xref: /linux/arch/powerpc/platforms/ps3/mm.c (revision c717993dd76a1049093af5c262e751d901b8da10)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  PS3 address space management.
4   *
5   *  Copyright (C) 2006 Sony Computer Entertainment Inc.
6   *  Copyright 2006 Sony Corp.
7   */
8  
9  #include <linux/dma-mapping.h>
10  #include <linux/kernel.h>
11  #include <linux/export.h>
12  #include <linux/memblock.h>
13  #include <linux/slab.h>
14  
15  #include <asm/cell-regs.h>
16  #include <asm/firmware.h>
17  #include <asm/prom.h>
18  #include <asm/udbg.h>
19  #include <asm/lv1call.h>
20  #include <asm/setup.h>
21  
22  #include "platform.h"
23  
24  #if defined(DEBUG)
25  #define DBG udbg_printf
26  #else
27  #define DBG pr_devel
28  #endif
29  
30  enum {
31  #if defined(CONFIG_PS3_DYNAMIC_DMA)
32  	USE_DYNAMIC_DMA = 1,
33  #else
34  	USE_DYNAMIC_DMA = 0,
35  #endif
36  };
37  
38  enum {
39  	PAGE_SHIFT_4K = 12U,
40  	PAGE_SHIFT_64K = 16U,
41  	PAGE_SHIFT_16M = 24U,
42  };
43  
44  static unsigned long __init make_page_sizes(unsigned long a, unsigned long b)
45  {
46  	return (a << 56) | (b << 48);
47  }
48  
49  enum {
50  	ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
51  	ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
52  };
53  
54  /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
55  
56  enum {
57  	HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
58  	HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
59  };
60  
61  /*============================================================================*/
62  /* virtual address space routines                                             */
63  /*============================================================================*/
64  
65  /**
66   * struct mem_region - memory region structure
67   * @base: base address
68   * @size: size in bytes
69   * @offset: difference between base and rm.size
70   * @destroy: flag if region should be destroyed upon shutdown
71   */
72  
73  struct mem_region {
74  	u64 base;
75  	u64 size;
76  	unsigned long offset;
77  	int destroy;
78  };
79  
80  /**
81   * struct map - address space state variables holder
82   * @total: total memory available as reported by HV
83   * @vas_id - HV virtual address space id
84   * @htab_size: htab size in bytes
85   *
86   * The HV virtual address space (vas) allows for hotplug memory regions.
87   * Memory regions can be created and destroyed in the vas at runtime.
88   * @rm: real mode (bootmem) region
89   * @r1: highmem region(s)
90   *
91   * ps3 addresses
92   * virt_addr: a cpu 'translated' effective address
93   * phys_addr: an address in what Linux thinks is the physical address space
94   * lpar_addr: an address in the HV virtual address space
95   * bus_addr: an io controller 'translated' address on a device bus
96   */
97  
98  struct map {
99  	u64 total;
100  	u64 vas_id;
101  	u64 htab_size;
102  	struct mem_region rm;
103  	struct mem_region r1;
104  };
105  
106  #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
107  static void __maybe_unused _debug_dump_map(const struct map *m,
108  	const char *func, int line)
109  {
110  	DBG("%s:%d: map.total     = %llxh\n", func, line, m->total);
111  	DBG("%s:%d: map.rm.size   = %llxh\n", func, line, m->rm.size);
112  	DBG("%s:%d: map.vas_id    = %llu\n", func, line, m->vas_id);
113  	DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
114  	DBG("%s:%d: map.r1.base   = %llxh\n", func, line, m->r1.base);
115  	DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
116  	DBG("%s:%d: map.r1.size   = %llxh\n", func, line, m->r1.size);
117  }
118  
119  static struct map map;
120  
121  /**
122   * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
123   * @phys_addr: linux physical address
124   */
125  
126  unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
127  {
128  	BUG_ON(is_kernel_addr(phys_addr));
129  	return (phys_addr < map.rm.size || phys_addr >= map.total)
130  		? phys_addr : phys_addr + map.r1.offset;
131  }
132  
133  EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
134  
135  /**
136   * ps3_mm_vas_create - create the virtual address space
137   */
138  
139  void __init ps3_mm_vas_create(unsigned long* htab_size)
140  {
141  	int result;
142  	u64 start_address;
143  	u64 size;
144  	u64 access_right;
145  	u64 max_page_size;
146  	u64 flags;
147  
148  	result = lv1_query_logical_partition_address_region_info(0,
149  		&start_address, &size, &access_right, &max_page_size,
150  		&flags);
151  
152  	if (result) {
153  		DBG("%s:%d: lv1_query_logical_partition_address_region_info "
154  			"failed: %s\n", __func__, __LINE__,
155  			ps3_result(result));
156  		goto fail;
157  	}
158  
159  	if (max_page_size < PAGE_SHIFT_16M) {
160  		DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
161  			max_page_size);
162  		goto fail;
163  	}
164  
165  	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
166  	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
167  
168  	result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
169  			2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
170  			&map.vas_id, &map.htab_size);
171  
172  	if (result) {
173  		DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
174  			__func__, __LINE__, ps3_result(result));
175  		goto fail;
176  	}
177  
178  	result = lv1_select_virtual_address_space(map.vas_id);
179  
180  	if (result) {
181  		DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
182  			__func__, __LINE__, ps3_result(result));
183  		goto fail;
184  	}
185  
186  	*htab_size = map.htab_size;
187  
188  	debug_dump_map(&map);
189  
190  	return;
191  
192  fail:
193  	panic("ps3_mm_vas_create failed");
194  }
195  
196  /**
197   * ps3_mm_vas_destroy -
198   *
199   * called during kexec sequence with MMU off.
