\n"); 704 705 return 0; 706 } 707 708 early_param("disable_ddw", disable_ddw_setup); 709 710 static void remove_ddw(struct device_node *np) 711 { 712 struct dynamic_dma_window_prop *dwp; 713 struct property *win64; 714 const u32 *ddw_avail; 715 u64 liobn; 716 int len, ret; 717 718 ddw_avail = of_get_property(np, "ibm,ddw-applicable", &len); 719 win64 = of_find_property(np, DIRECT64_PROPNAME, NULL); 720 if (!win64) 721 return; 722 723 if (!ddw_avail || len < 3 * sizeof(u32) || win64->length < sizeof(*dwp)) 724 goto delprop; 725 726 dwp = win64->value; 727 liobn = (u64)be32_to_cpu(dwp->liobn); 728 729 /* clear the whole window, note the arg is in kernel pages */ 730 ret = tce_clearrange_multi_pSeriesLP(0, 731 1ULL << (be32_to_cpu(dwp->window_shift) - PAGE_SHIFT), dwp); 732 if (ret) 733 pr_warning("%s failed to clear tces in window.\n", 734 np->full_name); 735 else 736 pr_debug("%s successfully cleared tces in window.\n", 737 np->full_name); 738 739 ret = rtas_call(ddw_avail[2], 1, 1, NULL, liobn); 740 if (ret) 741 pr_warning("%s: failed to remove direct window: rtas returned " 742 "%d to ibm,remove-pe-dma-window(%x) %llx\n", 743 np->full_name, ret, ddw_avail[2], liobn); 744 else 745 pr_debug("%s: successfully removed direct window: rtas returned " 746 "%d to ibm,remove-pe-dma-window(%x) %llx\n", 747 np->full_name, ret, ddw_avail[2], liobn); 748 749 delprop: 750 ret = prom_remove_property(np, win64); 751 if (ret) 752 pr_warning("%s: failed to remove direct window property: %d\n", 753 np->full_name, ret); 754 } 755 756 static u64 find_existing_ddw(struct device_node *pdn) 757 { 758 struct direct_window *window; 759 const struct dynamic_dma_window_prop *direct64; 760 u64 dma_addr = 0; 761 762 spin_lock(&direct_window_list_lock); 763 /* check if we already created a window and dupe that config if so */ 764 list_for_each_entry(window, &direct_window_list, list) { 765 if (window->device == pdn) { 766 direct64 = window->prop; 767 dma_addr = direct64->dma_base; 768 break; 769 } 770 } 771 spin_unlock(&direct_window_list_lock); 772 773 return dma_addr; 774 } 775 776 static int find_existing_ddw_windows(void) 777 { 778 int len; 779 struct device_node *pdn; 780 struct direct_window *window; 781 const struct dynamic_dma_window_prop *direct64; 782 783 if (!firmware_has_feature(FW_FEATURE_LPAR)) 784 return 0; 785 786 for_each_node_with_property(pdn, DIRECT64_PROPNAME) { 787 direct64 = of_get_property(pdn, DIRECT64_PROPNAME, &len); 788 if (!direct64) 789 continue; 790 791 window = kzalloc(sizeof(*window), GFP_KERNEL); 792 if (!window || len < sizeof(struct dynamic_dma_window_prop)) { 793 kfree(window); 794 remove_ddw(pdn); 795 continue; 796 } 797 798 window->device = pdn; 799 window->prop = direct64; 800 spin_lock(&direct_window_list_lock); 801 list_add(&window->list, &direct_window_list); 802 spin_unlock(&direct_window_list_lock); 803 } 804 805 return 0; 806 } 807 machine_arch_initcall(pseries, find_existing_ddw_windows); 808 809 static int query_ddw(struct pci_dev *dev, const u32 *ddw_avail, 810 struct ddw_query_response *query) 811 { 812 struct device_node *dn; 813 struct pci_dn *pcidn; 814 u32 cfg_addr; 815 u64 buid; 816 int ret; 817 818 /* 819 * Get the config address and phb buid of the PE window. 