xref: /linux/arch/powerpc/platforms/powernv/pci-ioda.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/opal.h>
35 #include <asm/iommu.h>
36 #include <asm/tce.h>
37 #include <asm/xics.h>
38 #include <asm/debug.h>
39 #include <asm/firmware.h>
40 #include <asm/pnv-pci.h>
41 
42 #include <misc/cxl.h>
43 
44 #include "powernv.h"
45 #include "pci.h"
46 
47 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
48 			    const char *fmt, ...)
49 {
50 	struct va_format vaf;
51 	va_list args;
52 	char pfix[32];
53 
54 	va_start(args, fmt);
55 
56 	vaf.fmt = fmt;
57 	vaf.va = &args;
58 
59 	if (pe->pdev)
60 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
61 	else
62 		sprintf(pfix, "%04x:%02x     ",
63 			pci_domain_nr(pe->pbus), pe->pbus->number);
64 
65 	printk("%spci %s: [PE# %.3d] %pV",
66 	       level, pfix, pe->pe_number, &vaf);
67 
68 	va_end(args);
69 }
70 
71 #define pe_err(pe, fmt, ...)					\
72 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
73 #define pe_warn(pe, fmt, ...)					\
74 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
75 #define pe_info(pe, fmt, ...)					\
76 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
77 
78 static bool pnv_iommu_bypass_disabled __read_mostly;
79 
80 static int __init iommu_setup(char *str)
81 {
82 	if (!str)
83 		return -EINVAL;
84 
85 	while (*str) {
86 		if (!strncmp(str, "nobypass", 8)) {
87 			pnv_iommu_bypass_disabled = true;
88 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
89 			break;
90 		}
91 		str += strcspn(str, ",");
92 		if (*str == ',')
93 			str++;
94 	}
95 
96 	return 0;
97 }
98 early_param("iommu", iommu_setup);
99 
100 /*
101  * stdcix is only supposed to be used in hypervisor real mode as per
102  * the architecture spec
103  */
104 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
105 {
106 	__asm__ __volatile__("stdcix %0,0,%1"
107 		: : "r" (val), "r" (paddr) : "memory");
108 }
109 
110 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
111 {
112 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
113 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
114 }
115 
116 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
117 {
118 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
119 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
120 			__func__, pe_no, phb->hose->global_number);
121 		return;
122 	}
123 
124 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
125 		pr_warn("%s: PE %d was assigned on PHB#%x\n",
126 			__func__, pe_no, phb->hose->global_number);
127 		return;
128 	}
129 
130 	phb->ioda.pe_array[pe_no].phb = phb;
131 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
132 }
133 
134 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
135 {
136 	unsigned long pe;
137 
138 	do {
139 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
140 					phb->ioda.total_pe, 0);
141 		if (pe >= phb->ioda.total_pe)
142 			return IODA_INVALID_PE;
143 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
144 
145 	phb->ioda.pe_array[pe].phb = phb;
146 	phb->ioda.pe_array[pe].pe_number = pe;
147 	return pe;
148 }
149 
150 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
151 {
152 	WARN_ON(phb->ioda.pe_array[pe].pdev);
153 
154 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
155 	clear_bit(pe, phb->ioda.pe_alloc);
156 }
157 
158 /* The default M64 BAR is shared by all PEs */
159 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
160 {
161 	const char *desc;
162 	struct resource *r;
163 	s64 rc;
164 
165 	/* Configure the default M64 BAR */
166 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
167 					 OPAL_M64_WINDOW_TYPE,
168 					 phb->ioda.m64_bar_idx,
169 					 phb->ioda.m64_base,
170 					 0, /* unused */
171 					 phb->ioda.m64_size);
172 	if (rc != OPAL_SUCCESS) {
173 		desc = "configuring";
174 		goto fail;
175 	}
176 
177 	/* Enable the default M64 BAR */
178 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
179 				      OPAL_M64_WINDOW_TYPE,
180 				      phb->ioda.m64_bar_idx,
181 				      OPAL_ENABLE_M64_SPLIT);
182 	if (rc != OPAL_SUCCESS) {
183 		desc = "enabling";
184 		goto fail;
185 	}
186 
187 	/* Mark the M64 BAR assigned */
188 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
189 
190 	/*
191 	 * Strip off the segment used by the reserved PE, which is
192 	 * expected to be 0 or last one of PE capabicity.
193 	 */
194 	r = &phb->hose->mem_resources[1];
195 	if (phb->ioda.reserved_pe == 0)
196 		r->start += phb->ioda.m64_segsize;
197 	else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
198 		r->end -= phb->ioda.m64_segsize;
199 	else
200 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
201 			phb->ioda.reserved_pe);
202 
203 	return 0;
204 
205 fail:
206 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
207 		rc, desc, phb->ioda.m64_bar_idx);
208 	opal_pci_phb_mmio_enable(phb->opal_id,
209 				 OPAL_M64_WINDOW_TYPE,
210 				 phb->ioda.m64_bar_idx,
211 				 OPAL_DISABLE_M64);
212 	return -EIO;
213 }
214 
215 static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
216 {
217 	resource_size_t sgsz = phb->ioda.m64_segsize;
218 	struct pci_dev *pdev;
219 	struct resource *r;
220 	int base, step, i;
221 
222 	/*
223 	 * Root bus always has full M64 range and root port has
224 	 * M64 range used in reality. So we're checking root port
225 	 * instead of root bus.
