xref: /linux/arch/powerpc/platforms/ps3/mm.c (revision 6beeaf48db6c548fcfc2ad32739d33af2fef3a5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  PS3 address space management.
4  *
5  *  Copyright (C) 2006 Sony Computer Entertainment Inc.
6  *  Copyright 2006 Sony Corp.
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/export.h>
12 #include <linux/memblock.h>
13 #include <linux/slab.h>
14 
15 #include <asm/cell-regs.h>
16 #include <asm/firmware.h>
17 #include <asm/prom.h>
18 #include <asm/udbg.h>
19 #include <asm/lv1call.h>
20 #include <asm/setup.h>
21 
22 #include "platform.h"
23 
24 #if defined(DEBUG)
25 #define DBG udbg_printf
26 #else
27 #define DBG pr_devel
28 #endif
29 
30 enum {
31 #if defined(CONFIG_PS3_DYNAMIC_DMA)
32 	USE_DYNAMIC_DMA = 1,
33 #else
34 	USE_DYNAMIC_DMA = 0,
35 #endif
36 };
37 
38 enum {
39 	PAGE_SHIFT_4K = 12U,
40 	PAGE_SHIFT_64K = 16U,
41 	PAGE_SHIFT_16M = 24U,
42 };
43 
44 static unsigned long make_page_sizes(unsigned long a, unsigned long b)
45 {
46 	return (a << 56) | (b << 48);
47 }
48 
49 enum {
50 	ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
51 	ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
52 };
53 
54 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
55 
56 enum {
57 	HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
58 	HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
59 };
60 
61 /*============================================================================*/
62 /* virtual address space routines                                             */
63 /*============================================================================*/
64 
65 /**
66  * struct mem_region - memory region structure
67  * @base: base address
68  * @size: size in bytes
69  * @offset: difference between base and rm.size
70  * @destroy: flag if region should be destroyed upon shutdown
71  */
72 
73 struct mem_region {
74 	u64 base;
75 	u64 size;
76 	unsigned long offset;
77 	int destroy;
78 };
79 
80 /**
81  * struct map - address space state variables holder
82  * @total: total memory available as reported by HV
83  * @vas_id - HV virtual address space id
84  * @htab_size: htab size in bytes
85  *
86  * The HV virtual address space (vas) allows for hotplug memory regions.
87  * Memory regions can be created and destroyed in the vas at runtime.
88  * @rm: real mode (bootmem) region
89  * @r1: highmem region(s)
90  *
91  * ps3 addresses
92  * virt_addr: a cpu 'translated' effective address
93  * phys_addr: an address in what Linux thinks is the physical address space
94  * lpar_addr: an address in the HV virtual address space
95  * bus_addr: an io controller 'translated' address on a device bus
96  */
97 
98 struct map {
99 	u64 total;
100 	u64 vas_id;
101 	u64 htab_size;
102 	struct mem_region rm;
103 	struct mem_region r1;
104 };
105 
106 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
107 static void __maybe_unused _debug_dump_map(const struct map *m,
108 	const char *func, int line)
109 {
110 	DBG("%s:%d: map.total     = %llxh\n", func, line, m->total);
111 	DBG("%s:%d: map.rm.size   = %llxh\n", func, line, m->rm.size);
112 	DBG("%s:%d: map.vas_id    = %llu\n", func, line, m->vas_id);
113 	DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
114 	DBG("%s:%d: map.r1.base   = %llxh\n", func, line, m->r1.base);
115 	DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
116 	DBG("%s:%d: map.r1.size   = %llxh\n", func, line, m->r1.size);
117 }
118 
119 static struct map map;
120 
121 /**
122  * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
123  * @phys_addr: linux physical address
124  */
125 
126 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
127 {
128 	BUG_ON(is_kernel_addr(phys_addr));
129 	return (phys_addr < map.rm.size || phys_addr >= map.total)
130 		? phys_addr : phys_addr + map.r1.offset;
131 }
132 
133 EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
134 
135 /**
136  * ps3_mm_vas_create - create the virtual address space
137  */
138 
139 void __init ps3_mm_vas_create(unsigned long* htab_size)
140 {
141 	int result;
142 	u64 start_address;
143 	u64 size;
144 	u64 access_right;
145 	u64 max_page_size;
146 	u64 flags;
147 
148 	result = lv1_query_logical_partition_address_region_info(0,
149 		&start_address, &size, &access_right, &max_page_size,
150 		&flags);
151 
152 	if (result) {
153 		DBG("%s:%d: lv1_query_logical_partition_address_region_info "
154 			"failed: %s\n", __func__, __LINE__,
155 			ps3_result(result));
156 		goto fail;
157 	}
158 
159 	if (max_page_size < PAGE_SHIFT_16M) {
160 		DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
161 			max_page_size);
162 		goto fail;
163 	}
164 
165 	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
166 	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
167 
168 	result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
169 			2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
170 			&map.vas_id, &map.htab_size);
171 
172 	if (result) {
173 		DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
174 			__func__, __LINE__, ps3_result(result));
175 		goto fail;
176 	}
177 
178 	result = lv1_select_virtual_address_space(map.vas_id);
179 
180 	if (result) {
181 		DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
182 			__func__, __LINE__, ps3_result(result));
183 		goto fail;
184 	}
185 
186 	*htab_size = map.htab_size;
187 
188 	debug_dump_map(&map);
189 
190 	return;
191 
192 fail:
193 	panic("ps3_mm_vas_create failed");
194 }
195 
196 /**
197  * ps3_mm_vas_destroy -
198  *
199  * called during kexec sequence with MMU off.