200   */
201  
202  notrace void ps3_mm_vas_destroy(void)
203  {
204  	int result;
205  
206  	if (map.vas_id) {
207  		result = lv1_select_virtual_address_space(0);
208  		result += lv1_destruct_virtual_address_space(map.vas_id);
209  
210  		if (result) {
211  			lv1_panic(0);
212  		}
213  
214  		map.vas_id = 0;
215  	}
216  }
217  
218  static int __init ps3_mm_get_repository_highmem(struct mem_region *r)
219  {
220  	int result;
221  
222  	/* Assume a single highmem region. */
223  
224  	result = ps3_repository_read_highmem_info(0, &r->base, &r->size);
225  
226  	if (result)
227  		goto zero_region;
228  
229  	if (!r->base || !r->size) {
230  		result = -1;
231  		goto zero_region;
232  	}
233  
234  	r->offset = r->base - map.rm.size;
235  
236  	DBG("%s:%d: Found high region in repository: %llxh %llxh\n",
237  	    __func__, __LINE__, r->base, r->size);
238  
239  	return 0;
240  
241  zero_region:
242  	DBG("%s:%d: No high region in repository.\n", __func__, __LINE__);
243  
244  	r->size = r->base = r->offset = 0;
245  	return result;
246  }
247  
248  static int ps3_mm_set_repository_highmem(const struct mem_region *r)
249  {
250  	/* Assume a single highmem region. */
251  
252  	return r ? ps3_repository_write_highmem_info(0, r->base, r->size) :
253  		ps3_repository_write_highmem_info(0, 0, 0);
254  }
255  
256  /**
257   * ps3_mm_region_create - create a memory region in the vas
258   * @r: pointer to a struct mem_region to accept initialized values
259   * @size: requested region size
260   *
261   * This implementation creates the region with the vas large page size.
262   * @size is rounded down to a multiple of the vas large page size.
263   */
264  
265  static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
266  {
267  	int result;
268  	u64 muid;
269  
270  	r->size = ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
271  
272  	DBG("%s:%d requested  %lxh\n", __func__, __LINE__, size);
273  	DBG("%s:%d actual     %llxh\n", __func__, __LINE__, r->size);
274  	DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
275  		size - r->size, (size - r->size) / 1024 / 1024);
276  
277  	if (r->size == 0) {
278  		DBG("%s:%d: size == 0\n", __func__, __LINE__);
279  		result = -1;
280  		goto zero_region;
281  	}
282  
283  	result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
284  		ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
285  
286  	if (result || r->base < map.rm.size) {
287  		DBG("%s:%d: lv1_allocate_memory failed: %s\n",
288  			__func__, __LINE__, ps3_result(result));
289  		goto zero_region;
290  	}
291  
292  	r->destroy = 1;
293  	r->offset = r->base - map.rm.size;
294  	return result;
295  
296  zero_region:
297  	r->size = r->base = r->offset = 0;
298  	return result;
299  }
300  
301  /**
302   * ps3_mm_region_destroy - destroy a memory region
303   * @r: pointer to struct mem_region
304   */
305  
306  static void ps3_mm_region_destroy(struct mem_region *r)
307  {
308  	int result;
309  
310  	if (!r->destroy) {
311  		return;
312  	}
313  
314  	if (r->base) {
315  		result = lv1_release_memory(r->base);
316  
317  		if (result) {
318  			lv1_panic(0);
319  		}
320  
321  		r->size = r->base = r->offset = 0;
322  		map.total = map.rm.size;
323  	}
324  
325  	ps3_mm_set_repository_highmem(NULL);
326  }
327  
328  /*============================================================================*/
329  /* dma routines                                                               */
330  /*============================================================================*/
331  
332  /**
333   * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
334   * @r: pointer to dma region structure
335   * @lpar_addr: HV lpar address
336   */
337  
338  static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
339  	unsigned long lpar_addr)
340  {
341  	if (lpar_addr >= map.rm.size)
342  		lpar_addr -= map.r1.offset;
343  	BUG_ON(lpar_addr < r->offset);
344  	BUG_ON(lpar_addr >= r->offset + r->len);
345  	return r->bus_addr + lpar_addr - r->offset;
346  }
347  
348  #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
349  static void  __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
350  	const char *func, int line)
351  {
352  	DBG("%s:%d: dev        %llu:%llu\n", func, line, r->dev->bus_id,
353  		r->dev->dev_id);
354  	DBG("%s:%d: page_size  %u\n", func, line, r->page_size);
355  	DBG("%s:%d: bus_addr   %lxh\n", func, line, r->bus_addr);
356  	DBG("%s:%d: len        %lxh\n", func, line, r->len);
357  	DBG("%s:%d: offset     %lxh\n", func, line, r->offset);
358  }
359  
360    /**
361   * dma_chunk - A chunk of dma pages mapped by the io controller.