820 * Rely on eeh to retrieve this for us. 821 * Retrieve them from the pci device, not the node with the 822 * dma-window property 823 */ 824 dn = pci_device_to_OF_node(dev); 825 pcidn = PCI_DN(dn); 826 cfg_addr = pcidn->eeh_config_addr; 827 if (pcidn->eeh_pe_config_addr) 828 cfg_addr = pcidn->eeh_pe_config_addr; 829 buid = pcidn->phb->buid; 830 ret = rtas_call(ddw_avail[0], 3, 5, (u32 *)query, 831 cfg_addr, BUID_HI(buid), BUID_LO(buid)); 832 dev_info(&dev->dev, "ibm,query-pe-dma-windows(%x) %x %x %x" 833 " returned %d\n", ddw_avail[0], cfg_addr, BUID_HI(buid), 834 BUID_LO(buid), ret); 835 return ret; 836 } 837 838 static int create_ddw(struct pci_dev *dev, const u32 *ddw_avail, 839 struct ddw_create_response *create, int page_shift, 840 int window_shift) 841 { 842 struct device_node *dn; 843 struct pci_dn *pcidn; 844 u32 cfg_addr; 845 u64 buid; 846 int ret; 847 848 /* 849 * Get the config address and phb buid of the PE window. 850 * Rely on eeh to retrieve this for us. 851 * Retrieve them from the pci device, not the node with the 852 * dma-window property 853 */ 854 dn = pci_device_to_OF_node(dev); 855 pcidn = PCI_DN(dn); 856 cfg_addr = pcidn->eeh_config_addr; 857 if (pcidn->eeh_pe_config_addr) 858 cfg_addr = pcidn->eeh_pe_config_addr; 859 buid = pcidn->phb->buid; 860 861 do { 862 /* extra outputs are LIOBN and dma-addr (hi, lo) */ 863 ret = rtas_call(ddw_avail[1], 5, 4, (u32 *)create, cfg_addr, 864 BUID_HI(buid), BUID_LO(buid), page_shift, window_shift); 865 } while (rtas_busy_delay(ret)); 866 dev_info(&dev->dev, 867 "ibm,create-pe-dma-window(%x) %x %x %x %x %x returned %d " 868 "(liobn = 0x%x starting addr = %x %x)\n", ddw_avail[1], 869 cfg_addr, BUID_HI(buid), BUID_LO(buid), page_shift, 870 window_shift, ret, create->liobn, create->addr_hi, create->addr_lo); 871 872 return ret; 873 } 874 875 /* 876 * If the PE supports dynamic dma windows, and there is space for a table 877 * that can map all pages in a linear offset, then setup such a table, 878 * and record the dma-offset in the struct device. 879 * 880 * dev: the pci device we are checking 881 * pdn: the parent pe node with the ibm,dma_window property 882 * Future: also check if we can remap the base window for our base page size 883 * 884 * returns the dma offset for use by dma_set_mask 885 */ 886 static u64 enable_ddw(struct pci_dev *dev, struct device_node *pdn) 887 { 888 int len, ret; 889 struct ddw_query_response query; 890 struct ddw_create_response create; 891 int page_shift; 892 u64 dma_addr, max_addr; 893 struct device_node *dn; 894 const u32 *uninitialized_var(ddw_avail); 895 struct direct_window *window; 896 struct property *win64; 897 struct dynamic_dma_window_prop *ddwprop; 898 899 mutex_lock(&direct_window_init_mutex); 900 901 dma_addr = find_existing_ddw(pdn); 902 if (dma_addr != 0) 903 goto out_unlock; 904 905 /* 906 * the ibm,ddw-applicable property holds the tokens for: 907 * ibm,query-pe-dma-window 908 * ibm,create-pe-dma-window 909 * ibm,remove-pe-dma-window 910 * for the given node in that order. 