200  */
201 
202 notrace void ps3_mm_vas_destroy(void)
203 {
204 	int result;
205 
206 	if (map.vas_id) {
207 		result = lv1_select_virtual_address_space(0);
208 		result += lv1_destruct_virtual_address_space(map.vas_id);
209 
210 		if (result) {
211 			lv1_panic(0);
212 		}
213 
214 		map.vas_id = 0;
215 	}
216 }
217 
218 static int ps3_mm_get_repository_highmem(struct mem_region *r)
219 {
220 	int result;
221 
222 	/* Assume a single highmem region. */
223 
224 	result = ps3_repository_read_highmem_info(0, &r->base, &r->size);
225 
226 	if (result)
227 		goto zero_region;
228 
229 	if (!r->base || !r->size) {
230 		result = -1;
231 		goto zero_region;
232 	}
233 
234 	r->offset = r->base - map.rm.size;
235 
236 	DBG("%s:%d: Found high region in repository: %llxh %llxh\n",
237 	    __func__, __LINE__, r->base, r->size);
238 
239 	return 0;
240 
241 zero_region:
242 	DBG("%s:%d: No high region in repository.\n", __func__, __LINE__);
243 
244 	r->size = r->base = r->offset = 0;
245 	return result;
246 }
247 
248 static int ps3_mm_set_repository_highmem(const struct mem_region *r)
249 {
250 	/* Assume a single highmem region. */
251 
252 	return r ? ps3_repository_write_highmem_info(0, r->base, r->size) :
253 		ps3_repository_write_highmem_info(0, 0, 0);
254 }
255 
256 /**
257  * ps3_mm_region_create - create a memory region in the vas
258  * @r: pointer to a struct mem_region to accept initialized values
259  * @size: requested region size
260  *
261  * This implementation creates the region with the vas large page size.
262  * @size is rounded down to a multiple of the vas large page size.
263  */
264 
265 static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
266 {
267 	int result;
268 	u64 muid;
269 
270 	r->size = ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
271 
272 	DBG("%s:%d requested  %lxh\n", __func__, __LINE__, size);
273 	DBG("%s:%d actual     %llxh\n", __func__, __LINE__, r->size);
274 	DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
275 		size - r->size, (size - r->size) / 1024 / 1024);
276 
277 	if (r->size == 0) {
278 		DBG("%s:%d: size == 0\n", __func__, __LINE__);
279 		result = -1;
280 		goto zero_region;
281 	}
282 
283 	result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
284 		ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
285 
286 	if (result || r->base < map.rm.size) {
287 		DBG("%s:%d: lv1_allocate_memory failed: %s\n",
288 			__func__, __LINE__, ps3_result(result));
289 		goto zero_region;
290 	}
291 
292 	r->destroy = 1;
293 	r->offset = r->base - map.rm.size;
294 	return result;
295 
296 zero_region:
297 	r->size = r->base = r->offset = 0;
298 	return result;
299 }
300 
301 /**
302  * ps3_mm_region_destroy - destroy a memory region
303  * @r: pointer to struct mem_region
304  */
305 
306 static void ps3_mm_region_destroy(struct mem_region *r)
307 {
308 	int result;
309 
310 	if (!r->destroy) {
311 		return;
312 	}
313 
314 	if (r->base) {
315 		result = lv1_release_memory(r->base);
316 
317 		if (result) {
318 			lv1_panic(0);
319 		}
320 
321 		r->size = r->base = r->offset = 0;
322 		map.total = map.rm.size;
323 	}
324 
325 	ps3_mm_set_repository_highmem(NULL);
326 }
327 
328 /*============================================================================*/
329 /* dma routines                                                               */
330 /*============================================================================*/
331 
332 /**
333  * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
334  * @r: pointer to dma region structure
335  * @lpar_addr: HV lpar address
336  */
337 
338 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
339 	unsigned long lpar_addr)
340 {
341 	if (lpar_addr >= map.rm.size)
342 		lpar_addr -= map.r1.offset;
343 	BUG_ON(lpar_addr < r->offset);
344 	BUG_ON(lpar_addr >= r->offset + r->len);
345 	return r->bus_addr + lpar_addr - r->offset;
346 }
347 
348 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
349 static void  __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
350 	const char *func, int line)
351 {
352 	DBG("%s:%d: dev        %llu:%llu\n", func, line, r->dev->bus_id,
353 		r->dev->dev_id);
354 	DBG("%s:%d: page_size  %u\n", func, line, r->page_size);
355 	DBG("%s:%d: bus_addr   %lxh\n", func, line, r->bus_addr);
356 	DBG("%s:%d: len        %lxh\n", func, line, r->len);
357 	DBG("%s:%d: offset     %lxh\n", func, line, r->offset);
358 }
359 
360   /**
361  * dma_chunk - A chunk of dma pages mapped by the io controller.