362   * @region - The dma region that owns this chunk.
363   * @lpar_addr: Starting lpar address of the area to map.
364   * @bus_addr: Starting ioc bus address of the area to map.
365   * @len: Length in bytes of the area to map.
366   * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
367   * list of all chuncks owned by the region.
368   *
369   * This implementation uses a very simple dma page manager
370   * based on the dma_chunk structure.  This scheme assumes
371   * that all drivers use very well behaved dma ops.
372   */
373  
374  struct dma_chunk {
375  	struct ps3_dma_region *region;
376  	unsigned long lpar_addr;
377  	unsigned long bus_addr;
378  	unsigned long len;
379  	struct list_head link;
380  	unsigned int usage_count;
381  };
382  
383  #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
384  static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
385  	int line)
386  {
387  	DBG("%s:%d: r.dev        %llu:%llu\n", func, line,
388  		c->region->dev->bus_id, c->region->dev->dev_id);
389  	DBG("%s:%d: r.bus_addr   %lxh\n", func, line, c->region->bus_addr);
390  	DBG("%s:%d: r.page_size  %u\n", func, line, c->region->page_size);
391  	DBG("%s:%d: r.len        %lxh\n", func, line, c->region->len);
392  	DBG("%s:%d: r.offset     %lxh\n", func, line, c->region->offset);
393  	DBG("%s:%d: c.lpar_addr  %lxh\n", func, line, c->lpar_addr);
394  	DBG("%s:%d: c.bus_addr   %lxh\n", func, line, c->bus_addr);
395  	DBG("%s:%d: c.len        %lxh\n", func, line, c->len);
396  }
397  
398  static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
399  	unsigned long bus_addr, unsigned long len)
400  {
401  	struct dma_chunk *c;
402  	unsigned long aligned_bus = ALIGN_DOWN(bus_addr, 1 << r->page_size);
403  	unsigned long aligned_len = ALIGN(len+bus_addr-aligned_bus,
404  					      1 << r->page_size);
405  
406  	list_for_each_entry(c, &r->chunk_list.head, link) {
407  		/* intersection */
408  		if (aligned_bus >= c->bus_addr &&
409  		    aligned_bus + aligned_len <= c->bus_addr + c->len)
410  			return c;
411  
412  		/* below */
413  		if (aligned_bus + aligned_len <= c->bus_addr)
414  			continue;
415  
416  		/* above */
417  		if (aligned_bus >= c->bus_addr + c->len)
418  			continue;
419  
420  		/* we don't handle the multi-chunk case for now */
421  		dma_dump_chunk(c);
422  		BUG();
423  	}
424  	return NULL;
425  }
426  
427  static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
428  	unsigned long lpar_addr, unsigned long len)
429  {
430  	struct dma_chunk *c;
431  	unsigned long aligned_lpar = ALIGN_DOWN(lpar_addr, 1 << r->page_size);
432  	unsigned long aligned_len = ALIGN(len + lpar_addr - aligned_lpar,
433  					      1 << r->page_size);
434  
435  	list_for_each_entry(c, &r->chunk_list.head, link) {
436  		/* intersection */
437  		if (c->lpar_addr <= aligned_lpar &&
438  		    aligned_lpar < c->lpar_addr + c->len) {
439  			if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
440  				return c;
441  			else {
442  				dma_dump_chunk(c);
443  				BUG();
444  			}
445  		}
446  		/* below */
447  		if (aligned_lpar + aligned_len <= c->lpar_addr) {
448  			continue;
449  		}
450  		/* above */
451  		if (c->lpar_addr + c->len <= aligned_lpar) {
452  			continue;
453  		}
454  	}
455  	return NULL;
456  }
457  
458  static int dma_sb_free_chunk(struct dma_chunk *c)
459  {
460  	int result = 0;
461  
462  	if (c->bus_addr) {
463  		result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
464  			c->region->dev->dev_id, c->bus_addr, c->len);
465  		BUG_ON(result);
466  	}
467  
468  	kfree(c);
469  	return result;
470  }
471  
472  static int dma_ioc0_free_chunk(struct dma_chunk *c)
473  {
474  	int result = 0;
475  	int iopage;
476  	unsigned long offset;
477  	struct ps3_dma_region *r = c->region;
478  
479  	DBG("%s:start\n", __func__);
480  	for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
481  		offset = (1 << r->page_size) * iopage;
482  		/* put INVALID entry */
483  		result = lv1_put_iopte(0,
484  				       c->bus_addr + offset,
485  				       c->lpar_addr + offset,
486  				       r->ioid,
487  				       0);
488  		DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
489  		    c->bus_addr + offset,
490  		    c->lpar_addr + offset,
491  		    r->ioid);
492  
493  		if (result) {
494  			DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
495  			    __LINE__, ps3_result(result));
496  		}
497  	}
498  	kfree(c);
499  	DBG("%s:end\n", __func__);
500  	return result;
501  }
502  
503  /**
504   * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
505   * @r: Pointer to a struct ps3_dma_region.