226 	 */
227 	list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
228 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
229 			r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
230 			if (!r->parent ||
231 			    !pnv_pci_is_mem_pref_64(r->flags))
232 				continue;
233 
234 			base = (r->start - phb->ioda.m64_base) / sgsz;
235 			for (step = 0; step < resource_size(r) / sgsz; step++)
236 				pnv_ioda_reserve_pe(phb, base + step);
237 		}
238 	}
239 }
240 
241 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
242 				 struct pci_bus *bus, int all)
243 {
244 	resource_size_t segsz = phb->ioda.m64_segsize;
245 	struct pci_dev *pdev;
246 	struct resource *r;
247 	struct pnv_ioda_pe *master_pe, *pe;
248 	unsigned long size, *pe_alloc;
249 	bool found;
250 	int start, i, j;
251 
252 	/* Root bus shouldn't use M64 */
253 	if (pci_is_root_bus(bus))
254 		return IODA_INVALID_PE;
255 
256 	/* We support only one M64 window on each bus */
257 	found = false;
258 	pci_bus_for_each_resource(bus, r, i) {
259 		if (r && r->parent &&
260 		    pnv_pci_is_mem_pref_64(r->flags)) {
261 			found = true;
262 			break;
263 		}
264 	}
265 
266 	/* No M64 window found ? */
267 	if (!found)
268 		return IODA_INVALID_PE;
269 
270 	/* Allocate bitmap */
271 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
272 	pe_alloc = kzalloc(size, GFP_KERNEL);
273 	if (!pe_alloc) {
274 		pr_warn("%s: Out of memory !\n",
275 			__func__);
276 		return IODA_INVALID_PE;
277 	}
278 
279 	/*
280 	 * Figure out reserved PE numbers by the PE
281 	 * the its child PEs.
282 	 */
283 	start = (r->start - phb->ioda.m64_base) / segsz;
284 	for (i = 0; i < resource_size(r) / segsz; i++)
285 		set_bit(start + i, pe_alloc);
286 
287 	if (all)
288 		goto done;
289 
290 	/*
291 	 * If the PE doesn't cover all subordinate buses,
292 	 * we need subtract from reserved PEs for children.
293 	 */
294 	list_for_each_entry(pdev, &bus->devices, bus_list) {
295 		if (!pdev->subordinate)
296 			continue;
297 
298 		pci_bus_for_each_resource(pdev->subordinate, r, i) {
299 			if (!r || !r->parent ||
300 			    !pnv_pci_is_mem_pref_64(r->flags))
301 				continue;
302 
303 			start = (r->start - phb->ioda.m64_base) / segsz;
304 			for (j = 0; j < resource_size(r) / segsz ; j++)
305 				clear_bit(start + j, pe_alloc);
306                 }
307         }
308 
309 	/*
310 	 * the current bus might not own M64 window and that's all
311 	 * contributed by its child buses. For the case, we needn't
312 	 * pick M64 dependent PE#.
313 	 */
314 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
315 		kfree(pe_alloc);
316 		return IODA_INVALID_PE;
317 	}
318 
319 	/*
320 	 * Figure out the master PE and put all slave PEs to master
321 	 * PE's list to form compound PE.
322 	 */
323 done:
324 	master_pe = NULL;
325 	i = -1;
326 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
327 		phb->ioda.total_pe) {
328 		pe = &phb->ioda.pe_array[i];
329 
330 		if (!master_pe) {
331 			pe->flags |= PNV_IODA_PE_MASTER;
332 			INIT_LIST_HEAD(&pe->slaves);
333 			master_pe = pe;
334 		} else {
335 			pe->flags |= PNV_IODA_PE_SLAVE;
336 			pe->master = master_pe;
337 			list_add_tail(&pe->list, &master_pe->slaves);
338 		}
339 	}
340 
341 	kfree(pe_alloc);
342 	return master_pe->pe_number;
343 }
344 
345 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
346 {
347 	struct pci_controller *hose = phb->hose;
348 	struct device_node *dn = hose->dn;
349 	struct resource *res;
350 	const u32 *r;
351 	u64 pci_addr;
352 
353 	/* FIXME: Support M64 for P7IOC */
354 	if (phb->type != PNV_PHB_IODA2) {
355 		pr_info("  Not support M64 window\n");
356 		return;
357 	}
358 
359 	if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
360 		pr_info("  Firmware too old to support M64 window\n");
361 		return;
362 	}
363 
364 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
365 	if (!r) {
366 		pr_info("  No <ibm,opal-m64-window> on %s\n",
367 			dn->full_name);
368 		return;
369 	}
370 
371 	res = &hose->mem_resources[1];
372 	res->start = of_translate_address(dn, r + 2);
373 	res->end = res->start + of_read_number(r + 4, 2) - 1;
374 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
375 	pci_addr = of_read_number(r, 2);
376 	hose->mem_offset[1] = res->start - pci_addr;
377 
378 	phb->ioda.m64_size = resource_size(res);
379 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
380 	phb->ioda.m64_base = pci_addr;
381 
382 	pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
383 			res->start, res->end, pci_addr);
384 
385 	/* Use last M64 BAR to cover M64 window */
386 	phb->ioda.m64_bar_idx = 15;
387 	phb->init_m64 = pnv_ioda2_init_m64;
388 	phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
389 	phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
390 }
391 
392 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
393 {
394 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
395 	struct pnv_ioda_pe *slave;
396 	s64 rc;
397 
398 	/* Fetch master PE */
399 	if (pe->flags & PNV_IODA_PE_SLAVE) {
400 		pe = pe->master;
401 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
402 			return;
403 
404 		pe_no = pe->pe_number;
405 	}
406 
407 	/* Freeze master PE */
408 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
409 				     pe_no,
410 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
411 	if (rc != OPAL_SUCCESS) {
412 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
413 			__func__, rc, phb->hose->global_number, pe_no);
414 		return;
415 	}
416 
417 	/* Freeze slave PEs */
418 	if (!(pe->flags & PNV_IODA_PE_MASTER))
419 		return;
420 
421 	list_for_each_entry(slave, &pe->slaves, list) {
422 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
423 					     slave->pe_number,
424 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
425 		if (rc != OPAL_SUCCESS)
426 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
427 				__func__, rc, phb->hose->global_number,
428 				slave->pe_number);
429 	}
430 }
431 
432 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
433 {
434 	struct pnv_ioda_pe *pe, *slave;
435 	s64 rc;
436 
437 	/* Find master PE */
438 	pe = &phb->ioda.pe_array[pe_no];
439 	if (pe->flags & PNV_IODA_PE_SLAVE) {
440 		pe = pe->master;
441 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
442 		pe_no = pe->pe_number;
443 	}
444 
445 	/* Clear frozen state for master PE */
446 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
447 	if (rc != OPAL_SUCCESS) {
448 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
449 			__func__, rc, opt, phb->hose->global_number, pe_no);
450 		return -EIO;
451 	}
452 
453 	if (!(pe->flags & PNV_IODA_PE_MASTER))
454 		return 0;
455 
456 	/* Clear frozen state for slave PEs */
457 	list_for_each_entry(slave, &pe->slaves, list) {
458 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
459 					     slave->pe_number,
460 					     opt);
461 		if (rc != OPAL_SUCCESS) {
462 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
463 				__func__, rc, opt, phb->hose->global_number,
464 				slave->pe_number);
465 			return -EIO;
466 		}
467 	}
468 
469 	return 0;
470 }
471 
472 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
473 {
474 	struct pnv_ioda_pe *slave, *pe;
475 	u8 fstate, state;
476 	__be16 pcierr;
477 	s64 rc;
478 
479 	/* Sanity check on PE number */
480 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
481 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
482 
483 	/*
484 	 * Fetch the master PE and the PE instance might be
485 	 * not initialized yet.
