xref: /linux/arch/powerpc/platforms/powernv/vas-fault.c (revision 312b62b6610cabea4cb535fd4889c41e9a84afca)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * VAS Fault handling.
4  * Copyright 2019, IBM Corporation
5  */
6 
7 #define pr_fmt(fmt) "vas: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/uaccess.h>
13 #include <linux/kthread.h>
14 #include <linux/sched/signal.h>
15 #include <linux/mmu_context.h>
16 #include <asm/icswx.h>
17 
18 #include "vas.h"
19 
20 /*
21  * The maximum FIFO size for fault window can be 8MB
22  * (VAS_RX_FIFO_SIZE_MAX). Using 4MB FIFO since each VAS
23  * instance will be having fault window.
24  * 8MB FIFO can be used if expects more faults for each VAS
25  * instance.
26  */
27 #define VAS_FAULT_WIN_FIFO_SIZE	(4 << 20)
28 
29 static void dump_crb(struct coprocessor_request_block *crb)
30 {
31 	struct data_descriptor_entry *dde;
32 	struct nx_fault_stamp *nx;
33 
34 	dde = &crb->source;
35 	pr_devel("SrcDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
36 		be64_to_cpu(dde->address), be32_to_cpu(dde->length),
37 		dde->count, dde->index, dde->flags);
38 
39 	dde = &crb->target;
40 	pr_devel("TgtDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
41 		be64_to_cpu(dde->address), be32_to_cpu(dde->length),
42 		dde->count, dde->index, dde->flags);
43 
44 	nx = &crb->stamp.nx;
45 	pr_devel("NX Stamp: PSWID 0x%x, FSA 0x%llx, flags 0x%x, FS 0x%x\n",
46 		be32_to_cpu(nx->pswid),
47 		be64_to_cpu(crb->stamp.nx.fault_storage_addr),
48 		nx->flags, nx->fault_status);
49 }
50 
51 /*
52  * Update the CSB to indicate a translation error.
53  *
54  * User space will be polling on CSB after the request is issued.
55  * If NX can handle the request without any issues, it updates CSB.
56  * Whereas if NX encounters page fault, the kernel will handle the
57  * fault and update CSB with translation error.
58  *
59  * If we are unable to update the CSB means copy_to_user failed due to
60  * invalid csb_addr, send a signal to the process.
61  */
62 static void update_csb(struct vas_window *window,
63 			struct coprocessor_request_block *crb)
64 {
65 	struct coprocessor_status_block csb;
66 	struct kernel_siginfo info;
67 	struct task_struct *tsk;
68 	void __user *csb_addr;
69 	struct pid *pid;
70 	int rc;
71 
72 	/*
73 	 * NX user space windows can not be opened for task->mm=NULL
74 	 * and faults will not be generated for kernel requests.
75 	 */
76 	if (WARN_ON_ONCE(!window->mm || !window->user_win))
77 		return;
78 
79 	csb_addr = (void __user *)be64_to_cpu(crb->csb_addr);
80 
81 	memset(&csb, 0, sizeof(csb));
82 	csb.cc = CSB_CC_TRANSLATION;
83 	csb.ce = CSB_CE_TERMINATION;
84 	csb.cs = 0;
85 	csb.count = 0;
86 
87 	/*
88 	 * NX operates and returns in BE format as defined CRB struct.
89 	 * So saves fault_storage_addr in BE as NX pastes in FIFO and
90 	 * expects user space to convert to CPU format.
91 	 */
92 	csb.address = crb->stamp.nx.fault_storage_addr;
93 	csb.flags = 0;
94 
95 	pid = window->pid;
96 	tsk = get_pid_task(pid, PIDTYPE_PID);
97 	/*
98 	 * Process closes send window after all pending NX requests are
99 	 * completed. In multi-thread applications, a child thread can
100 	 * open a window and can exit without closing it. May be some
101 	 * requests are pending or this window can be used by other
102 	 * threads later. We should handle faults if NX encounters
103 	 * pages faults on these requests. Update CSB with translation
104 	 * error and fault address. If csb_addr passed by user space is
105 	 * invalid, send SEGV signal to pid saved in window. If the
106 	 * child thread is not running, send the signal to tgid.