506   * @phys_addr: Starting physical address of the area to map.
507   * @len: Length in bytes of the area to map.
508   * c_out: A pointer to receive an allocated struct dma_chunk for this area.
509   *
510   * This is the lowest level dma mapping routine, and is the one that will
511   * make the HV call to add the pages into the io controller address space.
512   */
513  
514  static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
515  	    unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
516  {
517  	int result;
518  	struct dma_chunk *c;
519  
520  	c = kzalloc(sizeof(*c), GFP_ATOMIC);
521  	if (!c) {
522  		result = -ENOMEM;
523  		goto fail_alloc;
524  	}
525  
526  	c->region = r;
527  	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
528  	c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
529  	c->len = len;
530  
531  	BUG_ON(iopte_flag != 0xf800000000000000UL);
532  	result = lv1_map_device_dma_region(c->region->dev->bus_id,
533  					   c->region->dev->dev_id, c->lpar_addr,
534  					   c->bus_addr, c->len, iopte_flag);
535  	if (result) {
536  		DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
537  			__func__, __LINE__, ps3_result(result));
538  		goto fail_map;
539  	}
540  
541  	list_add(&c->link, &r->chunk_list.head);
542  
543  	*c_out = c;
544  	return 0;
545  
546  fail_map:
547  	kfree(c);
548  fail_alloc:
549  	*c_out = NULL;
550  	DBG(" <- %s:%d\n", __func__, __LINE__);
551  	return result;
552  }
553  
554  static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
555  			      unsigned long len, struct dma_chunk **c_out,
556  			      u64 iopte_flag)
557  {
558  	int result;
559  	struct dma_chunk *c, *last;
560  	int iopage, pages;
561  	unsigned long offset;
562  
563  	DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
564  	    phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
565  	c = kzalloc(sizeof(*c), GFP_ATOMIC);
566  	if (!c) {
567  		result = -ENOMEM;
568  		goto fail_alloc;
569  	}
570  
571  	c->region = r;
572  	c->len = len;
573  	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
574  	/* allocate IO address */
575  	if (list_empty(&r->chunk_list.head)) {
576  		/* first one */
577  		c->bus_addr = r->bus_addr;
578  	} else {
579  		/* derive from last bus addr*/
580  		last  = list_entry(r->chunk_list.head.next,
581  				   struct dma_chunk, link);
582  		c->bus_addr = last->bus_addr + last->len;
583  		DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
584  		    last->bus_addr, last->len);
585  	}
586  
587  	/* FIXME: check whether length exceeds region size */
588  
589  	/* build ioptes for the area */
590  	pages = len >> r->page_size;
591  	DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
592  	    r->page_size, r->len, pages, iopte_flag);
593  	for (iopage = 0; iopage < pages; iopage++) {
594  		offset = (1 << r->page_size) * iopage;
595  		result = lv1_put_iopte(0,
596  				       c->bus_addr + offset,
597  				       c->lpar_addr + offset,
598  				       r->ioid,
599  				       iopte_flag);
600  		if (result) {
601  			pr_warn("%s:%d: lv1_put_iopte failed: %s\n",
602  				__func__, __LINE__, ps3_result(result));
603  			goto fail_map;
604  		}
605  		DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
606  		    iopage, c->bus_addr + offset, c->lpar_addr + offset,
607  		    r->ioid);
608  	}
609  
610  	/* be sure that last allocated one is inserted at head */
611  	list_add(&c->link, &r->chunk_list.head);
612  
613  	*c_out = c;
614  	DBG("%s: end\n", __func__);
615  	return 0;
616  
617  fail_map:
618  	for (iopage--; 0 <= iopage; iopage--) {
619  		lv1_put_iopte(0,
620  			      c->bus_addr + offset,
621  			      c->lpar_addr + offset,
622  			      r->ioid,
623  			      0);
624  	}
625  	kfree(c);
626  fail_alloc:
627  	*c_out = NULL;
628  	return result;
629  }
630  
631  /**
632   * dma_sb_region_create - Create a device dma region.