362  * @region - The dma region that owns this chunk.
363  * @lpar_addr: Starting lpar address of the area to map.
364  * @bus_addr: Starting ioc bus address of the area to map.
365  * @len: Length in bytes of the area to map.
366  * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
367  * list of all chuncks owned by the region.
368  *
369  * This implementation uses a very simple dma page manager
370  * based on the dma_chunk structure.  This scheme assumes
371  * that all drivers use very well behaved dma ops.
372  */
373 
374 struct dma_chunk {
375 	struct ps3_dma_region *region;
376 	unsigned long lpar_addr;
377 	unsigned long bus_addr;
378 	unsigned long len;
379 	struct list_head link;
380 	unsigned int usage_count;
381 };
382 
383 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
384 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
385 	int line)
386 {
387 	DBG("%s:%d: r.dev        %llu:%llu\n", func, line,
388 		c->region->dev->bus_id, c->region->dev->dev_id);
389 	DBG("%s:%d: r.bus_addr   %lxh\n", func, line, c->region->bus_addr);
390 	DBG("%s:%d: r.page_size  %u\n", func, line, c->region->page_size);
391 	DBG("%s:%d: r.len        %lxh\n", func, line, c->region->len);
392 	DBG("%s:%d: r.offset     %lxh\n", func, line, c->region->offset);
393 	DBG("%s:%d: c.lpar_addr  %lxh\n", func, line, c->lpar_addr);
394 	DBG("%s:%d: c.bus_addr   %lxh\n", func, line, c->bus_addr);
395 	DBG("%s:%d: c.len        %lxh\n", func, line, c->len);
396 }
397 
398 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
399 	unsigned long bus_addr, unsigned long len)
400 {
401 	struct dma_chunk *c;
402 	unsigned long aligned_bus = ALIGN_DOWN(bus_addr, 1 << r->page_size);
403 	unsigned long aligned_len = ALIGN(len+bus_addr-aligned_bus,
404 					      1 << r->page_size);
405 
406 	list_for_each_entry(c, &r->chunk_list.head, link) {
407 		/* intersection */
408 		if (aligned_bus >= c->bus_addr &&
409 		    aligned_bus + aligned_len <= c->bus_addr + c->len)
410 			return c;
411 
412 		/* below */
413 		if (aligned_bus + aligned_len <= c->bus_addr)
414 			continue;
415 
416 		/* above */
417 		if (aligned_bus >= c->bus_addr + c->len)
418 			continue;
419 
420 		/* we don't handle the multi-chunk case for now */
421 		dma_dump_chunk(c);
422 		BUG();
423 	}
424 	return NULL;
425 }
426 
427 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
428 	unsigned long lpar_addr, unsigned long len)
429 {
430 	struct dma_chunk *c;
431 	unsigned long aligned_lpar = ALIGN_DOWN(lpar_addr, 1 << r->page_size);
432 	unsigned long aligned_len = ALIGN(len + lpar_addr - aligned_lpar,
433 					      1 << r->page_size);
434 
435 	list_for_each_entry(c, &r->chunk_list.head, link) {
436 		/* intersection */
437 		if (c->lpar_addr <= aligned_lpar &&
438 		    aligned_lpar < c->lpar_addr + c->len) {
439 			if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
440 				return c;
441 			else {
442 				dma_dump_chunk(c);
443 				BUG();
444 			}
445 		}
446 		/* below */
447 		if (aligned_lpar + aligned_len <= c->lpar_addr) {
448 			continue;
449 		}
450 		/* above */
451 		if (c->lpar_addr + c->len <= aligned_lpar) {
452 			continue;
453 		}
454 	}
455 	return NULL;
456 }
457 
458 static int dma_sb_free_chunk(struct dma_chunk *c)
459 {
460 	int result = 0;
461 
462 	if (c->bus_addr) {
463 		result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
464 			c->region->dev->dev_id, c->bus_addr, c->len);
465 		BUG_ON(result);
466 	}
467 
468 	kfree(c);
469 	return result;
470 }
471 
472 static int dma_ioc0_free_chunk(struct dma_chunk *c)
473 {
474 	int result = 0;
475 	int iopage;
476 	unsigned long offset;
477 	struct ps3_dma_region *r = c->region;
478 
479 	DBG("%s:start\n", __func__);
480 	for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
481 		offset = (1 << r->page_size) * iopage;
482 		/* put INVALID entry */
483 		result = lv1_put_iopte(0,
484 				       c->bus_addr + offset,
485 				       c->lpar_addr + offset,
486 				       r->ioid,
487 				       0);
488 		DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
489 		    c->bus_addr + offset,
490 		    c->lpar_addr + offset,
491 		    r->ioid);
492 
493 		if (result) {
494 			DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
495 			    __LINE__, ps3_result(result));
496 		}
497 	}
498 	kfree(c);
499 	DBG("%s:end\n", __func__);
500 	return result;
501 }
502 
503 /**
504  * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
505  * @r: Pointer to a struct ps3_dma_region.