486 	 */
487 	pe = &phb->ioda.pe_array[pe_no];
488 	if (pe->flags & PNV_IODA_PE_SLAVE) {
489 		pe = pe->master;
490 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
491 		pe_no = pe->pe_number;
492 	}
493 
494 	/* Check the master PE */
495 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
496 					&state, &pcierr, NULL);
497 	if (rc != OPAL_SUCCESS) {
498 		pr_warn("%s: Failure %lld getting "
499 			"PHB#%x-PE#%x state\n",
500 			__func__, rc,
501 			phb->hose->global_number, pe_no);
502 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
503 	}
504 
505 	/* Check the slave PE */
506 	if (!(pe->flags & PNV_IODA_PE_MASTER))
507 		return state;
508 
509 	list_for_each_entry(slave, &pe->slaves, list) {
510 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
511 						slave->pe_number,
512 						&fstate,
513 						&pcierr,
514 						NULL);
515 		if (rc != OPAL_SUCCESS) {
516 			pr_warn("%s: Failure %lld getting "
517 				"PHB#%x-PE#%x state\n",
518 				__func__, rc,
519 				phb->hose->global_number, slave->pe_number);
520 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
521 		}
522 
523 		/*
524 		 * Override the result based on the ascending
525 		 * priority.
526 		 */
527 		if (fstate > state)
528 			state = fstate;
529 	}
530 
531 	return state;
532 }
533 
534 /* Currently those 2 are only used when MSIs are enabled, this will change
535  * but in the meantime, we need to protect them to avoid warnings
536  */
537 #ifdef CONFIG_PCI_MSI
538 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
539 {
540 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
541 	struct pnv_phb *phb = hose->private_data;
542 	struct pci_dn *pdn = pci_get_pdn(dev);
543 
544 	if (!pdn)
545 		return NULL;
546 	if (pdn->pe_number == IODA_INVALID_PE)
547 		return NULL;
548 	return &phb->ioda.pe_array[pdn->pe_number];
549 }
550 #endif /* CONFIG_PCI_MSI */
551 
552 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
553 				  struct pnv_ioda_pe *parent,
554 				  struct pnv_ioda_pe *child,
555 				  bool is_add)
556 {
557 	const char *desc = is_add ? "adding" : "removing";
558 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
559 			      OPAL_REMOVE_PE_FROM_DOMAIN;
560 	struct pnv_ioda_pe *slave;
561 	long rc;
562 
563 	/* Parent PE affects child PE */
564 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
565 				child->pe_number, op);
566 	if (rc != OPAL_SUCCESS) {
567 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
568 			rc, desc);
569 		return -ENXIO;
570 	}
571 
572 	if (!(child->flags & PNV_IODA_PE_MASTER))
573 		return 0;
574 
575 	/* Compound case: parent PE affects slave PEs */
576 	list_for_each_entry(slave, &child->slaves, list) {
577 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
578 					slave->pe_number, op);
579 		if (rc != OPAL_SUCCESS) {
580 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
581 				rc, desc);
582 			return -ENXIO;
583 		}
584 	}
585 
586 	return 0;
587 }
588 
589 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
590 			      struct pnv_ioda_pe *pe,
591 			      bool is_add)
592 {
593 	struct pnv_ioda_pe *slave;
594 	struct pci_dev *pdev;
595 	int ret;
596 
597 	/*
598 	 * Clear PE frozen state. If it's master PE, we need
599 	 * clear slave PE frozen state as well.
600 	 */
601 	if (is_add) {
602 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
603 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
604 		if (pe->flags & PNV_IODA_PE_MASTER) {
605 			list_for_each_entry(slave, &pe->slaves, list)
606 				opal_pci_eeh_freeze_clear(phb->opal_id,
607 							  slave->pe_number,
608 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
609 		}
610 	}
611 
612 	/*
613 	 * Associate PE in PELT. We need add the PE into the
614 	 * corresponding PELT-V as well. Otherwise, the error
615 	 * originated from the PE might contribute to other
616 	 * PEs.
617 	 */
618 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
619 	if (ret)
620 		return ret;
621 
622 	/* For compound PEs, any one affects all of them */
623 	if (pe->flags & PNV_IODA_PE_MASTER) {
624 		list_for_each_entry(slave, &pe->slaves, list) {
625 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
626 			if (ret)
627 				return ret;
628 		}
629 	}
630 
631 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
632 		pdev = pe->pbus->self;
633 	else
634 		pdev = pe->pdev->bus->self;
635 	while (pdev) {
636 		struct pci_dn *pdn = pci_get_pdn(pdev);
637 		struct pnv_ioda_pe *parent;
638 
639 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
640 			parent = &phb->ioda.pe_array[pdn->pe_number];
641 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
642 			if (ret)
643 				return ret;
644 		}
645 
646 		pdev = pdev->bus->self;
647 	}
648 
649 	return 0;
650 }
651 
652 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
653 {
654 	struct pci_dev *parent;
655 	uint8_t bcomp, dcomp, fcomp;
656 	long rc, rid_end, rid;
657 
658 	/* Bus validation ? */
659 	if (pe->pbus) {
660 		int count;
661 
662 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
663 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
664 		parent = pe->pbus->self;
665 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
666 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
667 		else
668 			count = 1;
669 
670 		switch(count) {
671 		case  1: bcomp = OpalPciBusAll;		break;
672 		case  2: bcomp = OpalPciBus7Bits;	break;
673 		case  4: bcomp = OpalPciBus6Bits;	break;
674 		case  8: bcomp = OpalPciBus5Bits;	break;
675 		case 16: bcomp = OpalPciBus4Bits;	break;
676 		case 32: bcomp = OpalPciBus3Bits;	break;
677 		default:
678 			pr_err("%s: Number of subordinate busses %d"
679 			       " unsupported\n",
680 			       pci_name(pe->pbus->self), count);
681 			/* Do an exact match only */
682 			bcomp = OpalPciBusAll;
683 		}
684 		rid_end = pe->rid + (count << 8);
685 	} else {
686 		parent = pe->pdev->bus->self;
687 		bcomp = OpalPciBusAll;
688 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
689 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
690 		rid_end = pe->rid + 1;
691 	}
692 
693 	/*
694 	 * Associate PE in PELT. We need add the PE into the
695 	 * corresponding PELT-V as well. Otherwise, the error
696 	 * originated from the PE might contribute to other
697 	 * PEs.