633   * @r: Pointer to a struct ps3_dma_region.
634   *
635   * This is the lowest level dma region create routine, and is the one that
636   * will make the HV call to create the region.
637   */
638  
639  static int dma_sb_region_create(struct ps3_dma_region *r)
640  {
641  	int result;
642  	u64 bus_addr;
643  
644  	DBG(" -> %s:%d:\n", __func__, __LINE__);
645  
646  	BUG_ON(!r);
647  
648  	if (!r->dev->bus_id) {
649  		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
650  			r->dev->bus_id, r->dev->dev_id);
651  		return 0;
652  	}
653  
654  	DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
655  	    __LINE__, r->len, r->page_size, r->offset);
656  
657  	BUG_ON(!r->len);
658  	BUG_ON(!r->page_size);
659  	BUG_ON(!r->region_ops);
660  
661  	INIT_LIST_HEAD(&r->chunk_list.head);
662  	spin_lock_init(&r->chunk_list.lock);
663  
664  	result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
665  		roundup_pow_of_two(r->len), r->page_size, r->region_type,
666  		&bus_addr);
667  	r->bus_addr = bus_addr;
668  
669  	if (result) {
670  		DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
671  			__func__, __LINE__, ps3_result(result));
672  		r->len = r->bus_addr = 0;
673  	}
674  
675  	return result;
676  }
677  
678  static int dma_ioc0_region_create(struct ps3_dma_region *r)
679  {
680  	int result;
681  	u64 bus_addr;
682  
683  	INIT_LIST_HEAD(&r->chunk_list.head);
684  	spin_lock_init(&r->chunk_list.lock);
685  
686  	result = lv1_allocate_io_segment(0,
687  					 r->len,
688  					 r->page_size,
689  					 &bus_addr);
690  	r->bus_addr = bus_addr;
691  	if (result) {
692  		DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
693  			__func__, __LINE__, ps3_result(result));
694  		r->len = r->bus_addr = 0;
695  	}
696  	DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
697  	    r->len, r->page_size, r->bus_addr);
698  	return result;
699  }
700  
701  /**
702   * dma_region_free - Free a device dma region.
703   * @r: Pointer to a struct ps3_dma_region.
704   *
705   * This is the lowest level dma region free routine, and is the one that
706   * will make the HV call to free the region.
707   */
708  
709  static int dma_sb_region_free(struct ps3_dma_region *r)
710  {
711  	int result;
712  	struct dma_chunk *c;
713  	struct dma_chunk *tmp;
714  
715  	BUG_ON(!r);
716  
717  	if (!r->dev->bus_id) {
718  		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
719  			r->dev->bus_id, r->dev->dev_id);
720  		return 0;
721  	}
722  
723  	list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
724  		list_del(&c->link);
725  		dma_sb_free_chunk(c);
726  	}
727  
728  	result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
729  		r->bus_addr);
730  
731  	if (result)
732  		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
733  			__func__, __LINE__, ps3_result(result));
734  
735  	r->bus_addr = 0;
736  
737  	return result;
738  }
739  
740  static int dma_ioc0_region_free(struct ps3_dma_region *r)
741  {
742  	int result;
743  	struct dma_chunk *c, *n;
744  
745  	DBG("%s: start\n", __func__);
746  	list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
747  		list_del(&c->link);
748  		dma_ioc0_free_chunk(c);
749  	}
750  
751  	result = lv1_release_io_segment(0, r->bus_addr);
752  
753  	if (result)
754  		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
755  			__func__, __LINE__, ps3_result(result));
756  
757  	r->bus_addr = 0;
758  	DBG("%s: end\n", __func__);
759  
760  	return result;
761  }
762  
763  /**
764   * dma_sb_map_area - Map an area of memory into a device dma region.
765   * @r: Pointer to a struct ps3_dma_region.
766   * @virt_addr: Starting virtual address of the area to map.
767   * @len: Length in bytes of the area to map.
768   * @bus_addr: A pointer to return the starting ioc bus address of the area to
769   * map.
770   *
771   * This is the common dma mapping routine.