506  * @phys_addr: Starting physical address of the area to map.
507  * @len: Length in bytes of the area to map.
508  * c_out: A pointer to receive an allocated struct dma_chunk for this area.
509  *
510  * This is the lowest level dma mapping routine, and is the one that will
511  * make the HV call to add the pages into the io controller address space.
512  */
513 
514 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
515 	    unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
516 {
517 	int result;
518 	struct dma_chunk *c;
519 
520 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
521 	if (!c) {
522 		result = -ENOMEM;
523 		goto fail_alloc;
524 	}
525 
526 	c->region = r;
527 	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
528 	c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
529 	c->len = len;
530 
531 	BUG_ON(iopte_flag != 0xf800000000000000UL);
532 	result = lv1_map_device_dma_region(c->region->dev->bus_id,
533 					   c->region->dev->dev_id, c->lpar_addr,
534 					   c->bus_addr, c->len, iopte_flag);
535 	if (result) {
536 		DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
537 			__func__, __LINE__, ps3_result(result));
538 		goto fail_map;
539 	}
540 
541 	list_add(&c->link, &r->chunk_list.head);
542 
543 	*c_out = c;
544 	return 0;
545 
546 fail_map:
547 	kfree(c);
548 fail_alloc:
549 	*c_out = NULL;
550 	DBG(" <- %s:%d\n", __func__, __LINE__);
551 	return result;
552 }
553 
554 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
555 			      unsigned long len, struct dma_chunk **c_out,
556 			      u64 iopte_flag)
557 {
558 	int result;
559 	struct dma_chunk *c, *last;
560 	int iopage, pages;
561 	unsigned long offset;
562 
563 	DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
564 	    phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
565 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
566 	if (!c) {
567 		result = -ENOMEM;
568 		goto fail_alloc;
569 	}
570 
571 	c->region = r;
572 	c->len = len;
573 	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
574 	/* allocate IO address */
575 	if (list_empty(&r->chunk_list.head)) {
576 		/* first one */
577 		c->bus_addr = r->bus_addr;
578 	} else {
579 		/* derive from last bus addr*/
580 		last  = list_entry(r->chunk_list.head.next,
581 				   struct dma_chunk, link);
582 		c->bus_addr = last->bus_addr + last->len;
583 		DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
584 		    last->bus_addr, last->len);
585 	}
586 
587 	/* FIXME: check whether length exceeds region size */
588 
589 	/* build ioptes for the area */
590 	pages = len >> r->page_size;
591 	DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
592 	    r->page_size, r->len, pages, iopte_flag);
593 	for (iopage = 0; iopage < pages; iopage++) {
594 		offset = (1 << r->page_size) * iopage;
595 		result = lv1_put_iopte(0,
596 				       c->bus_addr + offset,
597 				       c->lpar_addr + offset,
598 				       r->ioid,
599 				       iopte_flag);
600 		if (result) {
601 			pr_warn("%s:%d: lv1_put_iopte failed: %s\n",
602 				__func__, __LINE__, ps3_result(result));
603 			goto fail_map;
604 		}
605 		DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
606 		    iopage, c->bus_addr + offset, c->lpar_addr + offset,
607 		    r->ioid);
608 	}
609 
610 	/* be sure that last allocated one is inserted at head */
611 	list_add(&c->link, &r->chunk_list.head);
612 
613 	*c_out = c;
614 	DBG("%s: end\n", __func__);
615 	return 0;
616 
617 fail_map:
618 	for (iopage--; 0 <= iopage; iopage--) {
619 		lv1_put_iopte(0,
620 			      c->bus_addr + offset,
621 			      c->lpar_addr + offset,
622 			      r->ioid,
623 			      0);
624 	}
625 	kfree(c);
626 fail_alloc:
627 	*c_out = NULL;
628 	return result;
629 }
630 
631 /**
632  * dma_sb_region_create - Create a device dma region.
633  * @r: Pointer to a struct ps3_dma_region.
