1 /* 2 * PS3 address space management. 3 * 4 * Copyright (C) 2006 Sony Computer Entertainment Inc. 5 * Copyright 2006 Sony Corp. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; version 2 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/export.h> 23 #include <linux/memblock.h> 24 #include <linux/slab.h> 25 26 #include <asm/cell-regs.h> 27 #include <asm/firmware.h> 28 #include <asm/prom.h> 29 #include <asm/udbg.h> 30 #include <asm/lv1call.h> 31 #include <asm/setup.h> 32 33 #include "platform.h" 34 35 #if defined(DEBUG) 36 #define DBG udbg_printf 37 #else 38 #define DBG pr_devel 39 #endif 40 41 enum { 42 #if defined(CONFIG_PS3_DYNAMIC_DMA) 43 USE_DYNAMIC_DMA = 1, 44 #else 45 USE_DYNAMIC_DMA = 0, 46 #endif 47 }; 48 49 enum { 50 PAGE_SHIFT_4K = 12U, 51 PAGE_SHIFT_64K = 16U, 52 PAGE_SHIFT_16M = 24U, 53 }; 54 55 static unsigned long make_page_sizes(unsigned long a, unsigned long b) 56 { 57 return (a << 56) | (b << 48); 58 } 59 60 enum { 61 ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04, 62 ALLOCATE_MEMORY_ADDR_ZERO = 0X08, 63 }; 64 65 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */ 66 67 enum { 68 HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */ 69 HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */ 70 }; 71 72 /*============================================================================*/ 73 /* virtual address space routines */ 74 /*============================================================================*/ 75 76 /** 77 * struct mem_region - memory region structure 78 * @base: base address 79 * @size: size in bytes 80 * @offset: difference between base and rm.size 81 * @destroy: flag if region should be destroyed upon shutdown 82 */ 83 84 struct mem_region { 85 u64 base; 86 u64 size; 87 unsigned long offset; 88 int destroy; 89 }; 90 91 /** 92 * struct map - address space state variables holder 93 * @total: total memory available as reported by HV 94 * @vas_id - HV virtual address space id 95 * @htab_size: htab size in bytes 96 * 97 * The HV virtual address space (vas) allows for hotplug memory regions. 98 * Memory regions can be created and destroyed in the vas at runtime. 99 * @rm: real mode (bootmem) region 100 * @r1: highmem region(s) 101 * 102 * ps3 addresses 103 * virt_addr: a cpu 'translated' effective address 104 * phys_addr: an address in what Linux thinks is the physical address space 105 * lpar_addr: an address in the HV virtual address space 106 * bus_addr: an io controller 'translated' address on a device bus 107 */ 108 109 struct map { 110 u64 total; 111 u64 vas_id; 112 u64 htab_size; 113 struct mem_region rm; 114 struct mem_region r1; 115 }; 116 117 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__) 118 static void __maybe_unused _debug_dump_map(const struct map *m, 119 const char *func, int line) 120 { 121 DBG("%s:%d: map.total = %llxh\n", func, line, m->total); 122 DBG("%s:%d: map.rm.size = %llxh\n", func, line, m->rm.size); 123 DBG("%s:%d: map.vas_id = %llu\n", func, line, m->vas_id); 124 DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size); 125 DBG("%s:%d: map.r1.base = %llxh\n", func, line, m->r1.base); 126 DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset); 127 DBG("%s:%d: map.r1.size = %llxh\n", func, line, m->r1.size); 128 } 129 130 static struct map map; 131 132 /** 133 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address 134 * @phys_addr: linux physical address 135 */ 136 137 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr) 138 { 139 BUG_ON(is_kernel_addr(phys_addr)); 140 return (phys_addr < map.rm.size || phys_addr >= map.total) 141 ? phys_addr : phys_addr + map.r1.offset; 142 } 143 144 EXPORT_SYMBOL(ps3_mm_phys_to_lpar); 145 146 /** 147 * ps3_mm_vas_create - create the virtual address space 148 */ 149 150 void __init ps3_mm_vas_create(unsigned long* htab_size) 151 { 152 int result; 153 u64 start_address; 154 u64 size; 155 u64 access_right; 156 u64 max_page_size; 157 u64 flags; 158 159 result = lv1_query_logical_partition_address_region_info(0, 160 &start_address, &size, &access_right, &max_page_size, 161 &flags); 162 163 if (result) { 164 DBG("%s:%d: lv1_query_logical_partition_address_region_info " 165 "failed: %s\n", __func__, __LINE__, 166 ps3_result(result)); 167 goto fail; 168 } 169 170 if (max_page_size < PAGE_SHIFT_16M) { 171 DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__, 172 