911 * the property is actually in the parent, not the PE 912 */ 913 ddw_avail = of_get_property(pdn, "ibm,ddw-applicable", &len); 914 if (!ddw_avail || len < 3 * sizeof(u32)) 915 goto out_unlock; 916 917 /* 918 * Query if there is a second window of size to map the 919 * whole partition. Query returns number of windows, largest 920 * block assigned to PE (partition endpoint), and two bitmasks 921 * of page sizes: supported and supported for migrate-dma. 922 */ 923 dn = pci_device_to_OF_node(dev); 924 ret = query_ddw(dev, ddw_avail, &query); 925 if (ret != 0) 926 goto out_unlock; 927 928 if (query.windows_available == 0) { 929 /* 930 * no additional windows are available for this device. 931 * We might be able to reallocate the existing window, 932 * trading in for a larger page size. 933 */ 934 dev_dbg(&dev->dev, "no free dynamic windows"); 935 goto out_unlock; 936 } 937 if (query.page_size & 4) { 938 page_shift = 24; /* 16MB */ 939 } else if (query.page_size & 2) { 940 page_shift = 16; /* 64kB */ 941 } else if (query.page_size & 1) { 942 page_shift = 12; /* 4kB */ 943 } else { 944 dev_dbg(&dev->dev, "no supported direct page size in mask %x", 945 query.page_size); 946 goto out_unlock; 947 } 948 /* verify the window * number of ptes will map the partition */ 949 /* check largest block * page size > max memory hotplug addr */ 950 max_addr = memory_hotplug_max(); 951 if (query.largest_available_block < (max_addr >> page_shift)) { 952 dev_dbg(&dev->dev, "can't map partiton max 0x%llx with %u " 953 "%llu-sized pages\n", max_addr, query.largest_available_block, 954 1ULL << page_shift); 955 goto out_unlock; 956 } 957 len = order_base_2(max_addr); 958 win64 = kzalloc(sizeof(struct property), GFP_KERNEL); 959 if (!win64) { 960 dev_info(&dev->dev, 961 "couldn't allocate property for 64bit dma window\n"); 962 goto out_unlock; 963 } 964 win64->name = kstrdup(DIRECT64_PROPNAME, GFP_KERNEL); 965 win64->value = ddwprop = kmalloc(sizeof(*ddwprop), GFP_KERNEL); 966 win64->length = sizeof(*ddwprop); 967 if (!win64->name || !win64->value) { 968 dev_info(&dev->dev, 969 "couldn't allocate property name and value\n"); 970 goto out_free_prop; 971 } 972 973 ret = create_ddw(dev, ddw_avail, &create, page_shift, len); 974 if (ret != 0) 975 goto out_free_prop; 976 977 ddwprop->liobn = cpu_to_be32(create.liobn); 978 ddwprop->dma_base = cpu_to_be64(of_read_number(&create.addr_hi, 2)); 979 ddwprop->tce_shift = cpu_to_be32(page_shift); 980 ddwprop->window_shift = cpu_to_be32(len); 981 982 dev_dbg(&dev->dev, "created tce table LIOBN 0x%x for %s\n", 983 create.liobn, dn->full_name); 984 985 window = kzalloc(sizeof(*window), GFP_KERNEL); 986 if (!window) 987 goto out_clear_window; 988 989 ret = walk_system_ram_range(0, memblock_end_of_DRAM() >> PAGE_SHIFT, 990 win64->value, tce_setrange_multi_pSeriesLP_walk); 991 if (ret) { 992 dev_info(&dev->dev, "failed to map direct window for %s: %d\n", 993 dn->full_name, ret); 994 goto out_free_window; 995 } 996 997 ret = prom_add_property(pdn, win64); 