772   */
773  
774  static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
775  	   unsigned long len, dma_addr_t *bus_addr,
776  	   u64 iopte_flag)
777  {
778  	int result;
779  	unsigned long flags;
780  	struct dma_chunk *c;
781  	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
782  		: virt_addr;
783  	unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
784  	unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
785  					      1 << r->page_size);
786  	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
787  
788  	if (!USE_DYNAMIC_DMA) {
789  		unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
790  		DBG(" -> %s:%d\n", __func__, __LINE__);
791  		DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
792  			virt_addr);
793  		DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
794  			phys_addr);
795  		DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
796  			lpar_addr);
797  		DBG("%s:%d len       %lxh\n", __func__, __LINE__, len);
798  		DBG("%s:%d bus_addr  %llxh (%lxh)\n", __func__, __LINE__,
799  		*bus_addr, len);
800  	}
801  
802  	spin_lock_irqsave(&r->chunk_list.lock, flags);
803  	c = dma_find_chunk(r, *bus_addr, len);
804  
805  	if (c) {
806  		DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
807  		dma_dump_chunk(c);
808  		c->usage_count++;
809  		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
810  		return 0;
811  	}
812  
813  	result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
814  
815  	if (result) {
816  		*bus_addr = 0;
817  		DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
818  			__func__, __LINE__, result);
819  		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
820  		return result;
821  	}
822  
823  	c->usage_count = 1;
824  
825  	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
826  	return result;
827  }
828  
829  static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
830  	     unsigned long len, dma_addr_t *bus_addr,
831  	     u64 iopte_flag)
832  {
833  	int result;
834  	unsigned long flags;
835  	struct dma_chunk *c;
836  	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
837  		: virt_addr;
838  	unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
839  	unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
840  					      1 << r->page_size);
841  
842  	DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
843  	    virt_addr, len);
844  	DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
845  	    phys_addr, aligned_phys, aligned_len);
846  
847  	spin_lock_irqsave(&r->chunk_list.lock, flags);
848  	c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
849  
850  	if (c) {
851  		/* FIXME */
852  		BUG();
853  		*bus_addr = c->bus_addr + phys_addr - aligned_phys;
854  		c->usage_count++;
855  		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
856  		return 0;
857  	}
858  
859  	result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
860  				    iopte_flag);
861  
862  	if (result) {
863  		*bus_addr = 0;
864  		DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
865  			__func__, __LINE__, result);
866  		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
867  		return result;
868  	}
869  	*bus_addr = c->bus_addr + phys_addr - aligned_phys;
870  	DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
871  	    virt_addr, phys_addr, aligned_phys, *bus_addr);
872  	c->usage_count = 1;
873  
874  	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
875  	return result;
876  }
877  
878  /**
879   * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
880   * @r: Pointer to a struct ps3_dma_region.
881   * @bus_addr: The starting ioc bus address of the area to unmap.
882   * @len: Length in bytes of the area to unmap.
883   *
884   * This is the common dma unmap routine.
885   */
886  
887  static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
888  	unsigned long len)
889  {
890  	unsigned long flags;
891  	struct dma_chunk *c;
892  
893  	spin_lock_irqsave(&r->chunk_list.lock, flags);
894  	c = dma_find_chunk(r, bus_addr, len);
895  
896  	if (!c) {
897  		unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
898  			1 << r->page_size);
899  		unsigned long aligned_len = ALIGN(len + bus_addr
900  			- aligned_bus, 1 << r->page_size);
901  		DBG("%s:%d: not found: bus_addr %llxh\n",
902  			__func__, __LINE__, bus_addr);
903  		DBG("%s:%d: not found: len %lxh\n",
904  			__func__, __LINE__, len);
905  		DBG("%s:%d: not found: aligned_bus %lxh\n",
906  			__func__, __LINE__, aligned_bus);
907  		DBG("%s:%d: not found: aligned_len %lxh\n",
908  			__func__, __LINE__, aligned_len);
909  		BUG();
910  	}
911  
912  	c->usage_count--;
913  
914  	if (!c->usage_count) {
915  		list_del(&c->link);
916  		dma_sb_free_chunk(c);
917  	}
918  
919  	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
920  	return 0;
921  }
922  
923  static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
924  			dma_addr_t bus_addr, unsigned long len)
925  {
926  	unsigned long flags;
927  	struct dma_chunk *c;
928  
929  	DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
930  	spin_lock_irqsave(&r->chunk_list.lock, flags);
931  	c = dma_find_chunk(r, bus_addr, len);
932  
933  	if (!c) {
934  		unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
935  							1 << r->page_size);
936  		unsigned long aligned_len = ALIGN(len + bus_addr
937  						      - aligned_bus,
938  						      1 << r->page_size);
939  		DBG("%s:%d: not found: bus_addr %llxh\n",
940  		    __func__, __LINE__, bus_addr);
941  		DBG("%s:%d: not found: len %lxh\n",
942  		    __func__, __LINE__, len);
943  		DBG("%s:%d: not found: aligned_bus %lxh\n",
944  		    __func__, __LINE__, aligned_bus);
945  		DBG("%s:%d: not found: aligned_len %lxh\n",
946  		    __func__, __LINE__, aligned_len);
947  		BUG();
948  	}
949  
950  	c->usage_count--;
951  
952  	if (!c->usage_count) {
953  		list_del(&c->link);
954  		dma_ioc0_free_chunk(c);
955  	}
956  
957  	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
958  	DBG("%s: end\n", __func__);
959  	return 0;
960  }
961  
962  /**
963   * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
964   * @r: Pointer to a struct ps3_dma_region.
965   *
966   * This routine creates an HV dma region for the device and maps all available
967   * ram into the io controller bus address space.