max_page_size); 173 goto fail; 174 } 175 176 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX); 177 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN); 178 179 result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE, 180 2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K), 181 &map.vas_id, &map.htab_size); 182 183 if (result) { 184 DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n", 185 __func__, __LINE__, ps3_result(result)); 186 goto fail; 187 } 188 189 result = lv1_select_virtual_address_space(map.vas_id); 190 191 if (result) { 192 DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n", 193 __func__, __LINE__, ps3_result(result)); 194 goto fail; 195 } 196 197 *htab_size = map.htab_size; 198 199 debug_dump_map(&map); 200 201 return; 202 203 fail: 204 panic("ps3_mm_vas_create failed"); 205 } 206 207 /** 208 * ps3_mm_vas_destroy - 209 */ 210 211 void ps3_mm_vas_destroy(void) 212 { 213 int result; 214 215 DBG("%s:%d: map.vas_id = %llu\n", __func__, __LINE__, map.vas_id); 216 217 if (map.vas_id) { 218 result = lv1_select_virtual_address_space(0); 219 BUG_ON(result); 220 result = lv1_destruct_virtual_address_space(map.vas_id); 221 BUG_ON(result); 222 map.vas_id = 0; 223 } 224 } 225 226 static int ps3_mm_get_repository_highmem(struct mem_region *r) 227 { 228 int result; 229 230 /* Assume a single highmem region. */ 231 232 result = ps3_repository_read_highmem_info(0, &r->base, &r->size); 233 234 if (result) 235 goto zero_region; 236 237 if (!r->base || !r->size) { 238 result = -1; 239 goto zero_region; 240 } 241 242 r->offset = r->base - map.rm.size; 243 244 DBG("%s:%d: Found high region in repository: %llxh %llxh\n", 245 __func__, __LINE__, r->base, r->size); 246 247 return 0; 248 249 zero_region: 250 DBG("%s:%d: No high region in repository.\n", __func__, __LINE__); 251 252 r->size = r->base = r->offset = 0; 253 return result; 254 } 255 256 static int ps3_mm_set_repository_highmem(const struct mem_region *r) 257 { 258 /* Assume a single highmem region. */ 259 260 return r ? ps3_repository_write_highmem_info(0, r->base, r->size) : 261 ps3_repository_write_highmem_info(0, 0, 0); 262 } 263 264 /** 265 * ps3_mm_region_create - create a memory region in the vas 266 * @r: pointer to a struct mem_region to accept initialized values 267 * @size: requested region size 268 * 269 * This implementation creates the region with the vas large page size. 270 * @size is rounded down to a multiple of the vas large page size. 271 */ 272 273 static int ps3_mm_region_create(struct mem_region *r, unsigned long size) 274 { 275 int result; 276 u64 muid; 277 278 r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M); 279 280 DBG("%s:%d requested %lxh\n", __func__, __LINE__, size); 281 DBG("%s:%d actual %llxh\n", __func__, __LINE__, r->size); 282 DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__, 283 size - r->size, (size - r->size) / 1024 / 1024); 284 285 if (r->size == 0) { 286 DBG("%s:%d: size == 0\n", __func__, __LINE__); 287 result = -1; 288 goto zero_region; 289 } 290 291 result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0, 292 ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid); 293 294 if (result || r->base < map.rm.size) { 295 DBG("%s:%d: lv1_allocate_memory failed: %s\n", 296 __func__, __LINE__, ps3_result(result)); 297 goto zero_region; 298 } 299 300 r->destroy = 1; 301 r->offset = r->base - map.rm.size; 302 return result; 303 304 zero_region: 305 r->size = r->base = r->offset = 0; 306 return result; 307 } 308 309 /** 310 * ps3_mm_region_destroy - destroy a memory region 311 * @r: pointer to struct mem_region 312 */ 313 314 static void ps3_mm_region_destroy(struct mem_region *r) 315 { 316 int result; 317 318 if (!r->destroy) { 319 pr_info("%s:%d: Not destroying high region: %llxh %llxh\n", 320 __func__, __LINE__, r->base, r->size); 321 return; 322 } 323 324 DBG("%s:%d: r->base = %llxh\n", __func__, __LINE__, r->base); 325 326 if (r->base) { 327 result = lv1_release_memory(r->base); 328 BUG_ON(result); 329 r->size = r->base = r->offset = 0; 330 map.total = map.rm.size; 331 } 332 ps3_mm_set_repository_highmem(NULL); 333 } 334 335 /*============================================================================*/ 336 /* dma routines */ 337 /*============================================================================*/ 338 339 /** 340 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address. 