634  *
635  * This is the lowest level dma region create routine, and is the one that
636  * will make the HV call to create the region.
637  */
638 
639 static int dma_sb_region_create(struct ps3_dma_region *r)
640 {
641 	int result;
642 	u64 bus_addr;
643 
644 	DBG(" -> %s:%d:\n", __func__, __LINE__);
645 
646 	BUG_ON(!r);
647 
648 	if (!r->dev->bus_id) {
649 		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
650 			r->dev->bus_id, r->dev->dev_id);
651 		return 0;
652 	}
653 
654 	DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
655 	    __LINE__, r->len, r->page_size, r->offset);
656 
657 	BUG_ON(!r->len);
658 	BUG_ON(!r->page_size);
659 	BUG_ON(!r->region_ops);
660 
661 	INIT_LIST_HEAD(&r->chunk_list.head);
662 	spin_lock_init(&r->chunk_list.lock);
663 
664 	result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
665 		roundup_pow_of_two(r->len), r->page_size, r->region_type,
666 		&bus_addr);
667 	r->bus_addr = bus_addr;
668 
669 	if (result) {
670 		DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
671 			__func__, __LINE__, ps3_result(result));
672 		r->len = r->bus_addr = 0;
673 	}
674 
675 	return result;
676 }
677 
678 static int dma_ioc0_region_create(struct ps3_dma_region *r)
679 {
680 	int result;
681 	u64 bus_addr;
682 
683 	INIT_LIST_HEAD(&r->chunk_list.head);
684 	spin_lock_init(&r->chunk_list.lock);
685 
686 	result = lv1_allocate_io_segment(0,
687 					 r->len,
688 					 r->page_size,
689 					 &bus_addr);
690 	r->bus_addr = bus_addr;
691 	if (result) {
692 		DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
693 			__func__, __LINE__, ps3_result(result));
694 		r->len = r->bus_addr = 0;
695 	}
696 	DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
697 	    r->len, r->page_size, r->bus_addr);
698 	return result;
699 }
700 
701 /**
702  * dma_region_free - Free a device dma region.
703  * @r: Pointer to a struct ps3_dma_region.
704  *
705  * This is the lowest level dma region free routine, and is the one that
706  * will make the HV call to free the region.
707  */
708 
709 static int dma_sb_region_free(struct ps3_dma_region *r)
710 {
711 	int result;
712 	struct dma_chunk *c;
713 	struct dma_chunk *tmp;
714 
715 	BUG_ON(!r);
716 
717 	if (!r->dev->bus_id) {
718 		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
719 			r->dev->bus_id, r->dev->dev_id);
720 		return 0;
721 	}
722 
723 	list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
724 		list_del(&c->link);
725 		dma_sb_free_chunk(c);
726 	}
727 
728 	result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
729 		r->bus_addr);
730 
731 	if (result)
732 		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
733 			__func__, __LINE__, ps3_result(result));
734 
735 	r->bus_addr = 0;
736 
737 	return result;
738 }
739 
740 static int dma_ioc0_region_free(struct ps3_dma_region *r)
741 {
742 	int result;
743 	struct dma_chunk *c, *n;
744 
745 	DBG("%s: start\n", __func__);
746 	list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
747 		list_del(&c->link);
748 		dma_ioc0_free_chunk(c);
749 	}
750 
751 	result = lv1_release_io_segment(0, r->bus_addr);
752 
753 	if (result)
754 		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
755 			__func__, __LINE__, ps3_result(result));
756 
757 	r->bus_addr = 0;
758 	DBG("%s: end\n", __func__);
759 
760 	return result;
761 }
762 
763 /**
764  * dma_sb_map_area - Map an area of memory into a device dma region.
765  * @r: Pointer to a struct ps3_dma_region.
766  * @virt_addr: Starting virtual address of the area to map.
767  * @len: Length in bytes of the area to map.
768  * @bus_addr: A pointer to return the starting ioc bus address of the area to
769  * map.
770  *
771  * This is the common dma mapping routine.