968   */
969  
970  static int dma_sb_region_create_linear(struct ps3_dma_region *r)
971  {
972  	int result;
973  	unsigned long virt_addr, len;
974  	dma_addr_t tmp;
975  
976  	if (r->len > 16*1024*1024) {	/* FIXME: need proper fix */
977  		/* force 16M dma pages for linear mapping */
978  		if (r->page_size != PS3_DMA_16M) {
979  			pr_info("%s:%d: forcing 16M pages for linear map\n",
980  				__func__, __LINE__);
981  			r->page_size = PS3_DMA_16M;
982  			r->len = ALIGN(r->len, 1 << r->page_size);
983  		}
984  	}
985  
986  	result = dma_sb_region_create(r);
987  	BUG_ON(result);
988  
989  	if (r->offset < map.rm.size) {
990  		/* Map (part of) 1st RAM chunk */
991  		virt_addr = map.rm.base + r->offset;
992  		len = map.rm.size - r->offset;
993  		if (len > r->len)
994  			len = r->len;
995  		result = dma_sb_map_area(r, virt_addr, len, &tmp,
996  			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
997  			CBE_IOPTE_M);
998  		BUG_ON(result);
999  	}
1000  
1001  	if (r->offset + r->len > map.rm.size) {
1002  		/* Map (part of) 2nd RAM chunk */
1003  		virt_addr = map.rm.size;
1004  		len = r->len;
1005  		if (r->offset >= map.rm.size)
1006  			virt_addr += r->offset - map.rm.size;
1007  		else
1008  			len -= map.rm.size - r->offset;
1009  		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1010  			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1011  			CBE_IOPTE_M);
1012  		BUG_ON(result);
1013  	}
1014  
1015  	return result;
1016  }
1017  
1018  /**
1019   * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1020   * @r: Pointer to a struct ps3_dma_region.
1021   *
1022   * This routine will unmap all mapped areas and free the HV dma region.
1023   */
1024  
1025  static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1026  {
1027  	int result;
1028  	dma_addr_t bus_addr;
1029  	unsigned long len, lpar_addr;
1030  
1031  	if (r->offset < map.rm.size) {
1032  		/* Unmap (part of) 1st RAM chunk */
1033  		lpar_addr = map.rm.base + r->offset;
1034  		len = map.rm.size - r->offset;
1035  		if (len > r->len)
1036  			len = r->len;
1037  		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1038  		result = dma_sb_unmap_area(r, bus_addr, len);
1039  		BUG_ON(result);
1040  	}
1041  
1042  	if (r->offset + r->len > map.rm.size) {
1043  		/* Unmap (part of) 2nd RAM chunk */
1044  		lpar_addr = map.r1.base;
1045  		len = r->len;
1046  		if (r->offset >= map.rm.size)
1047  			lpar_addr += r->offset - map.rm.size;
1048  		else
1049  			len -= map.rm.size - r->offset;
1050  		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1051  		result = dma_sb_unmap_area(r, bus_addr, len);
1052  		BUG_ON(result);
1053  	}
1054  
1055  	result = dma_sb_region_free(r);
1056  	BUG_ON(result);
1057  
1058  	return result;
1059  }
1060  
1061  /**
1062   * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1063   * @r: Pointer to a struct ps3_dma_region.
1064   * @virt_addr: Starting virtual address of the area to map.
1065   * @len: Length in bytes of the area to map.
1066   * @bus_addr: A pointer to return the starting ioc bus address of the area to
1067   * map.
1068   *
1069   * This routine just returns the corresponding bus address.  Actual mapping
1070   * occurs in dma_region_create_linear().
1071   */
1072  
1073  static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1074  	unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1075  	u64 iopte_flag)
1076  {
1077  	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1078  		: virt_addr;
1079  	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1080  	return 0;
1081  }
1082  
1083  /**
1084   * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1085   * @r: Pointer to a struct ps3_dma_region.
1086   * @bus_addr: The starting ioc bus address of the area to unmap.
1087   * @len: Length in bytes of the area to unmap.
1088   *
1089   * This routine does nothing.  Unmapping occurs in dma_sb_region_free_linear().