698 	 */
699 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
700 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
701 	if (rc) {
702 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
703 		return -ENXIO;
704 	}
705 
706 	/* Configure PELTV */
707 	pnv_ioda_set_peltv(phb, pe, true);
708 
709 	/* Setup reverse map */
710 	for (rid = pe->rid; rid < rid_end; rid++)
711 		phb->ioda.pe_rmap[rid] = pe->pe_number;
712 
713 	/* Setup one MVTs on IODA1 */
714 	if (phb->type != PNV_PHB_IODA1) {
715 		pe->mve_number = 0;
716 		goto out;
717 	}
718 
719 	pe->mve_number = pe->pe_number;
720 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
721 	if (rc != OPAL_SUCCESS) {
722 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
723 		       rc, pe->mve_number);
724 		pe->mve_number = -1;
725 	} else {
726 		rc = opal_pci_set_mve_enable(phb->opal_id,
727 					     pe->mve_number, OPAL_ENABLE_MVE);
728 		if (rc) {
729 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
730 			       rc, pe->mve_number);
731 			pe->mve_number = -1;
732 		}
733 	}
734 
735 out:
736 	return 0;
737 }
738 
739 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
740 				       struct pnv_ioda_pe *pe)
741 {
742 	struct pnv_ioda_pe *lpe;
743 
744 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
745 		if (lpe->dma_weight < pe->dma_weight) {
746 			list_add_tail(&pe->dma_link, &lpe->dma_link);
747 			return;
748 		}
749 	}
750 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
751 }
752 
753 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
754 {
755 	/* This is quite simplistic. The "base" weight of a device
756 	 * is 10. 0 means no DMA is to be accounted for it.
757 	 */
758 
759 	/* If it's a bridge, no DMA */
760 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
761 		return 0;
762 
763 	/* Reduce the weight of slow USB controllers */
764 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
765 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
766 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
767 		return 3;
768 
769 	/* Increase the weight of RAID (includes Obsidian) */
770 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
771 		return 15;
772 
773 	/* Default */
774 	return 10;
775 }
776 
777 #if 0
778 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
779 {
780 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
781 	struct pnv_phb *phb = hose->private_data;
782 	struct pci_dn *pdn = pci_get_pdn(dev);
783 	struct pnv_ioda_pe *pe;
784 	int pe_num;
785 
786 	if (!pdn) {
787 		pr_err("%s: Device tree node not associated properly\n",
788 			   pci_name(dev));
789 		return NULL;
790 	}
791 	if (pdn->pe_number != IODA_INVALID_PE)
792 		return NULL;
793 
794 	/* PE#0 has been pre-set */
795 	if (dev->bus->number == 0)
796 		pe_num = 0;
797 	else
798 		pe_num = pnv_ioda_alloc_pe(phb);
799 	if (pe_num == IODA_INVALID_PE) {
800 		pr_warning("%s: Not enough PE# available, disabling device\n",
801 			   pci_name(dev));
802 		return NULL;
803 	}
804 
805 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
806 	 * pointer in the PE data structure, both should be destroyed at the
807 	 * same time. However, this needs to be looked at more closely again
808 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
809 	 *
810 	 * At some point we want to remove the PDN completely anyways
811 	 */
812 	pe = &phb->ioda.pe_array[pe_num];
813 	pci_dev_get(dev);
814 	pdn->pcidev = dev;
815 	pdn->pe_number = pe_num;
816 	pe->pdev = dev;
817 	pe->pbus = NULL;
818 	pe->tce32_seg = -1;
819 	pe->mve_number = -1;
820 	pe->rid = dev->bus->number << 8 | pdn->devfn;
821 
822 	pe_info(pe, "Associated device to PE\n");
823 
824 	if (pnv_ioda_configure_pe(phb, pe)) {
825 		/* XXX What do we do here ? */
826 		if (pe_num)
827 			pnv_ioda_free_pe(phb, pe_num);
828 		pdn->pe_number = IODA_INVALID_PE;
829 		pe->pdev = NULL;
830 		pci_dev_put(dev);
831 		return NULL;
832 	}
833 
834 	/* Assign a DMA weight to the device */
835 	pe->dma_weight = pnv_ioda_dma_weight(dev);
836 	if (pe->dma_weight != 0) {
837 		phb->ioda.dma_weight += pe->dma_weight;
838 		phb->ioda.dma_pe_count++;
839 	}
840 
841 	/* Link the PE */
842 	pnv_ioda_link_pe_by_weight(phb, pe);
843 
844 	return pe;
845 }
846 #endif /* Useful for SRIOV case */
847 
848 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
849 {
850 	struct pci_dev *dev;
851 
852 	list_for_each_entry(dev, &bus->devices, bus_list) {
853 		struct pci_dn *pdn = pci_get_pdn(dev);
854 
855 		if (pdn == NULL) {
856 			pr_warn("%s: No device node associated with device !\n",
857 				pci_name(dev));
858 			continue;
859 		}
860 		pdn->pcidev = dev;
861 		pdn->pe_number = pe->pe_number;
862 		pe->dma_weight += pnv_ioda_dma_weight(dev);
863 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
864 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
865 	}
866 }
867 
868 /*
869  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
870  * single PCI bus. Another one that contains the primary PCI bus and its
871  * subordinate PCI devices and buses. The second type of PE is normally
872  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
873  */
874 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
875 {
876 	struct pci_controller *hose = pci_bus_to_host(bus);
877 	struct pnv_phb *phb = hose->private_data;
878 	struct pnv_ioda_pe *pe;
879 	int pe_num = IODA_INVALID_PE;
880 
881 	/* Check if PE is determined by M64 */
882 	if (phb->pick_m64_pe)
883 		pe_num = phb->pick_m64_pe(phb, bus, all);
884 