772  */
773 
774 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
775 	   unsigned long len, dma_addr_t *bus_addr,
776 	   u64 iopte_flag)
777 {
778 	int result;
779 	unsigned long flags;
780 	struct dma_chunk *c;
781 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
782 		: virt_addr;
783 	unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
784 	unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
785 					      1 << r->page_size);
786 	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
787 
788 	if (!USE_DYNAMIC_DMA) {
789 		unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
790 		DBG(" -> %s:%d\n", __func__, __LINE__);
791 		DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
792 			virt_addr);
793 		DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
794 			phys_addr);
795 		DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
796 			lpar_addr);
797 		DBG("%s:%d len       %lxh\n", __func__, __LINE__, len);
798 		DBG("%s:%d bus_addr  %llxh (%lxh)\n", __func__, __LINE__,
799 		*bus_addr, len);
800 	}
801 
802 	spin_lock_irqsave(&r->chunk_list.lock, flags);
803 	c = dma_find_chunk(r, *bus_addr, len);
804 
805 	if (c) {
806 		DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
807 		dma_dump_chunk(c);
808 		c->usage_count++;
809 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
810 		return 0;
811 	}
812 
813 	result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
814 
815 	if (result) {
816 		*bus_addr = 0;
817 		DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
818 			__func__, __LINE__, result);
819 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
820 		return result;
821 	}
822 
823 	c->usage_count = 1;
824 
825 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
826 	return result;
827 }
828 
829 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
830 	     unsigned long len, dma_addr_t *bus_addr,
831 	     u64 iopte_flag)
832 {
833 	int result;
834 	unsigned long flags;
835 	struct dma_chunk *c;
836 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
837 		: virt_addr;
838 	unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
839 	unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
840 					      1 << r->page_size);
841 
842 	DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
843 	    virt_addr, len);
844 	DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
845 	    phys_addr, aligned_phys, aligned_len);
846 
847 	spin_lock_irqsave(&r->chunk_list.lock, flags);
848 	c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
849 
850 	if (c) {
851 		/* FIXME */
852 		BUG();
853 		*bus_addr = c->bus_addr + phys_addr - aligned_phys;
854 		c->usage_count++;
855 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
856 		return 0;
857 	}
858 
859 	result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
860 				    iopte_flag);
861 
862 	if (result) {
863 		*bus_addr = 0;
864 		DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
865 			__func__, __LINE__, result);
866 		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
867 		return result;
868 	}
869 	*bus_addr = c->bus_addr + phys_addr - aligned_phys;
870 	DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
871 	    virt_addr, phys_addr, aligned_phys, *bus_addr);
872 	c->usage_count = 1;
873 
874 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
875 	return result;
876 }
877 
878 /**
879  * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
880  * @r: Pointer to a struct ps3_dma_region.
881  * @bus_addr: The starting ioc bus address of the area to unmap.
882  * @len: Length in bytes of the area to unmap.
883  *
884  * This is the common dma unmap routine.
885  */
886 
887 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
888 	unsigned long len)
889 {
890 	unsigned long flags;
891 	struct dma_chunk *c;
892 
893 	spin_lock_irqsave(&r->chunk_list.lock, flags);
894 	c = dma_find_chunk(r, bus_addr, len);
895 
896 	if (!c) {
897 		unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
898 			1 << r->page_size);
899 		unsigned long aligned_len = ALIGN(len + bus_addr
900 			- aligned_bus, 1 << r->page_size);
901 		DBG("%s:%d: not found: bus_addr %llxh\n",
902 			__func__, __LINE__, bus_addr);
903 		DBG("%s:%d: not found: len %lxh\n",
904 			__func__, __LINE__, len);
905 		DBG("%s:%d: not found: aligned_bus %lxh\n",
906 			__func__, __LINE__, aligned_bus);
907 		DBG("%s:%d: not found: aligned_len %lxh\n",
908 			__func__, __LINE__, aligned_len);
909 		BUG();
910 	}
911 
912 	c->usage_count--;
913 
914 	if (!c->usage_count) {
915 		list_del(&c->link);
916 		dma_sb_free_chunk(c);
917 	}
918 
919 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
920 	return 0;
921 }
922 
923 static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
924 			dma_addr_t bus_addr, unsigned long len)
925 {
926 	unsigned long flags;
927 	struct dma_chunk *c;
928 
929 	DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
930 	spin_lock_irqsave(&r->chunk_list.lock, flags);
931 	c = dma_find_chunk(r, bus_addr, len);
932 
933 	if (!c) {
934 		unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
935 							1 << r->page_size);
936 		unsigned long aligned_len = ALIGN(len + bus_addr
937 						      - aligned_bus,
938 						      1 << r->page_size);
939 		DBG("%s:%d: not found: bus_addr %llxh\n",
940 		    __func__, __LINE__, bus_addr);
941 		DBG("%s:%d: not found: len %lxh\n",
942 		    __func__, __LINE__, len);
943 		DBG("%s:%d: not found: aligned_bus %lxh\n",
944 		    __func__, __LINE__, aligned_bus);
945 		DBG("%s:%d: not found: aligned_len %lxh\n",
946 		    __func__, __LINE__, aligned_len);
947 		BUG();
948 	}
949 
950 	c->usage_count--;
951 
952 	if (!c->usage_count) {
953 		list_del(&c->link);
954 		dma_ioc0_free_chunk(c);
955 	}
956 
957 	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
958 	DBG("%s: end\n", __func__);
959 	return 0;
960 }
961 
962 /**
963  * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
964  * @r: Pointer to a struct ps3_dma_region.
965  *
966  * This routine creates an HV dma region for the device and maps all available
967  * ram into the io controller bus address space.