1090   */
1091  
1092  static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1093  	dma_addr_t bus_addr, unsigned long len)
1094  {
1095  	return 0;
1096  };
1097  
1098  static const struct ps3_dma_region_ops ps3_dma_sb_region_ops =  {
1099  	.create = dma_sb_region_create,
1100  	.free = dma_sb_region_free,
1101  	.map = dma_sb_map_area,
1102  	.unmap = dma_sb_unmap_area
1103  };
1104  
1105  static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1106  	.create = dma_sb_region_create_linear,
1107  	.free = dma_sb_region_free_linear,
1108  	.map = dma_sb_map_area_linear,
1109  	.unmap = dma_sb_unmap_area_linear
1110  };
1111  
1112  static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1113  	.create = dma_ioc0_region_create,
1114  	.free = dma_ioc0_region_free,
1115  	.map = dma_ioc0_map_area,
1116  	.unmap = dma_ioc0_unmap_area
1117  };
1118  
1119  int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1120  	struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1121  	enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1122  {
1123  	unsigned long lpar_addr;
1124  	int result;
1125  
1126  	lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1127  
1128  	r->dev = dev;
1129  	r->page_size = page_size;
1130  	r->region_type = region_type;
1131  	r->offset = lpar_addr;
1132  	if (r->offset >= map.rm.size)
1133  		r->offset -= map.r1.offset;
1134  	r->len = len ? len : ALIGN(map.total, 1 << r->page_size);
1135  
1136  	dev->core.dma_mask = &r->dma_mask;
1137  
1138  	result = dma_set_mask_and_coherent(&dev->core, DMA_BIT_MASK(32));
1139  
1140  	if (result < 0) {
1141  		dev_err(&dev->core, "%s:%d: dma_set_mask_and_coherent failed: %d\n",
1142  			__func__, __LINE__, result);
1143  		return result;
1144  	}
1145  
1146  	switch (dev->dev_type) {
1147  	case PS3_DEVICE_TYPE_SB:
1148  		r->region_ops =  (USE_DYNAMIC_DMA)
1149  			? &ps3_dma_sb_region_ops
1150  			: &ps3_dma_sb_region_linear_ops;
1151  		break;
1152  	case PS3_DEVICE_TYPE_IOC0:
1153  		r->region_ops = &ps3_dma_ioc0_region_ops;
1154  		break;
1155  	default:
1156  		BUG();
1157  		return -EINVAL;
1158  	}
1159  	return 0;
1160  }
1161  EXPORT_SYMBOL(ps3_dma_region_init);
1162  
1163  int ps3_dma_region_create(struct ps3_dma_region *r)
1164  {
1165  	BUG_ON(!r);
1166  	BUG_ON(!r->region_ops);
1167  	BUG_ON(!r->region_ops->create);
1168  	return r->region_ops->create(r);
1169  }
1170  EXPORT_SYMBOL(ps3_dma_region_create);
1171  
1172  int ps3_dma_region_free(struct ps3_dma_region *r)
1173  {
1174  	BUG_ON(!r);
1175  	BUG_ON(!r->region_ops);
1176  	BUG_ON(!r->region_ops->free);
1177  	return r->region_ops->free(r);
1178  }
1179  EXPORT_SYMBOL(ps3_dma_region_free);
1180  
1181  int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1182  	unsigned long len, dma_addr_t *bus_addr,
1183  	u64 iopte_flag)
1184  {
1185  	return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1186  }
1187  
1188  int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1189  	unsigned long len)
1190  {
1191  	return r->region_ops->unmap(r, bus_addr, len);
1192  }
1193  
1194  /*============================================================================*/
1195  /* system startup routines                                                    */
1196  /*============================================================================*/
1197  
1198  /**
1199   * ps3_mm_init - initialize the address space state variables
1200   */
1201  
1202  void __init ps3_mm_init(void)
1203  {
1204  	int result;
1205  
1206  	DBG(" -> %s:%d\n", __func__, __LINE__);
1207  
1208  	result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1209  		&map.total);
1210  
1211  	if (result)
1212  		panic("ps3_repository_read_mm_info() failed");
1213  
1214  	map.rm.offset = map.rm.base;
1215  	map.vas_id = map.htab_size = 0;
1216  
1217  	/* this implementation assumes map.rm.base is zero */
1218  
1219  	BUG_ON(map.rm.base);
1220  	BUG_ON(!map.rm.size);
1221  
1222  	/* Check if we got the highmem region from an earlier boot step */
1223  
1224  	if (ps3_mm_get_repository_highmem(&map.r1)) {
1225  		result = ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1226  
1227  		if (!result)
1228  			ps3_mm_set_repository_highmem(&map.r1);
1229  	}
1230  
1231  	/* correct map.total for the real total amount of memory we use */
1232  	map.total = map.rm.size + map.r1.size;
1233  
1234  	if (!map.r1.size) {
1235  		DBG("%s:%d: No highmem region found\n", __func__, __LINE__);
1236  	} else {
1237  		DBG("%s:%d: Adding highmem region: %llxh %llxh\n",
1238  			__func__, __LINE__, map.rm.size,
1239  			map.total - map.rm.size);
1240  		memblock_add(map.rm.size, map.total - map.rm.size);
1241  	}
1242  
1243  	DBG(" <- %s:%d\n", __func__, __LINE__);
1244  }
1245  
1246  /**
1247   * ps3_mm_shutdown - final cleanup of address space
1248   *
1249   * called during kexec sequence with MMU off.
1250   */
1251  
1252  notrace void ps3_mm_shutdown(void)
1253  {
1254  	ps3_mm_region_destroy(&map.r1);
1255  }
1256