885 	/* The PE number isn't pinned by M64 */
886 	if (pe_num == IODA_INVALID_PE)
887 		pe_num = pnv_ioda_alloc_pe(phb);
888 
889 	if (pe_num == IODA_INVALID_PE) {
890 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
891 			__func__, pci_domain_nr(bus), bus->number);
892 		return;
893 	}
894 
895 	pe = &phb->ioda.pe_array[pe_num];
896 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
897 	pe->pbus = bus;
898 	pe->pdev = NULL;
899 	pe->tce32_seg = -1;
900 	pe->mve_number = -1;
901 	pe->rid = bus->busn_res.start << 8;
902 	pe->dma_weight = 0;
903 
904 	if (all)
905 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
906 			bus->busn_res.start, bus->busn_res.end, pe_num);
907 	else
908 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
909 			bus->busn_res.start, pe_num);
910 
911 	if (pnv_ioda_configure_pe(phb, pe)) {
912 		/* XXX What do we do here ? */
913 		if (pe_num)
914 			pnv_ioda_free_pe(phb, pe_num);
915 		pe->pbus = NULL;
916 		return;
917 	}
918 
919 	/* Associate it with all child devices */
920 	pnv_ioda_setup_same_PE(bus, pe);
921 
922 	/* Put PE to the list */
923 	list_add_tail(&pe->list, &phb->ioda.pe_list);
924 
925 	/* Account for one DMA PE if at least one DMA capable device exist
926 	 * below the bridge
927 	 */
928 	if (pe->dma_weight != 0) {
929 		phb->ioda.dma_weight += pe->dma_weight;
930 		phb->ioda.dma_pe_count++;
931 	}
932 
933 	/* Link the PE */
934 	pnv_ioda_link_pe_by_weight(phb, pe);
935 }
936 
937 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
938 {
939 	struct pci_dev *dev;
940 
941 	pnv_ioda_setup_bus_PE(bus, 0);
942 
943 	list_for_each_entry(dev, &bus->devices, bus_list) {
944 		if (dev->subordinate) {
945 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
946 				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
947 			else
948 				pnv_ioda_setup_PEs(dev->subordinate);
949 		}
950 	}
951 }
952 
953 /*
954  * Configure PEs so that the downstream PCI buses and devices
955  * could have their associated PE#. Unfortunately, we didn't
956  * figure out the way to identify the PLX bridge yet. So we
957  * simply put the PCI bus and the subordinate behind the root
958  * port to PE# here. The game rule here is expected to be changed
959  * as soon as we can detected PLX bridge correctly.
960  */
961 static void pnv_pci_ioda_setup_PEs(void)
962 {
963 	struct pci_controller *hose, *tmp;
964 	struct pnv_phb *phb;
965 
966 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
967 		phb = hose->private_data;
968 
969 		/* M64 layout might affect PE allocation */
970 		if (phb->reserve_m64_pe)
971 			phb->reserve_m64_pe(phb);
972 
973 		pnv_ioda_setup_PEs(hose->bus);
974 	}
975 }
976 
977 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
978 {
979 	struct pci_dn *pdn = pci_get_pdn(pdev);
980 	struct pnv_ioda_pe *pe;
981 
982 	/*
983 	 * The function can be called while the PE#
984 	 * hasn't been assigned. Do nothing for the
985 	 * case.
986 	 */
987 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
988 		return;
989 
990 	pe = &phb->ioda.pe_array[pdn->pe_number];
991 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
992 	set_iommu_table_base_and_group(&pdev->dev, &pe->tce32_table);
993 }
994 
995 static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
996 				     struct pci_dev *pdev, u64 dma_mask)
997 {
998 	struct pci_dn *pdn = pci_get_pdn(pdev);
999 	struct pnv_ioda_pe *pe;
1000 	uint64_t top;
1001 	bool bypass = false;
1002 
1003 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1004 		return -ENODEV;;
1005 
1006 	pe = &phb->ioda.pe_array[pdn->pe_number];
1007 	if (pe->tce_bypass_enabled) {
1008 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1009 		bypass = (dma_mask >= top);
1010 	}
1011 
1012 	if (bypass) {
1013 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1014 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1015 		set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1016 	} else {
1017 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1018 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1019 		set_iommu_table_base(&pdev->dev, &pe->tce32_table);
1020 	}
1021 	*pdev->dev.dma_mask = dma_mask;
1022 	return 0;
1023 }
1024 
1025 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1026 					      struct pci_dev *pdev)
1027 {
1028 	struct pci_dn *pdn = pci_get_pdn(pdev);
1029 	struct pnv_ioda_pe *pe;
1030 	u64 end, mask;
1031 
1032 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1033 		return 0;
1034 
1035 	pe = &phb->ioda.pe_array[pdn->pe_number];
1036 	if (!pe->tce_bypass_enabled)
1037 		return __dma_get_required_mask(&pdev->dev);
1038 
1039 
1040 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1041 	mask = 1ULL << (fls64(end) - 1);
1042 	mask += mask - 1;
1043 
1044 	return mask;
1045 }
1046 
1047 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1048 				   struct pci_bus *bus,
1049 				   bool add_to_iommu_group)
1050 {
1051 	struct pci_dev *dev;
1052 
1053 	list_for_each_entry(dev, &bus->devices, bus_list) {
1054 		if (add_to_iommu_group)
1055 			set_iommu_table_base_and_group(&dev->dev,
1056 						       &pe->tce32_table);
1057 		else
1058 			set_iommu_table_base(&dev->dev, &pe->tce32_table);
1059 
1060 		if (dev->subordinate)
1061 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1062 					       add_to_iommu_group);
1063 	}
1064 }
1065 
1066 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
1067 					 struct iommu_table *tbl,
1068 					 __be64 *startp, __be64 *endp, bool rm)
1069 {
1070 	__be64 __iomem *invalidate = rm ?