968  */
969 
970 static int dma_sb_region_create_linear(struct ps3_dma_region *r)
971 {
972 	int result;
973 	unsigned long virt_addr, len;
974 	dma_addr_t tmp;
975 
976 	if (r->len > 16*1024*1024) {	/* FIXME: need proper fix */
977 		/* force 16M dma pages for linear mapping */
978 		if (r->page_size != PS3_DMA_16M) {
979 			pr_info("%s:%d: forcing 16M pages for linear map\n",
980 				__func__, __LINE__);
981 			r->page_size = PS3_DMA_16M;
982 			r->len = ALIGN(r->len, 1 << r->page_size);
983 		}
984 	}
985 
986 	result = dma_sb_region_create(r);
987 	BUG_ON(result);
988 
989 	if (r->offset < map.rm.size) {
990 		/* Map (part of) 1st RAM chunk */
991 		virt_addr = map.rm.base + r->offset;
992 		len = map.rm.size - r->offset;
993 		if (len > r->len)
994 			len = r->len;
995 		result = dma_sb_map_area(r, virt_addr, len, &tmp,
996 			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
997 			CBE_IOPTE_M);
998 		BUG_ON(result);
999 	}
1000 
1001 	if (r->offset + r->len > map.rm.size) {
1002 		/* Map (part of) 2nd RAM chunk */
1003 		virt_addr = map.rm.size;
1004 		len = r->len;
1005 		if (r->offset >= map.rm.size)
1006 			virt_addr += r->offset - map.rm.size;
1007 		else
1008 			len -= map.rm.size - r->offset;
1009 		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1010 			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1011 			CBE_IOPTE_M);
1012 		BUG_ON(result);
1013 	}
1014 
1015 	return result;
1016 }
1017 
1018 /**
1019  * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1020  * @r: Pointer to a struct ps3_dma_region.
1021  *
1022  * This routine will unmap all mapped areas and free the HV dma region.
1023  */
1024 
1025 static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1026 {
1027 	int result;
1028 	dma_addr_t bus_addr;
1029 	unsigned long len, lpar_addr;
1030 
1031 	if (r->offset < map.rm.size) {
1032 		/* Unmap (part of) 1st RAM chunk */
1033 		lpar_addr = map.rm.base + r->offset;
1034 		len = map.rm.size - r->offset;
1035 		if (len > r->len)
1036 			len = r->len;
1037 		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1038 		result = dma_sb_unmap_area(r, bus_addr, len);
1039 		BUG_ON(result);
1040 	}
1041 
1042 	if (r->offset + r->len > map.rm.size) {
1043 		/* Unmap (part of) 2nd RAM chunk */
1044 		lpar_addr = map.r1.base;
1045 		len = r->len;
1046 		if (r->offset >= map.rm.size)
1047 			lpar_addr += r->offset - map.rm.size;
1048 		else
1049 			len -= map.rm.size - r->offset;
1050 		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1051 		result = dma_sb_unmap_area(r, bus_addr, len);
1052 		BUG_ON(result);
1053 	}
1054 
1055 	result = dma_sb_region_free(r);
1056 	BUG_ON(result);
1057 
1058 	return result;
1059 }
1060 
1061 /**
1062  * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1063  * @r: Pointer to a struct ps3_dma_region.
1064  * @virt_addr: Starting virtual address of the area to map.
1065  * @len: Length in bytes of the area to map.
1066  * @bus_addr: A pointer to return the starting ioc bus address of the area to
1067  * map.
1068  *
1069  * This routine just returns the corresponding bus address.  Actual mapping
1070  * occurs in dma_region_create_linear().
1071  */
1072 
1073 static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1074 	unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1075 	u64 iopte_flag)
1076 {
1077 	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1078 		: virt_addr;
1079 	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1080 	return 0;
1081 }
1082 
1083 /**
1084  * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1085  * @r: Pointer to a struct ps3_dma_region.
1086  * @bus_addr: The starting ioc bus address of the area to unmap.
1087  * @len: Length in bytes of the area to unmap.
1088  *
1089  * This routine does nothing.  Unmapping occurs in dma_sb_region_free_linear().