341 * @r: pointer to dma region structure 342 * @lpar_addr: HV lpar address 343 */ 344 345 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r, 346 unsigned long lpar_addr) 347 { 348 if (lpar_addr >= map.rm.size) 349 lpar_addr -= map.r1.offset; 350 BUG_ON(lpar_addr < r->offset); 351 BUG_ON(lpar_addr >= r->offset + r->len); 352 return r->bus_addr + lpar_addr - r->offset; 353 } 354 355 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__) 356 static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r, 357 const char *func, int line) 358 { 359 DBG("%s:%d: dev %llu:%llu\n", func, line, r->dev->bus_id, 360 r->dev->dev_id); 361 DBG("%s:%d: page_size %u\n", func, line, r->page_size); 362 DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr); 363 DBG("%s:%d: len %lxh\n", func, line, r->len); 364 DBG("%s:%d: offset %lxh\n", func, line, r->offset); 365 } 366 367 /** 368 * dma_chunk - A chunk of dma pages mapped by the io controller. 369 * @region - The dma region that owns this chunk. 370 * @lpar_addr: Starting lpar address of the area to map. 371 * @bus_addr: Starting ioc bus address of the area to map. 372 * @len: Length in bytes of the area to map. 373 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the 374 * list of all chuncks owned by the region. 375 * 376 * This implementation uses a very simple dma page manager 377 * based on the dma_chunk structure. This scheme assumes 378 * that all drivers use very well behaved dma ops. 379 */ 380 381 struct dma_chunk { 382 struct ps3_dma_region *region; 383 unsigned long lpar_addr; 384 unsigned long bus_addr; 385 unsigned long len; 386 struct list_head link; 387 unsigned int usage_count; 388 }; 389 390 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__) 391 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func, 392 int line) 393 { 394 DBG("%s:%d: r.dev %llu:%llu\n", func, line, 395 c->region->dev->bus_id, c->region->dev->dev_id); 396 DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr); 397 DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size); 398 DBG("%s:%d: r.len %lxh\n", func, line, c->region->len); 399 DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset); 400 DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr); 401 DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr); 402 DBG("%s:%d: c.len %lxh\n", func, line, c->len); 403 } 404 405 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r, 406 unsigned long bus_addr, unsigned long len) 407 { 408 struct dma_chunk *c; 409 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size); 410 unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus, 411 1 << r->page_size); 412 413 list_for_each_entry(c, &r->chunk_list.head, link) { 414 /* intersection */ 415 if (aligned_bus >= c->bus_addr && 416 aligned_bus + aligned_len <= c->bus_addr + c->len) 417 return c; 418 419 /* below */ 420 if (aligned_bus + aligned_len <= c->bus_addr) 421 continue; 422 423 /* above */ 424 if (aligned_bus >= c->bus_addr + c->len) 425 continue; 426 427 /* we don't handle the multi-chunk case for now */ 428 dma_dump_chunk(c); 429 BUG(); 430 } 431 return NULL; 432 } 433 434 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r, 435 unsigned long lpar_addr, unsigned long len) 436 { 437 struct dma_chunk *c; 438 unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size); 439 unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar, 440 1 << r->page_size); 441 442 list_for_each_entry(c, &r->chunk_list.head, link) { 443 /* intersection */ 444 if (c->lpar_addr <= aligned_lpar && 445 aligned_lpar < c->lpar_addr + c->len) { 446 if (aligned_lpar + aligned_len <= c->lpar_addr + c->len) 447 return c; 448 else { 449 dma_dump_chunk(c); 450 BUG(); 451 } 452 } 453 /* below */ 454 if (aligned_lpar + aligned_len <= c->lpar_addr) { 455 continue; 456 } 457 /* above */ 458 if (c->lpar_addr + c->len <= aligned_lpar) { 459 continue; 460 } 461 } 462 return NULL; 463 } 464 465 static int dma_sb_free_chunk(struct dma_chunk *c) 466 { 467 int result = 0; 468 469 if (c->bus_addr) { 470 result = lv1_unmap_device_dma_region(c->region->dev->bus_id, 471 c->region->dev->dev_id, c->bus_addr, c->len); 472 BUG_ON(result); 473 } 474 475 kfree(c); 476 return result; 477 } 478 479 static int dma_ioc0_free_chunk(struct dma_chunk *c) 480 { 481 int result = 0; 482 int iopage; 483 unsigned long offset; 484 struct