1071 		(__be64 __iomem *)pe->tce_inval_reg_phys :
1072 		(__be64 __iomem *)tbl->it_index;
1073 	unsigned long start, end, inc;
1074 	const unsigned shift = tbl->it_page_shift;
1075 
1076 	start = __pa(startp);
1077 	end = __pa(endp);
1078 
1079 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1080 	if (tbl->it_busno) {
1081 		start <<= shift;
1082 		end <<= shift;
1083 		inc = 128ull << shift;
1084 		start |= tbl->it_busno;
1085 		end |= tbl->it_busno;
1086 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1087 		/* p7ioc-style invalidation, 2 TCEs per write */
1088 		start |= (1ull << 63);
1089 		end |= (1ull << 63);
1090 		inc = 16;
1091         } else {
1092 		/* Default (older HW) */
1093                 inc = 128;
1094 	}
1095 
1096         end |= inc - 1;	/* round up end to be different than start */
1097 
1098         mb(); /* Ensure above stores are visible */
1099         while (start <= end) {
1100 		if (rm)
1101 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1102 		else
1103 			__raw_writeq(cpu_to_be64(start), invalidate);
1104                 start += inc;
1105         }
1106 
1107 	/*
1108 	 * The iommu layer will do another mb() for us on build()
1109 	 * and we don't care on free()
1110 	 */
1111 }
1112 
1113 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
1114 					 struct iommu_table *tbl,
1115 					 __be64 *startp, __be64 *endp, bool rm)
1116 {
1117 	unsigned long start, end, inc;
1118 	__be64 __iomem *invalidate = rm ?
1119 		(__be64 __iomem *)pe->tce_inval_reg_phys :
1120 		(__be64 __iomem *)tbl->it_index;
1121 	const unsigned shift = tbl->it_page_shift;
1122 
1123 	/* We'll invalidate DMA address in PE scope */
1124 	start = 0x2ull << 60;
1125 	start |= (pe->pe_number & 0xFF);
1126 	end = start;
1127 
1128 	/* Figure out the start, end and step */
1129 	inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
1130 	start |= (inc << shift);
1131 	inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
1132 	end |= (inc << shift);
1133 	inc = (0x1ull << shift);
1134 	mb();
1135 
1136 	while (start <= end) {
1137 		if (rm)
1138 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1139 		else
1140 			__raw_writeq(cpu_to_be64(start), invalidate);
1141 		start += inc;
1142 	}
1143 }
1144 
1145 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
1146 				 __be64 *startp, __be64 *endp, bool rm)
1147 {
1148 	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
1149 					      tce32_table);
1150 	struct pnv_phb *phb = pe->phb;
1151 
1152 	if (phb->type == PNV_PHB_IODA1)
1153 		pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
1154 	else
1155 		pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
1156 }
1157 
1158 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1159 				      struct pnv_ioda_pe *pe, unsigned int base,
1160 				      unsigned int segs)
1161 {
1162 
1163 	struct page *tce_mem = NULL;
1164 	const __be64 *swinvp;
1165 	struct iommu_table *tbl;
1166 	unsigned int i;
1167 	int64_t rc;
1168 	void *addr;
1169 
1170 	/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
1171 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
1172 
1173 	/* XXX FIXME: Handle 64-bit only DMA devices */
1174 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1175 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1176 
1177 	/* We shouldn't already have a 32-bit DMA associated */
1178 	if (WARN_ON(pe->tce32_seg >= 0))
1179 		return;
1180 
1181 	/* Grab a 32-bit TCE table */
1182 	pe->tce32_seg = base;
1183 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1184 		(base << 28), ((base + segs) << 28) - 1);
1185 
1186 	/* XXX Currently, we allocate one big contiguous table for the
1187 	 * TCEs. We only really need one chunk per 256M of TCE space
1188 	 * (ie per segment) but that's an optimization for later, it
1189 	 * requires some added smarts with our get/put_tce implementation
1190 	 */
1191 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1192 				   get_order(TCE32_TABLE_SIZE * segs));
1193 	if (!tce_mem) {
1194 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1195 		goto fail;
1196 	}
1197 	addr = page_address(tce_mem);
1198 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
1199 
1200 	/* Configure HW */
1201 	for (i = 0; i < segs; i++) {
1202 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1203 					      pe->pe_number,
1204 					      base + i, 1,
1205 					      __pa(addr) + TCE32_TABLE_SIZE * i,
1206 					      TCE32_TABLE_SIZE, 0x1000);
1207 		if (rc) {
1208 			pe_err(pe, " Failed to configure 32-bit TCE table,"
1209 			       " err %ld\n", rc);
1210 			goto fail;
1211 		}
1212 	}
1213 
1214 	/* Setup linux iommu table */
1215 	tbl = &pe->tce32_table;
1216 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1217 				  base << 28, IOMMU_PAGE_SHIFT_4K);
1218 
1219 	/* OPAL variant of P7IOC SW invalidated TCEs */
1220 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1221 	if (swinvp) {
1222 		/* We need a couple more fields -- an address and a data
1223 		 * to or.  Since the bus is only printed out on table free
1224 		 * errors, and on the first pass the data will be a relative
1225 		 * bus number, print that out instead.
1226 		 */
1227 		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1228 		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1229 				8);
1230 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1231 				 TCE_PCI_SWINV_FREE   |
1232 				 TCE_PCI_SWINV_PAIR);
1233 	}
1234 	iommu_init_table(tbl, phb->hose->node);
1235 	iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1236 
1237 	if (pe->pdev)
1238 		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1239 	else
1240 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1241 
1242 	return;
1243  fail:
1244 	/* XXX Failure: Try to fallback to 64-bit only ? */
1245 	if (pe->tce32_seg >= 0)
1246 		pe->tce32_seg = -1;
1247 	if (tce_mem)
1248 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1249 }
1250 
1251 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
1252 {
1253 	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
1254 					      tce32_table);
1255 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
1256 	int64_t rc;
1257 
1258 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1259 	if (enable) {
1260 		phys_addr_t top = memblock_end_of_DRAM();
1261 
1262 		top = roundup_pow_of_two(top);
1263 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1264 						     pe->pe_number,
1265 						     window_id,
1266 						     pe->tce_bypass_base,
1267 						     top);
1268 	} else {
1269 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1270 						     pe->pe_number,
1271 						     window_id,
1272 						     pe->tce_bypass_base,
1273 						     0);
1274 
1275 		/*
1276 		 * EEH needs the mapping between IOMMU table and group
1277 		 * of those VFIO/KVM pass-through devices. We can postpone
1278 		 * resetting DMA ops until the DMA mask is configured in
1279 		 * host side.