1090  */
1091 
1092 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1093 	dma_addr_t bus_addr, unsigned long len)
1094 {
1095 	return 0;
1096 };
1097 
1098 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops =  {
1099 	.create = dma_sb_region_create,
1100 	.free = dma_sb_region_free,
1101 	.map = dma_sb_map_area,
1102 	.unmap = dma_sb_unmap_area
1103 };
1104 
1105 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1106 	.create = dma_sb_region_create_linear,
1107 	.free = dma_sb_region_free_linear,
1108 	.map = dma_sb_map_area_linear,
1109 	.unmap = dma_sb_unmap_area_linear
1110 };
1111 
1112 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1113 	.create = dma_ioc0_region_create,
1114 	.free = dma_ioc0_region_free,
1115 	.map = dma_ioc0_map_area,
1116 	.unmap = dma_ioc0_unmap_area
1117 };
1118 
1119 int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1120 	struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1121 	enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1122 {
1123 	unsigned long lpar_addr;
1124 	int result;
1125 
1126 	lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1127 
1128 	r->dev = dev;
1129 	r->page_size = page_size;
1130 	r->region_type = region_type;
1131 	r->offset = lpar_addr;
1132 	if (r->offset >= map.rm.size)
1133 		r->offset -= map.r1.offset;
1134 	r->len = len ? len : ALIGN(map.total, 1 << r->page_size);
1135 
1136 	dev->core.dma_mask = &r->dma_mask;
1137 
1138 	result = dma_set_mask_and_coherent(&dev->core, DMA_BIT_MASK(32));
1139 
1140 	if (result < 0) {
1141 		dev_err(&dev->core, "%s:%d: dma_set_mask_and_coherent failed: %d\n",
1142 			__func__, __LINE__, result);
1143 		return result;
1144 	}
1145 
1146 	switch (dev->dev_type) {
1147 	case PS3_DEVICE_TYPE_SB:
1148 		r->region_ops =  (USE_DYNAMIC_DMA)
1149 			? &ps3_dma_sb_region_ops
1150 			: &ps3_dma_sb_region_linear_ops;
1151 		break;
1152 	case PS3_DEVICE_TYPE_IOC0:
1153 		r->region_ops = &ps3_dma_ioc0_region_ops;
1154 		break;
1155 	default:
1156 		BUG();
1157 		return -EINVAL;
1158 	}
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(ps3_dma_region_init);
1162 
1163 int ps3_dma_region_create(struct ps3_dma_region *r)
1164 {
1165 	BUG_ON(!r);
1166 	BUG_ON(!r->region_ops);
1167 	BUG_ON(!r->region_ops->create);
1168 	return r->region_ops->create(r);
1169 }
1170 EXPORT_SYMBOL(ps3_dma_region_create);
1171 
1172 int ps3_dma_region_free(struct ps3_dma_region *r)
1173 {
1174 	BUG_ON(!r);
1175 	BUG_ON(!r->region_ops);
1176 	BUG_ON(!r->region_ops->free);
1177 	return r->region_ops->free(r);
1178 }
1179 EXPORT_SYMBOL(ps3_dma_region_free);
1180 
1181 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1182 	unsigned long len, dma_addr_t *bus_addr,
1183 	u64 iopte_flag)
1184 {
1185 	return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1186 }
1187 
1188 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1189 	unsigned long len)
1190 {
1191 	return r->region_ops->unmap(r, bus_addr, len);
1192 }
1193 
1194 /*============================================================================*/
1195 /* system startup routines                                                    */
1196 /*============================================================================*/
1197 
1198 /**
1199  * ps3_mm_init - initialize the address space state variables
1200  */
1201 
1202 void __init ps3_mm_init(void)
1203 {
1204 	int result;
1205 
1206 	DBG(" -> %s:%d\n", __func__, __LINE__);
1207 
1208 	result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1209 		&map.total);
1210 
1211 	if (result)
1212 		panic("ps3_repository_read_mm_info() failed");
1213 
1214 	map.rm.offset = map.rm.base;
1215 	map.vas_id = map.htab_size = 0;
1216 
1217 	/* this implementation assumes map.rm.base is zero */
1218 
1219 	BUG_ON(map.rm.base);
1220 	BUG_ON(!map.rm.size);
1221 
1222 	/* Check if we got the highmem region from an earlier boot step */
1223 
1224 	if (ps3_mm_get_repository_highmem(&map.r1)) {
1225 		result = ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1226 
1227 		if (!result)
1228 			ps3_mm_set_repository_highmem(&map.r1);
1229 	}
1230 
1231 	/* correct map.total for the real total amount of memory we use */
1232 	map.total = map.rm.size + map.r1.size;
1233 
1234 	if (!map.r1.size) {
1235 		DBG("%s:%d: No highmem region found\n", __func__, __LINE__);
1236 	} else {
1237 		DBG("%s:%d: Adding highmem region: %llxh %llxh\n",
1238 			__func__, __LINE__, map.rm.size,
1239 			map.total - map.rm.size);
1240 		memblock_add(map.rm.size, map.total - map.rm.size);
1241 	}
1242 
1243 	DBG(" <- %s:%d\n", __func__, __LINE__);
1244 }
1245 
1246 /**
1247  * ps3_mm_shutdown - final cleanup of address space
1248  *
1249  * called during kexec sequence with MMU off.
1250  */
1251 
1252 notrace void ps3_mm_shutdown(void)
1253 {
1254 	ps3_mm_region_destroy(&map.r1);
1255 }
1256