998 if (ret) { 999 dev_err(&dev->dev, "unable to add dma window property for %s: %d", 1000 pdn->full_name, ret); 1001 goto out_free_window; 1002 } 1003 1004 window->device = pdn; 1005 window->prop = ddwprop; 1006 spin_lock(&direct_window_list_lock); 1007 list_add(&window->list, &direct_window_list); 1008 spin_unlock(&direct_window_list_lock); 1009 1010 dma_addr = of_read_number(&create.addr_hi, 2); 1011 goto out_unlock; 1012 1013 out_free_window: 1014 kfree(window); 1015 1016 out_clear_window: 1017 remove_ddw(pdn); 1018 1019 out_free_prop: 1020 kfree(win64->name); 1021 kfree(win64->value); 1022 kfree(win64); 1023 1024 out_unlock: 1025 mutex_unlock(&direct_window_init_mutex); 1026 return dma_addr; 1027 } 1028 1029 static void pci_dma_dev_setup_pSeriesLP(struct pci_dev *dev) 1030 { 1031 struct device_node *pdn, *dn; 1032 struct iommu_table *tbl; 1033 const void *dma_window = NULL; 1034 struct pci_dn *pci; 1035 1036 pr_debug("pci_dma_dev_setup_pSeriesLP: %s\n", pci_name(dev)); 1037 1038 /* dev setup for LPAR is a little tricky, since the device tree might 1039 * contain the dma-window properties per-device and not necessarily 1040 * for the bus. So we need to search upwards in the tree until we 1041 * either hit a dma-window property, OR find a parent with a table 1042 * already allocated. 1043 */ 1044 dn = pci_device_to_OF_node(dev); 1045 pr_debug(" node is %s\n", dn->full_name); 1046 1047 for (pdn = dn; pdn && PCI_DN(pdn) && !PCI_DN(pdn)->iommu_table; 1048 pdn = pdn->parent) { 1049 dma_window = of_get_property(pdn, "ibm,dma-window", NULL); 1050 if (dma_window) 1051 break; 1052 } 1053 1054 if (!pdn || !PCI_DN(pdn)) { 1055 printk(KERN_WARNING "pci_dma_dev_setup_pSeriesLP: " 1056 "no DMA window found for pci dev=%s dn=%s\n", 1057 pci_name(dev), dn? dn->full_name : "<null>"); 1058 return; 1059 } 1060 pr_debug(" parent is %s\n", pdn->full_name); 1061 1062 pci = PCI_DN(pdn); 1063 if (!pci->iommu_table) { 1064 tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, 1065 pci->phb->node); 1066 iommu_table_setparms_lpar(pci->phb, pdn, tbl, dma_window); 1067 pci->iommu_table = iommu_init_table(tbl, pci->phb->node); 1068 pr_debug(" created table: %p\n", pci->iommu_table); 1069 } else { 1070 pr_debug(" found DMA window, table: %p\n", pci->iommu_table); 1071 } 1072 1073 set_iommu_table_base(&dev->dev, pci->iommu_table); 1074 } 1075 1076 static int dma_set_mask_pSeriesLP(struct device *dev, u64 dma_mask) 1077 { 1078 bool ddw_enabled = false; 1079 struct device_node *pdn, *dn; 1080 struct pci_dev *pdev; 1081 const void *dma_window = NULL; 1082 u64 dma_offset; 1083 1084 if (!dev->dma_mask) 1085 return -EIO; 1086 1087 if (!dev_is_pci(dev)) 1088 goto check_mask; 1089 1090 pdev = to_pci_dev(dev); 1091 1092 /* only attempt to use a new window if 64-bit DMA is requested */ 1093 if (!disable_ddw && dma_mask == DMA_BIT_MASK(64)) { 1094 dn = pci_device_to_OF_node(pdev); 1095 dev_dbg(dev, "node is %s\n", dn->full_name); 1096 1097 /* 1098 * the device tree might contain the dma-window properties 1099 * per-device and not necessarily for the bus. So we need to 1100 * search upwards in the tree until we either hit a dma-window 1101 * property, OR find a parent with a table already allocated. 