1280 		 */
1281 		if (pe->pdev)
1282 			set_iommu_table_base(&pe->pdev->dev, tbl);
1283 		else
1284 			pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
1285 	}
1286 	if (rc)
1287 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1288 	else
1289 		pe->tce_bypass_enabled = enable;
1290 }
1291 
1292 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
1293 					  struct pnv_ioda_pe *pe)
1294 {
1295 	/* TVE #1 is selected by PCI address bit 59 */
1296 	pe->tce_bypass_base = 1ull << 59;
1297 
1298 	/* Install set_bypass callback for VFIO */
1299 	pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;
1300 
1301 	/* Enable bypass by default */
1302 	pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
1303 }
1304 
1305 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1306 				       struct pnv_ioda_pe *pe)
1307 {
1308 	struct page *tce_mem = NULL;
1309 	void *addr;
1310 	const __be64 *swinvp;
1311 	struct iommu_table *tbl;
1312 	unsigned int tce_table_size, end;
1313 	int64_t rc;
1314 
1315 	/* We shouldn't already have a 32-bit DMA associated */
1316 	if (WARN_ON(pe->tce32_seg >= 0))
1317 		return;
1318 
1319 	/* The PE will reserve all possible 32-bits space */
1320 	pe->tce32_seg = 0;
1321 	end = (1 << ilog2(phb->ioda.m32_pci_base));
1322 	tce_table_size = (end / 0x1000) * 8;
1323 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1324 		end);
1325 
1326 	/* Allocate TCE table */
1327 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1328 				   get_order(tce_table_size));
1329 	if (!tce_mem) {
1330 		pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
1331 		goto fail;
1332 	}
1333 	addr = page_address(tce_mem);
1334 	memset(addr, 0, tce_table_size);
1335 
1336 	/*
1337 	 * Map TCE table through TVT. The TVE index is the PE number
1338 	 * shifted by 1 bit for 32-bits DMA space.
1339 	 */
1340 	rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1341 					pe->pe_number << 1, 1, __pa(addr),
1342 					tce_table_size, 0x1000);
1343 	if (rc) {
1344 		pe_err(pe, "Failed to configure 32-bit TCE table,"
1345 		       " err %ld\n", rc);
1346 		goto fail;
1347 	}
1348 
1349 	/* Setup linux iommu table */
1350 	tbl = &pe->tce32_table;
1351 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
1352 			IOMMU_PAGE_SHIFT_4K);
1353 
1354 	/* OPAL variant of PHB3 invalidated TCEs */
1355 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1356 	if (swinvp) {
1357 		/* We need a couple more fields -- an address and a data
1358 		 * to or.  Since the bus is only printed out on table free
1359 		 * errors, and on the first pass the data will be a relative
1360 		 * bus number, print that out instead.
1361 		 */
1362 		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1363 		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1364 				8);
1365 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
1366 	}
1367 	iommu_init_table(tbl, phb->hose->node);
1368 	iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1369 
1370 	if (pe->pdev)
1371 		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1372 	else
1373 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1374 
1375 	/* Also create a bypass window */
1376 	if (!pnv_iommu_bypass_disabled)
1377 		pnv_pci_ioda2_setup_bypass_pe(phb, pe);
1378 
1379 	return;
1380 fail:
1381 	if (pe->tce32_seg >= 0)
1382 		pe->tce32_seg = -1;
1383 	if (tce_mem)
1384 		__free_pages(tce_mem, get_order(tce_table_size));
1385 }
1386 
1387 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
1388 {
1389 	struct pci_controller *hose = phb->hose;
1390 	unsigned int residual, remaining, segs, tw, base;
1391 	struct pnv_ioda_pe *pe;
1392 
1393 	/* If we have more PE# than segments available, hand out one
1394 	 * per PE until we run out and let the rest fail. If not,
1395 	 * then we assign at least one segment per PE, plus more based
1396 	 * on the amount of devices under that PE
1397 	 */
1398 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
1399 		residual = 0;
1400 	else
1401 		residual = phb->ioda.tce32_count -
1402 			phb->ioda.dma_pe_count;
1403 
1404 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
1405 		hose->global_number, phb->ioda.tce32_count);
1406 	pr_info("PCI: %d PE# for a total weight of %d\n",
1407 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
1408 
1409 	/* Walk our PE list and configure their DMA segments, hand them
1410 	 * out one base segment plus any residual segments based on
1411 	 * weight
1412 	 */
1413 	remaining = phb->ioda.tce32_count;
1414 	tw = phb->ioda.dma_weight;
1415 	base = 0;
1416 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
1417 		if (!pe->dma_weight)
1418 			continue;
1419 		if (!remaining) {
1420 			pe_warn(pe, "No DMA32 resources available\n");
1421 			continue;
1422 		}
1423 		segs = 1;
1424 		if (residual) {
1425 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
1426 			if (segs > remaining)
1427 				segs = remaining;
1428 		}
1429 
1430 		/*
1431 		 * For IODA2 compliant PHB3, we needn't care about the weight.
1432 		 * The all available 32-bits DMA space will be assigned to
1433 		 * the specific PE.
1434 		 */
1435 		if (phb->type == PNV_PHB_IODA1) {
1436 			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
1437 				pe->dma_weight, segs);
1438 			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
1439 		} else {
1440 			pe_info(pe, "Assign DMA32 space\n");
1441 			segs = 0;
1442 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
1443 		}
1444 
1445 		remaining -= segs;
1446 		base += segs;
1447 	}
1448 }
1449 
1450 #ifdef CONFIG_PCI_MSI
1451 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1452 {
1453 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1454 	struct irq_chip *chip = irq_data_get_irq_chip(d);
1455 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
1456 					   ioda.irq_chip);
1457 	int64_t rc;
1458 
1459 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1460 	WARN_ON_ONCE(rc);
1461 
1462 	icp_native_eoi(d);
1463 }
1464 
1465 
1466 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1467 {
1468 	struct irq_data *idata;
1469 	struct irq_chip *ichip;
1470 
1471 	if (phb->type != PNV_PHB_IODA2)
1472 		return;
1473 
1474 	if (!phb->ioda.irq_chip_init) {
1475 		/*
1476 		 * First time we setup an MSI IRQ, we need to setup the
1477 		 * corresponding IRQ chip to route correctly.