107 	 * Parent thread (tgid) will close this window upon its exit.
108 	 *
109 	 * pid and mm references are taken when window is opened by
110 	 * process (pid). So tgid is used only when child thread opens
111 	 * a window and exits without closing it.
112 	 */
113 	if (!tsk) {
114 		pid = window->tgid;
115 		tsk = get_pid_task(pid, PIDTYPE_PID);
116 		/*
117 		 * Parent thread (tgid) will be closing window when it
118 		 * exits. So should not get here.
119 		 */
120 		if (WARN_ON_ONCE(!tsk))
121 			return;
122 	}
123 
124 	/* Return if the task is exiting. */
125 	if (tsk->flags & PF_EXITING) {
126 		put_task_struct(tsk);
127 		return;
128 	}
129 
130 	kthread_use_mm(window->mm);
131 	rc = copy_to_user(csb_addr, &csb, sizeof(csb));
132 	/*
133 	 * User space polls on csb.flags (first byte). So add barrier
134 	 * then copy first byte with csb flags update.
135 	 */
136 	if (!rc) {
137 		csb.flags = CSB_V;
138 		/* Make sure update to csb.flags is visible now */
139 		smp_mb();
140 		rc = copy_to_user(csb_addr, &csb, sizeof(u8));
141 	}
142 	kthread_unuse_mm(window->mm);
143 	put_task_struct(tsk);
144 
145 	/* Success */
146 	if (!rc)
147 		return;
148 
149 	pr_debug("Invalid CSB address 0x%p signalling pid(%d)\n",
150 			csb_addr, pid_vnr(pid));
151 
152 	clear_siginfo(&info);
153 	info.si_signo = SIGSEGV;
154 	info.si_errno = EFAULT;
155 	info.si_code = SEGV_MAPERR;
156 	info.si_addr = csb_addr;
157 
158 	/*
159 	 * process will be polling on csb.flags after request is sent to
160 	 * NX. So generally CSB update should not fail except when an
161 	 * application passes invalid csb_addr. So an error message will
162 	 * be displayed and leave it to user space whether to ignore or
163 	 * handle this signal.
164 	 */
165 	rcu_read_lock();
166 	rc = kill_pid_info(SIGSEGV, &info, pid);
167 	rcu_read_unlock();
168 
169 	pr_devel("%s(): pid %d kill_proc_info() rc %d\n", __func__,
170 			pid_vnr(pid), rc);
171 }
172 
173 static void dump_fifo(struct vas_instance *vinst, void *entry)
174 {
175 	unsigned long *end = vinst->fault_fifo + vinst->fault_fifo_size;
176 	unsigned long *fifo = entry;
177 	int i;
178 
179 	pr_err("Fault fifo size %d, Max crbs %d\n", vinst->fault_fifo_size,
180 			vinst->fault_fifo_size / CRB_SIZE);
181 
182 	/* Dump 10 CRB entries or until end of FIFO */
183 	pr_err("Fault FIFO Dump:\n");
184 	for (i = 0; i < 10*(CRB_SIZE/8) && fifo < end; i += 4, fifo += 4) {
185 		pr_err("[%.3d, %p]: 0x%.16lx 0x%.16lx 0x%.16lx 0x%.16lx\n",
186 			i, fifo, *fifo, *(fifo+1), *(fifo+2), *(fifo+3));
187 	}
188 }
189 
190 /*
191  * Process valid CRBs in fault FIFO.
192  * NX process user space requests, return credit and update the status
193  * in CRB. If it encounters transalation error when accessing CRB or
194  * request buffers, raises interrupt on the CPU to handle the fault.
195  * It takes credit on fault window, updates nx_fault_stamp in CRB with
196  * the following information and pastes CRB in fault FIFO.
197  *
198  * pswid - window ID of the window on which the request is sent.