ps3_dma_region *r = c->region; 485 486 DBG("%s:start\n", __func__); 487 for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) { 488 offset = (1 << r->page_size) * iopage; 489 /* put INVALID entry */ 490 result = lv1_put_iopte(0, 491 c->bus_addr + offset, 492 c->lpar_addr + offset, 493 r->ioid, 494 0); 495 DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__, 496 c->bus_addr + offset, 497 c->lpar_addr + offset, 498 r->ioid); 499 500 if (result) { 501 DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__, 502 __LINE__, ps3_result(result)); 503 } 504 } 505 kfree(c); 506 DBG("%s:end\n", __func__); 507 return result; 508 } 509 510 /** 511 * dma_sb_map_pages - Maps dma pages into the io controller bus address space. 512 * @r: Pointer to a struct ps3_dma_region. 513 * @phys_addr: Starting physical address of the area to map. 514 * @len: Length in bytes of the area to map. 515 * c_out: A pointer to receive an allocated struct dma_chunk for this area. 516 * 517 * This is the lowest level dma mapping routine, and is the one that will 518 * make the HV call to add the pages into the io controller address space. 519 */ 520 521 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr, 522 unsigned long len, struct dma_chunk **c_out, u64 iopte_flag) 523 { 524 int result; 525 struct dma_chunk *c; 526 527 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC); 528 529 if (!c) { 530 result = -ENOMEM; 531 goto fail_alloc; 532 } 533 534 c->region = r; 535 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 536 c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr); 537 c->len = len; 538 539 BUG_ON(iopte_flag != 0xf800000000000000UL); 540 result = lv1_map_device_dma_region(c->region->dev->bus_id, 541 c->region->dev->dev_id, c->lpar_addr, 542 c->bus_addr, c->len, iopte_flag); 543 if (result) { 544 DBG("%s:%d: lv1_map_device_dma_region failed: %s\n", 545 __func__, __LINE__, ps3_result(result)); 546 goto fail_map; 547 } 548 549 list_add(&c->link, &r->chunk_list.head); 550 551 *c_out = c; 552 return 0; 553 554 fail_map: 555 kfree(c); 556 fail_alloc: 557 *c_out = NULL; 558 DBG(" <- %s:%d\n", __func__, __LINE__); 559 return result; 560 } 561 562 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr, 563 unsigned long len, struct dma_chunk **c_out, 564 u64 iopte_flag) 565 { 566 int result; 567 struct dma_chunk *c, *last; 568 int iopage, pages; 569 unsigned long offset; 570 571 DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__, 572 phys_addr, ps3_mm_phys_to_lpar(phys_addr), len); 573 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC); 574 575 if (!c) { 576 result = -ENOMEM; 577 goto fail_alloc; 578 } 579 580 c->region = r; 581 c->len = len; 582 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 583 /* allocate IO address */ 584 if (list_empty(&r->chunk_list.head)) { 585 /* first one */ 586 c->bus_addr = r->bus_addr; 587 } else { 588 /* derive from last bus addr*/ 589 last = list_entry(r->chunk_list.head.next, 590 struct dma_chunk, link); 591 c->bus_addr = last->bus_addr + last->len; 592 DBG("%s: last bus=%#lx, len=%#lx\n", __func__, 593 last->bus_addr, last->len); 594 } 595 596 /* FIXME: check whether length exceeds region size */ 597 598 /* build ioptes for the area */ 599 pages = len >> r->page_size; 600 DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__, 601 r->page_size, r->len, pages, iopte_flag); 602 for (iopage = 0; iopage < pages; iopage++) { 603 offset = (1 << r->page_size) * iopage; 604 result = lv1_put_iopte(0, 605 c->bus_addr + offset, 606 c->lpar_addr + offset, 607 r->ioid, 608 iopte_flag); 609 if (result) { 610 pr_warning("%s:%d: lv1_put_iopte failed: %s\n", 611 __func__, __LINE__, ps3_result(result)); 612 goto fail_map; 613 } 614 DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__, 615 iopage, c->bus_addr + offset, c->lpar_addr + offset, 616 r->ioid); 617 } 618 619 /* be sure that last allocated one is inserted at head */ 620 list_add(&c->link, &r->chunk_list.head); 621 622 *c_out = c; 623 DBG("%s: end\n", __func__); 624 return 0; 625 626 fail_map: 627 for (iopage--; 0 <= iopage; iopage--) { 628 lv1_put_iopte(0, 629 c->bus_addr + offset, 630 c->lpar_addr + offset, 631 r->ioid, 632 0); 633 } 634 kfree(c); 635 fail_alloc: 636 *c_out = NULL; 637 return result; 638 } 639 640 /** 641 * dma_sb_region_create - Create a device dma region. 642 * @r: Pointer to a struct ps3_dma_region. 