1102 */ 1103 for (pdn = dn; pdn && PCI_DN(pdn) && !PCI_DN(pdn)->iommu_table; 1104 pdn = pdn->parent) { 1105 dma_window = of_get_property(pdn, "ibm,dma-window", NULL); 1106 if (dma_window) 1107 break; 1108 } 1109 if (pdn && PCI_DN(pdn)) { 1110 dma_offset = enable_ddw(pdev, pdn); 1111 if (dma_offset != 0) { 1112 dev_info(dev, "Using 64-bit direct DMA at offset %llx\n", dma_offset); 1113 set_dma_offset(dev, dma_offset); 1114 set_dma_ops(dev, &dma_direct_ops); 1115 ddw_enabled = true; 1116 } 1117 } 1118 } 1119 1120 /* fall back on iommu ops, restore table pointer with ops */ 1121 if (!ddw_enabled && get_dma_ops(dev) != &dma_iommu_ops) { 1122 dev_info(dev, "Restoring 32-bit DMA via iommu\n"); 1123 set_dma_ops(dev, &dma_iommu_ops); 1124 pci_dma_dev_setup_pSeriesLP(pdev); 1125 } 1126 1127 check_mask: 1128 if (!dma_supported(dev, dma_mask)) 1129 return -EIO; 1130 1131 *dev->dma_mask = dma_mask; 1132 return 0; 1133 } 1134 1135 static u64 dma_get_required_mask_pSeriesLP(struct device *dev) 1136 { 1137 if (!dev->dma_mask) 1138 return 0; 1139 1140 if (!disable_ddw && dev_is_pci(dev)) { 1141 struct pci_dev *pdev = to_pci_dev(dev); 1142 struct device_node *dn; 1143 1144 dn = pci_device_to_OF_node(pdev); 1145 1146 /* search upwards for ibm,dma-window */ 1147 for (; dn && PCI_DN(dn) && !PCI_DN(dn)->iommu_table; 1148 dn = dn->parent) 1149 if (of_get_property(dn, "ibm,dma-window", NULL)) 1150 break; 1151 /* if there is a ibm,ddw-applicable property require 64 bits */ 1152 if (dn && PCI_DN(dn) && 1153 of_get_property(dn, "ibm,ddw-applicable", NULL)) 1154 return DMA_BIT_MASK(64); 1155 } 1156 1157 return dma_iommu_ops.get_required_mask(dev); 1158 } 1159 1160 #else /* CONFIG_PCI */ 1161 #define pci_dma_bus_setup_pSeries NULL 1162 #define pci_dma_dev_setup_pSeries NULL 1163 #define pci_dma_bus_setup_pSeriesLP NULL 1164 #define pci_dma_dev_setup_pSeriesLP NULL 1165 #define dma_set_mask_pSeriesLP NULL 1166 #define dma_get_required_mask_pSeriesLP NULL 1167 #endif /* !CONFIG_PCI */ 1168 1169 static int iommu_mem_notifier(struct notifier_block *nb, unsigned long action, 1170 void *data) 1171 { 1172 struct direct_window *window; 1173 struct memory_notify *arg = data; 1174 int ret = 0; 1175 1176 switch (action) { 1177 case MEM_GOING_ONLINE: 1178 spin_lock(&direct_window_list_lock); 1179 list_for_each_entry(window, &direct_window_list, list) { 1180 ret |= tce_setrange_multi_pSeriesLP(arg->start_pfn, 1181 arg->nr_pages, window->prop); 1182 /* XXX log error */ 1183 } 1184 spin_unlock(&direct_window_list_lock); 1185 break; 1186 case MEM_CANCEL_ONLINE: 1187 case MEM_OFFLINE: 1188 spin_lock(&direct_window_list_lock); 1189 list_for_each_entry(window, &direct_window_list, list) { 1190 ret |= tce_clearrange_multi_pSeriesLP(arg->start_pfn, 1191 arg->nr_pages, window->prop); 1192 /* XXX log error */ 1193 } 1194 spin_unlock(&direct_window_list_lock); 1195 break; 1196 default: 1197 break; 1198 } 1199 if (ret && action != MEM_CANCEL_ONLINE) 1200 return NOTIFY_BAD; 