199  * fault_storage_addr - fault address
200  *
201  * It can raise a single interrupt for multiple faults. Expects OS to
202  * process all valid faults and return credit for each fault on user
203  * space and fault windows. This fault FIFO control will be done with
204  * credit mechanism. NX can continuously paste CRBs until credits are not
205  * available on fault window. Otherwise, returns with RMA_reject.
206  *
207  * Total credits available on fault window: FIFO_SIZE(4MB)/CRBS_SIZE(128)
208  *
209  */
210 irqreturn_t vas_fault_thread_fn(int irq, void *data)
211 {
212 	struct vas_instance *vinst = data;
213 	struct coprocessor_request_block *crb, *entry;
214 	struct coprocessor_request_block buf;
215 	struct vas_window *window;
216 	unsigned long flags;
217 	void *fifo;
218 
219 	crb = &buf;
220 
221 	/*
222 	 * VAS can interrupt with multiple page faults. So process all
223 	 * valid CRBs within fault FIFO until reaches invalid CRB.
224 	 * We use CCW[0] and pswid to validate validate CRBs:
225 	 *
226 	 * CCW[0]	Reserved bit. When NX pastes CRB, CCW[0]=0
227 	 *		OS sets this bit to 1 after reading CRB.
228 	 * pswid	NX assigns window ID. Set pswid to -1 after
229 	 *		reading CRB from fault FIFO.
230 	 *
231 	 * We exit this function if no valid CRBs are available to process.
232 	 * So acquire fault_lock and reset fifo_in_progress to 0 before
233 	 * exit.
234 	 * In case kernel receives another interrupt with different page
235 	 * fault, interrupt handler returns with IRQ_HANDLED if
236 	 * fifo_in_progress is set. Means these new faults will be
237 	 * handled by the current thread. Otherwise set fifo_in_progress
238 	 * and return IRQ_WAKE_THREAD to wake up thread.
239 	 */
240 	while (true) {
241 		spin_lock_irqsave(&vinst->fault_lock, flags);
242 		/*
243 		 * Advance the fault fifo pointer to next CRB.
244 		 * Use CRB_SIZE rather than sizeof(*crb) since the latter is
245 		 * aligned to CRB_ALIGN (256) but the CRB written to by VAS is
246 		 * only CRB_SIZE in len.
247 		 */
248 		fifo = vinst->fault_fifo + (vinst->fault_crbs * CRB_SIZE);
249 		entry = fifo;
250 
251 		if ((entry->stamp.nx.pswid == cpu_to_be32(FIFO_INVALID_ENTRY))
252 			|| (entry->ccw & cpu_to_be32(CCW0_INVALID))) {
253 			vinst->fifo_in_progress = 0;
254 			spin_unlock_irqrestore(&vinst->fault_lock, flags);
255 			return IRQ_HANDLED;
256 		}
257 
258 		spin_unlock_irqrestore(&vinst->fault_lock, flags);
259 		vinst->fault_crbs++;
260 		if (vinst->fault_crbs == (vinst->fault_fifo_size / CRB_SIZE))
261 			vinst->fault_crbs = 0;
262 
263 		memcpy(crb, fifo, CRB_SIZE);
264 		entry->stamp.nx.pswid = cpu_to_be32(FIFO_INVALID_ENTRY);
265 		entry->ccw |= cpu_to_be32(CCW0_INVALID);
266 		/*
267 		 * Return credit for the fault window.
268 		 */
269 		vas_return_credit(vinst->fault_win, false);
270 
271 		pr_devel("VAS[%d] fault_fifo %p, fifo %p, fault_crbs %d\n",
272 				vinst->vas_id, vinst->fault_fifo, fifo,
273 				vinst->fault_crbs);
274 
275 		dump_crb(crb);
276 		window = vas_pswid_to_window(vinst,
277 				be32_to_cpu(crb->stamp.nx.pswid));
278 
279 		if (IS_ERR(window)) {
280 			/*
281 			 * We got an interrupt about a specific send
282 			 * window but we can't find that window and we can't
283 			 * even clean it up (return credit on user space
284 			 * window).
285 			 * But we should not get here.
286 			 * TODO: Disable IRQ.