643 * 644 * This is the lowest level dma region create routine, and is the one that 645 * will make the HV call to create the region. 646 */ 647 648 static int dma_sb_region_create(struct ps3_dma_region *r) 649 { 650 int result; 651 u64 bus_addr; 652 653 DBG(" -> %s:%d:\n", __func__, __LINE__); 654 655 BUG_ON(!r); 656 657 if (!r->dev->bus_id) { 658 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__, 659 r->dev->bus_id, r->dev->dev_id); 660 return 0; 661 } 662 663 DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__, 664 __LINE__, r->len, r->page_size, r->offset); 665 666 BUG_ON(!r->len); 667 BUG_ON(!r->page_size); 668 BUG_ON(!r->region_ops); 669 670 INIT_LIST_HEAD(&r->chunk_list.head); 671 spin_lock_init(&r->chunk_list.lock); 672 673 result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id, 674 roundup_pow_of_two(r->len), r->page_size, r->region_type, 675 &bus_addr); 676 r->bus_addr = bus_addr; 677 678 if (result) { 679 DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n", 680 __func__, __LINE__, ps3_result(result)); 681 r->len = r->bus_addr = 0; 682 } 683 684 return result; 685 } 686 687 static int dma_ioc0_region_create(struct ps3_dma_region *r) 688 { 689 int result; 690 u64 bus_addr; 691 692 INIT_LIST_HEAD(&r->chunk_list.head); 693 spin_lock_init(&r->chunk_list.lock); 694 695 result = lv1_allocate_io_segment(0, 696 r->len, 697 r->page_size, 698 &bus_addr); 699 r->bus_addr = bus_addr; 700 if (result) { 701 DBG("%s:%d: lv1_allocate_io_segment failed: %s\n", 702 __func__, __LINE__, ps3_result(result)); 703 r->len = r->bus_addr = 0; 704 } 705 DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__, 706 r->len, r->page_size, r->bus_addr); 707 return result; 708 } 709 710 /** 711 * dma_region_free - Free a device dma region. 712 * @r: Pointer to a struct ps3_dma_region. 713 * 714 * This is the lowest level dma region free routine, and is the one that 715 * will make the HV call to free the region. 716 */ 717 718 static int dma_sb_region_free(struct ps3_dma_region *r) 719 { 720 int result; 721 struct dma_chunk *c; 722 struct dma_chunk *tmp; 723 724 BUG_ON(!r); 725 726 if (!r->dev->bus_id) { 727 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__, 728 r->dev->bus_id, r->dev->dev_id); 729 return 0; 730 } 731 732 list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) { 733 list_del(&c->link); 734 dma_sb_free_chunk(c); 735 } 736 737 result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id, 738 r->bus_addr); 739 740 if (result) 741 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n", 742 __func__, __LINE__, ps3_result(result)); 743 744 r->bus_addr = 0; 745 746 return result; 747 } 748 749 static int dma_ioc0_region_free(struct ps3_dma_region *r) 750 { 751 int result; 752 struct dma_chunk *c, *n; 753 754 DBG("%s: start\n", __func__); 755 list_for_each_entry_safe(c, n, &r->chunk_list.head, link) { 756 list_del(&c->link); 757 dma_ioc0_free_chunk(c); 758 } 759 760 result = lv1_release_io_segment(0, r->bus_addr); 761 762 if (result) 763 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n", 764 __func__, __LINE__, ps3_result(result)); 765 766 r->bus_addr = 0; 767 DBG("%s: end\n", __func__); 768 769 return result; 770 } 771 772 /** 773 * dma_sb_map_area - Map an area of memory into a device dma region. 774 * @r: Pointer to a struct ps3_dma_region. 775 * @virt_addr: Starting virtual address of the area to map. 776 * @len: Length in bytes of the area to map. 777 * @bus_addr: A pointer to return the starting ioc bus address of the area to 778 * map. 779 * 780 * This is the common dma mapping routine. 781 */ 782 783 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr, 784 unsigned long len, dma_addr_t *bus_addr, 785 u64 iopte_flag) 786 { 787 int result; 788 unsigned long flags; 789 struct dma_chunk *c; 790 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 791 : virt_addr; 792 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size); 793 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys, 794 1 << r->page_size); 795 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr)); 796 797 if (!USE_DYNAMIC_DMA) { 798 unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr); 799 DBG(" -> %s:%d\n", __func__, __LINE__); 800 DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__, 801 virt_addr); 802 DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__, 803 phys_addr); 804 DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__, 805 lpar_addr); 806 DBG("%s:%d len %lxh\n", __func__, __LINE__, len); 807 DBG("%s:%d bus_addr %llxh (%lxh)\n", __func__, __LINE__, 808 *bus_addr, len); 809 } 810 811 spin_lock_irqsave(&r->chunk_list.lock, flags); 812 c = dma_find_chunk(r, *bus_addr, len); 813 814 if (c) { 815 DBG("%s:%d: reusing mapped chunk", __func__, __LINE__); 816 dma_dump_chunk(c); 817 c->usage_count++; 818 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 819 return 0; 820 } 821 822 result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag); 823 824 if (result) { 825 *bus_addr = 0; 826 DBG("%s:%d: dma_sb_map_pages failed (%d)\n", 827 __func__, __LINE__, result); 828 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 829 return result; 830 } 831 832 c->usage_count = 1; 833 834 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 835 return result; 836 } 837 838 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr, 839 unsigned long len, dma_addr_t *bus_addr, 840 u64 iopte_flag) 841 { 842 int result; 843 unsigned long flags; 844 struct dma_chunk *c; 845 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 846 : virt_addr; 847 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size); 848 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys, 849 1 << r->page_size); 850 851 DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__, 852 virt_addr, len); 853 DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__, 854 phys_addr, aligned_phys, aligned_len); 855 856 spin_lock_irqsave(&r->chunk_list.lock, flags); 857 c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len); 858 859 if (c) { 860 /* FIXME */ 861 BUG(); 862 *bus_addr = c->bus_addr + phys_addr - aligned_phys; 863 c->usage_count++; 864 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 865 return 0; 866 } 867 868 result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c, 869 iopte_flag); 870 871 if (result) { 872 *bus_addr = 0; 873 DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n", 874 __func__, __LINE__, result); 875 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 876 return result; 877 } 878 *bus_addr = c->bus_addr + phys_addr - aligned_phys; 879 DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__, 880 virt_addr, phys_addr, aligned_phys, *bus_addr); 881 c->usage_count = 1; 882 883 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 884 return result; 885 } 886 887 /** 888 * dma_sb_unmap_area - Unmap an area of memory from a device dma region. 889 * @r: Pointer to a struct ps3_dma_region. 890 * @bus_addr: The starting ioc bus address of the area to unmap. 891 * @len: Length in bytes of the area to unmap. 892 * 893 * This is the common dma unmap routine. 894 */ 895 896 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr, 897 unsigned long len) 898 { 899 unsigned long flags; 900 struct dma_chunk *c; 901 902 spin_lock_irqsave(&r->chunk_list.lock, flags); 903 c = dma_find_chunk(r, bus_addr, len); 904 905 if (!c) { 906 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 907 1 << r->page_size); 908 unsigned long aligned_len = _ALIGN_UP(len + bus_addr 909 - aligned_bus, 1 << r->page_size); 910 DBG("%s:%d: not found: bus_addr %llxh\n", 911 __func__, __LINE__, bus_addr); 912 DBG("%s:%d: not found: len %lxh\n", 913 __func__, __LINE__, len); 914 DBG("%s:%d: not found: aligned_bus %lxh\n", 915 __func__, __LINE__, aligned_bus); 916 DBG("%s:%d: not found: aligned_len %lxh\n", 917 __func__, __LINE__, aligned_len); 918 BUG(); 919 } 920 921 c->usage_count--; 922 923 if (!c->usage_count) { 924 list_del(&c->link); 925 dma_sb_free_chunk(c); 926 } 927 928 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 929 return 0; 930 } 931 932 static int dma_ioc0_unmap_area(struct ps3_dma_region *r, 933 dma_addr_t bus_addr, unsigned long len) 934 { 935 unsigned long flags; 936 struct dma_chunk *c; 937 938 DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len); 939 spin_lock_irqsave(&r->chunk_list.lock, flags); 940 c = dma_find_chunk(r, bus_addr, len); 941 942 if (!c) { 943 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 944 1 << r->page_size); 945 unsigned long aligned_len = _ALIGN_UP(len + bus_addr 946 - aligned_bus, 947 1 << r->page_size); 948 DBG("%s:%d: not found: bus_addr %llxh\n", 949 __func__, __LINE__, bus_addr); 950 DBG("%s:%d: not found: len %lxh\n", 951 __func__, __LINE__, len); 952 DBG("%s:%d: not found: aligned_bus %lxh\n", 953 __func__, __LINE__, aligned_bus); 954 DBG("%s:%d: not found: aligned_len %lxh\n", 955 __func__, __LINE__, aligned_len); 956 BUG(); 957 } 958 959 c->usage_count--; 960 961 if (!c->usage_count) { 962 list_del(&c->link); 963 dma_ioc0_free_chunk(c); 964 } 965 966 spin_unlock_irqrestore(&r->chunk_list.lock, flags); 967 DBG("%s: end\n", __func__); 968 return 0; 969 } 970 971 /** 972 * dma_sb_region_create_linear - Setup a linear dma mapping for a device. 