1201 1202 return NOTIFY_OK; 1203 } 1204 1205 static struct notifier_block iommu_mem_nb = { 1206 .notifier_call = iommu_mem_notifier, 1207 }; 1208 1209 static int iommu_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node) 1210 { 1211 int err = NOTIFY_OK; 1212 struct device_node *np = node; 1213 struct pci_dn *pci = PCI_DN(np); 1214 struct direct_window *window; 1215 1216 switch (action) { 1217 case PSERIES_RECONFIG_REMOVE: 1218 if (pci && pci->iommu_table) 1219 iommu_free_table(pci->iommu_table, np->full_name); 1220 1221 spin_lock(&direct_window_list_lock); 1222 list_for_each_entry(window, &direct_window_list, list) { 1223 if (window->device == np) { 1224 list_del(&window->list); 1225 kfree(window); 1226 break; 1227 } 1228 } 1229 spin_unlock(&direct_window_list_lock); 1230 1231 /* 1232 * Because the notifier runs after isolation of the 1233 * slot, we are guaranteed any DMA window has already 1234 * been revoked and the TCEs have been marked invalid, 1235 * so we don't need a call to remove_ddw(np). However, 1236 * if an additional notifier action is added before the 1237 * isolate call, we should update this code for 1238 * completeness with such a call. 1239 */ 1240 break; 1241 default: 1242 err = NOTIFY_DONE; 1243 break; 1244 } 1245 return err; 1246 } 1247 1248 static struct notifier_block iommu_reconfig_nb = { 1249 .notifier_call = iommu_reconfig_notifier, 1250 }; 1251 1252 /* These are called very early. */ 1253 void iommu_init_early_pSeries(void) 1254 { 1255 if (of_chosen && of_get_property(of_chosen, "linux,iommu-off", NULL)) 1256 return; 1257 1258 if (firmware_has_feature(FW_FEATURE_LPAR)) { 1259 if (firmware_has_feature(FW_FEATURE_MULTITCE)) { 1260 ppc_md.tce_build = tce_buildmulti_pSeriesLP; 1261 ppc_md.tce_free = tce_freemulti_pSeriesLP; 1262 } else { 1263 ppc_md.tce_build = tce_build_pSeriesLP; 1264 ppc_md.tce_free = tce_free_pSeriesLP; 1265 } 1266 ppc_md.tce_get = tce_get_pSeriesLP; 1267 ppc_md.pci_dma_bus_setup = pci_dma_bus_setup_pSeriesLP; 1268 ppc_md.pci_dma_dev_setup = pci_dma_dev_setup_pSeriesLP; 1269 ppc_md.dma_set_mask = dma_set_mask_pSeriesLP; 1270 ppc_md.dma_get_required_mask = dma_get_required_mask_pSeriesLP; 1271 } else { 1272 ppc_md.tce_build = tce_build_pSeries; 1273 ppc_md.tce_free = tce_free_pSeries; 1274 ppc_md.tce_get = tce_get_pseries; 1275 ppc_md.pci_dma_bus_setup = pci_dma_bus_setup_pSeries; 1276 ppc_md.pci_dma_dev_setup = pci_dma_dev_setup_pSeries; 1277 } 1278 1279 1280 pSeries_reconfig_notifier_register(&iommu_reconfig_nb); 1281 register_memory_notifier(&iommu_mem_nb); 1282 1283 set_pci_dma_ops(&dma_iommu_ops); 1284 } 1285 1286 static int __init disable_multitce(char *str) 1287 { 1288 if (strcmp(str, "off") == 0 && 1289 firmware_has_feature(FW_FEATURE_LPAR) && 1290 firmware_has_feature(FW_FEATURE_MULTITCE)) { 1291 printk(KERN_INFO "Disabling MULTITCE firmware feature\n"); 1292 ppc_md.tce_build = tce_build_pSeriesLP; 1293 ppc_md.tce_free = tce_free_pSeriesLP; 1294 powerpc_firmware_features &= ~FW_FEATURE_MULTITCE; 1295 } 1296 return 1; 1297 } 1298 1299 __setup("multitce=", disable_multitce); 1300