287 			 */
288 			dump_fifo(vinst, (void *)entry);
289 			pr_err("VAS[%d] fault_fifo %p, fifo %p, pswid 0x%x, fault_crbs %d bad CRB?\n",
290 				vinst->vas_id, vinst->fault_fifo, fifo,
291 				be32_to_cpu(crb->stamp.nx.pswid),
292 				vinst->fault_crbs);
293 
294 			WARN_ON_ONCE(1);
295 		} else {
296 			update_csb(window, crb);
297 			/*
298 			 * Return credit for send window after processing
299 			 * fault CRB.
300 			 */
301 			vas_return_credit(window, true);
302 		}
303 	}
304 }
305 
306 irqreturn_t vas_fault_handler(int irq, void *dev_id)
307 {
308 	struct vas_instance *vinst = dev_id;
309 	irqreturn_t ret = IRQ_WAKE_THREAD;
310 	unsigned long flags;
311 
312 	/*
313 	 * NX can generate an interrupt for multiple faults. So the
314 	 * fault handler thread process all CRBs until finds invalid
315 	 * entry. In case if NX sees continuous faults, it is possible
316 	 * that the thread function entered with the first interrupt
317 	 * can execute and process all valid CRBs.
318 	 * So wake up thread only if the fault thread is not in progress.
319 	 */
320 	spin_lock_irqsave(&vinst->fault_lock, flags);
321 
322 	if (vinst->fifo_in_progress)
323 		ret = IRQ_HANDLED;
324 	else
325 		vinst->fifo_in_progress = 1;
326 
327 	spin_unlock_irqrestore(&vinst->fault_lock, flags);
328 
329 	return ret;
330 }
331 
332 /*
333  * Fault window is opened per VAS instance. NX pastes fault CRB in fault
334  * FIFO upon page faults.
335  */
336 int vas_setup_fault_window(struct vas_instance *vinst)
337 {
338 	struct vas_rx_win_attr attr;
339 
340 	vinst->fault_fifo_size = VAS_FAULT_WIN_FIFO_SIZE;
341 	vinst->fault_fifo = kzalloc(vinst->fault_fifo_size, GFP_KERNEL);
342 	if (!vinst->fault_fifo) {
343 		pr_err("Unable to alloc %d bytes for fault_fifo\n",
344 				vinst->fault_fifo_size);
345 		return -ENOMEM;
346 	}
347 
348 	/*
349 	 * Invalidate all CRB entries. NX pastes valid entry for each fault.
350 	 */
351 	memset(vinst->fault_fifo, FIFO_INVALID_ENTRY, vinst->fault_fifo_size);
352 	vas_init_rx_win_attr(&attr, VAS_COP_TYPE_FAULT);
353 
354 	attr.rx_fifo_size = vinst->fault_fifo_size;
355 	attr.rx_fifo = vinst->fault_fifo;
356 
357 	/*
358 	 * Max creds is based on number of CRBs can fit in the FIFO.
359 	 * (fault_fifo_size/CRB_SIZE). If 8MB FIFO is used, max creds
360 	 * will be 0xffff since the receive creds field is 16bits wide.
361 	 */
362 	attr.wcreds_max = vinst->fault_fifo_size / CRB_SIZE;
363 	attr.lnotify_lpid = 0;
364 	attr.lnotify_pid = mfspr(SPRN_PID);
365 	attr.lnotify_tid = mfspr(SPRN_PID);
366 
367 	vinst->fault_win = vas_rx_win_open(vinst->vas_id, VAS_COP_TYPE_FAULT,
368 					&attr);
369 
370 	if (IS_ERR(vinst->fault_win)) {
371 		pr_err("VAS: Error %ld opening FaultWin\n",
372 			PTR_ERR(vinst->fault_win));
373 		kfree(vinst->fault_fifo);
374 		return PTR_ERR(vinst->fault_win);
375 	}
376 
377 	pr_devel("VAS: Created FaultWin %d, LPID/PID/TID [%d/%d/%d]\n",
378 			vinst->fault_win->winid, attr.lnotify_lpid,
379 			attr.lnotify_pid, attr.lnotify_tid);
380 
381 	return 0;
382 }
383