973 * @r: Pointer to a struct ps3_dma_region. 974 * 975 * This routine creates an HV dma region for the device and maps all available 976 * ram into the io controller bus address space. 977 */ 978 979 static int dma_sb_region_create_linear(struct ps3_dma_region *r) 980 { 981 int result; 982 unsigned long virt_addr, len; 983 dma_addr_t tmp; 984 985 if (r->len > 16*1024*1024) { /* FIXME: need proper fix */ 986 /* force 16M dma pages for linear mapping */ 987 if (r->page_size != PS3_DMA_16M) { 988 pr_info("%s:%d: forcing 16M pages for linear map\n", 989 __func__, __LINE__); 990 r->page_size = PS3_DMA_16M; 991 r->len = _ALIGN_UP(r->len, 1 << r->page_size); 992 } 993 } 994 995 result = dma_sb_region_create(r); 996 BUG_ON(result); 997 998 if (r->offset < map.rm.size) { 999 /* Map (part of) 1st RAM chunk */ 1000 virt_addr = map.rm.base + r->offset; 1001 len = map.rm.size - r->offset; 1002 if (len > r->len) 1003 len = r->len; 1004 result = dma_sb_map_area(r, virt_addr, len, &tmp, 1005 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW | 1006 CBE_IOPTE_M); 1007 BUG_ON(result); 1008 } 1009 1010 if (r->offset + r->len > map.rm.size) { 1011 /* Map (part of) 2nd RAM chunk */ 1012 virt_addr = map.rm.size; 1013 len = r->len; 1014 if (r->offset >= map.rm.size) 1015 virt_addr += r->offset - map.rm.size; 1016 else 1017 len -= map.rm.size - r->offset; 1018 result = dma_sb_map_area(r, virt_addr, len, &tmp, 1019 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW | 1020 CBE_IOPTE_M); 1021 BUG_ON(result); 1022 } 1023 1024 return result; 1025 } 1026 1027 /** 1028 * dma_sb_region_free_linear - Free a linear dma mapping for a device. 1029 * @r: Pointer to a struct ps3_dma_region. 1030 * 1031 * This routine will unmap all mapped areas and free the HV dma region. 1032 */ 1033 1034 static int dma_sb_region_free_linear(struct ps3_dma_region *r) 1035 { 1036 int result; 1037 dma_addr_t bus_addr; 1038 unsigned long len, lpar_addr; 1039 1040 if (r->offset < map.rm.size) { 1041 /* Unmap (part of) 1st RAM chunk */ 1042 lpar_addr = map.rm.base + r->offset; 1043 len = map.rm.size - r->offset; 1044 if (len > r->len) 1045 len = r->len; 1046 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr); 1047 result = dma_sb_unmap_area(r, bus_addr, len); 1048 BUG_ON(result); 1049 } 1050 1051 if (r->offset + r->len > map.rm.size) { 1052 /* Unmap (part of) 2nd RAM chunk */ 1053 lpar_addr = map.r1.base; 1054 len = r->len; 1055 if (r->offset >= map.rm.size) 1056 lpar_addr += r->offset - map.rm.size; 1057 else 1058 len -= map.rm.size - r->offset; 1059 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr); 1060 result = dma_sb_unmap_area(r, bus_addr, len); 1061 BUG_ON(result); 1062 } 1063 1064 result = dma_sb_region_free(r); 1065 BUG_ON(result); 1066 1067 return result; 1068 } 1069 1070 /** 1071 * dma_sb_map_area_linear - Map an area of memory into a device dma region. 1072 * @r: Pointer to a struct ps3_dma_region. 1073 * @virt_addr: Starting virtual address of the area to map. 1074 * @len: Length in bytes of the area to map. 1075 * @bus_addr: A pointer to return the starting ioc bus address of the area to 1076 * map. 1077 * 1078 * This routine just returns the corresponding bus address. Actual mapping 1079 * occurs in dma_region_create_linear(). 1080 */ 1081 1082 static int dma_sb_map_area_linear(struct ps3_dma_region *r, 1083 unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr, 1084 u64 iopte_flag) 1085 { 1086 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) 1087 : virt_addr; 1088 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr)); 1089 return 0; 1090 } 1091 1092 /** 1093 * dma_unmap_area_linear - Unmap an area of memory from a device dma region. 1094 * @r: Pointer to a struct ps3_dma_region. 1095 * @bus_addr: The starting ioc bus address of the area to unmap. 1096 * @len: Length in bytes of the area to unmap. 1097 * 1098 * This routine does nothing. Unmapping occurs in dma_sb_region_free_linear(). 1099 */ 1100 1101 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r, 1102 dma_addr_t bus_addr, unsigned long len) 1103 { 1104 return 0; 1105 }; 1106 1107 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = { 1108 .create = dma_sb_region_create, 1109 .free = dma_sb_region_free, 1110 .map = dma_sb_map_area, 1111 .unmap = dma_sb_unmap_area 1112 }; 1113 1114 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = { 1115 .create = dma_sb_region_create_linear, 1116 .free = dma_sb_region_free_linear, 1117 .map = dma_sb_map_area_linear, 1118 .unmap = dma_sb_unmap_area_linear 1119 }; 1120 1121 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = { 1122 .create = dma_ioc0_region_create, 1123 .free = dma_ioc0_region_free, 1124 .map = dma_ioc0_map_area, 1125 .unmap = dma_ioc0_unmap_area 1126 }; 1127 1128 int ps3_dma_region_init(struct ps3_system_bus_device *dev, 1129 struct ps3_dma_region *r, enum ps3_dma_page_size page_size, 1130 enum ps3_dma_region_type region_type, void *addr, unsigned long len) 1131 { 1132 unsigned long lpar_addr; 1133 1134 lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0; 1135 1136 r->dev = dev; 1137 r->page_size = page_size; 1138 r->region_type = region_type; 1139 r->offset = lpar_addr; 1140 if (r->offset >= map.rm.size) 1141 r->offset -= map.r1.offset; 1142 r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size); 1143 1144 switch (dev->dev_type) { 1145 case PS3_DEVICE_TYPE_SB: 1146 r->region_ops = (USE_DYNAMIC_DMA) 1147 ? &ps3_dma_sb_region_ops 1148 : &ps3_dma_sb_region_linear_ops; 1149 break; 1150 case PS3_DEVICE_TYPE_IOC0: 1151 r->region_ops = &ps3_dma_ioc0_region_ops; 1152 break; 1153 default: 1154 BUG(); 1155 return -EINVAL; 1156 } 1157 return 0; 1158 } 1159 EXPORT_SYMBOL(ps3_dma_region_init); 1160 1161 int ps3_dma_region_create(struct ps3_dma_region *r) 1162 { 1163 BUG_ON(!r); 1164 BUG_ON(!r->region_ops); 1165 BUG_ON(!r->region_ops->create); 1166 return r->region_ops->create(r); 1167 } 1168 EXPORT_SYMBOL(ps3_dma_region_create); 1169 1170 int ps3_dma_region_free(struct ps3_dma_region *r) 1171 { 1172 BUG_ON(!r); 1173 BUG_ON(!r->region_ops); 1174 BUG_ON(!r->region_ops->free); 1175 return r->region_ops->free(r); 1176 } 1177 EXPORT_SYMBOL(ps3_dma_region_free); 1178 1179 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr, 1180 unsigned long len, dma_addr_t *bus_addr, 1181 u64 iopte_flag) 1182 { 1183 return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag); 1184 } 1185 1186 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr, 1187 unsigned long len) 1188 { 1189 return r->region_ops->unmap(r, bus_addr, len); 1190 } 1191 1192 /*============================================================================*/ 1193 /* system startup routines */ 1194 /*============================================================================*/ 1195 1196 /** 1197 * ps3_mm_init - initialize the address space state variables 1198 */ 1199 1200 void __init ps3_mm_init(void) 1201 { 1202 int result; 1203 1204 DBG(" -> %s:%d\n", __func__, __LINE__); 1205 1206 result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size, 1207 &map.total); 1208 1209 if (result) 1210 panic("ps3_repository_read_mm_info() failed"); 1211 1212 map.rm.offset = map.rm.base; 1213 map.vas_id = map.htab_size = 0; 1214 1215 /* this implementation assumes map.rm.base is zero */ 1216 1217 BUG_ON(map.rm.base); 1218 BUG_ON(!map.rm.size); 1219 1220 /* Check if we got the highmem region from an earlier boot step */ 1221 1222 if (ps3_mm_get_repository_highmem(&map.r1)) { 1223 result = ps3_mm_region_create(&map.r1, map.total - map.rm.size); 1224 1225 if (!result) 1226 ps3_mm_set_repository_highmem(&map.r1); 1227 } 1228 1229 /* correct map.total for the real total amount of memory we use */ 1230 map.total = map.rm.size + map.r1.size; 1231 1232 if (!map.r1.size) { 1233 DBG("%s:%d: No highmem region found\n", __func__, __LINE__); 1234 } else { 1235 DBG("%s:%d: Adding highmem region: %llxh %llxh\n", 1236 __func__, __LINE__, map.rm.size, 1237 map.total - map.rm.size); 1238 memblock_add(map.rm.size, map.total - map.rm.size); 1239 } 1240 1241 DBG(" <- %s:%d\n", __func__, __LINE__); 1242 } 1243 1244 /** 1245 * ps3_mm_shutdown - final cleanup of address space 1246 */ 1247 1248 void ps3_mm_shutdown(void) 1249 { 1250 ps3_mm_region_destroy(&map.r1); 1251 } 1252