1478 		 */
1479 		idata = irq_get_irq_data(virq);
1480 		ichip = irq_data_get_irq_chip(idata);
1481 		phb->ioda.irq_chip_init = 1;
1482 		phb->ioda.irq_chip = *ichip;
1483 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
1484 	}
1485 	irq_set_chip(virq, &phb->ioda.irq_chip);
1486 }
1487 
1488 #ifdef CONFIG_CXL_BASE
1489 
1490 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
1491 {
1492 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1493 
1494 	return of_node_get(hose->dn);
1495 }
1496 EXPORT_SYMBOL(pnv_pci_get_phb_node);
1497 
1498 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
1499 {
1500 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1501 	struct pnv_phb *phb = hose->private_data;
1502 	struct pnv_ioda_pe *pe;
1503 	int rc;
1504 
1505 	pe = pnv_ioda_get_pe(dev);
1506 	if (!pe)
1507 		return -ENODEV;
1508 
1509 	pe_info(pe, "Switching PHB to CXL\n");
1510 
1511 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
1512 	if (rc)
1513 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
1514 
1515 	return rc;
1516 }
1517 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
1518 
1519 /* Find PHB for cxl dev and allocate MSI hwirqs?
1520  * Returns the absolute hardware IRQ number
1521  */
1522 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
1523 {
1524 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1525 	struct pnv_phb *phb = hose->private_data;
1526 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
1527 
1528 	if (hwirq < 0) {
1529 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
1530 		return -ENOSPC;
1531 	}
1532 
1533 	return phb->msi_base + hwirq;
1534 }
1535 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
1536 
1537 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
1538 {
1539 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1540 	struct pnv_phb *phb = hose->private_data;
1541 
1542 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
1543 }
1544 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
1545 
1546 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
1547 				  struct pci_dev *dev)
1548 {
1549 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1550 	struct pnv_phb *phb = hose->private_data;
1551 	int i, hwirq;
1552 
1553 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
1554 		if (!irqs->range[i])
1555 			continue;
1556 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
1557 			 i, irqs->offset[i],
1558 			 irqs->range[i]);
1559 		hwirq = irqs->offset[i] - phb->msi_base;
1560 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
1561 				       irqs->range[i]);
1562 	}
1563 }
1564 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
1565 
1566 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
1567 			       struct pci_dev *dev, int num)
1568 {
1569 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1570 	struct pnv_phb *phb = hose->private_data;
1571 	int i, hwirq, try;
1572 
1573 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
1574 
1575 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
1576 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
1577 		try = num;
1578 		while (try) {
1579 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
1580 			if (hwirq >= 0)
1581 				break;
1582 			try /= 2;
1583 		}
1584 		if (!try)
1585 			goto fail;
1586 
1587 		irqs->offset[i] = phb->msi_base + hwirq;
1588 		irqs->range[i] = try;
1589 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
1590 			 i, irqs->offset[i], irqs->range[i]);
1591 		num -= try;
1592 	}
1593 	if (num)
1594 		goto fail;
1595 
1596 	return 0;
1597 fail:
1598 	pnv_cxl_release_hwirq_ranges(irqs, dev);
1599 	return -ENOSPC;
1600 }
1601 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
1602 
1603 int pnv_cxl_get_irq_count(struct pci_dev *dev)
1604 {
1605 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1606 	struct pnv_phb *phb = hose->private_data;
1607 
1608 	return phb->msi_bmp.irq_count;
1609 }
1610 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
1611 
1612 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
1613 			   unsigned int virq)
1614 {
1615 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1616 	struct pnv_phb *phb = hose->private_data;
1617 	unsigned int xive_num = hwirq - phb->msi_base;
1618 	struct pnv_ioda_pe *pe;
1619 	int rc;
1620 
1621 	if (!(pe = pnv_ioda_get_pe(dev)))
1622 		return -ENODEV;
1623 
1624 	/* Assign XIVE to PE */
1625 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1626 	if (rc) {
1627 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
1628 			"hwirq 0x%x XIVE 0x%x PE\n",
1629 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
1630 		return -EIO;
1631 	}
1632 	set_msi_irq_chip(phb, virq);
1633 
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
1637 #endif
1638 
1639 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1640 				  unsigned int hwirq, unsigned int virq,
1641 				  unsigned int is_64, struct msi_msg *msg)
1642 {
1643 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1644 	unsigned int xive_num = hwirq - phb->msi_base;
1645 	__be32 data;
1646 	int rc;
1647 
1648 	/* No PE assigned ? bail out ... no MSI for you ! */
1649 	if (pe == NULL)
1650 		return -ENXIO;
1651 
1652 	/* Check if we have an MVE */
1653 	if (pe->mve_number < 0)
1654 		return -ENXIO;
1655 
1656 	/* Force 32-bit MSI on some broken devices */
1657 	if (dev->no_64bit_msi)
1658 		is_64 = 0;
1659 
1660 	/* Assign XIVE to PE */
1661 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1662 	if (rc) {
1663 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1664 			pci_name(dev), rc, xive_num);
1665 		return -EIO;
1666 	}
1667 
1668 	if (is_64) {
1669 		__be64 addr64;
1670 
1671 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1672 				     &addr64, &data);
1673 		if (rc) {
1674 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1675 				pci_name(dev), rc);
1676 			return -EIO;
1677 		}
1678 		msg->address_hi = be64_to_cpu(addr64) >> 32;
1679 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
1680 	} else {
1681 		__be32 addr32;
1682 
1683 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1684 				     &addr32, &data);
1685 		if (rc) {
1686 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1687 				pci_name(dev), rc);
1688 			return -EIO;
1689 		}
1690 		msg->address_hi = 0;
1691 		msg->address_lo = be32_to_cpu(addr32);
1692 	}
1693 	msg->data = be32_to_cpu(data);
1694 
1695 	set_msi_irq_chip(phb, virq);
1696 
1697 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
1698 		 " address=%x_%08x data=%x PE# %d\n",
1699 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
1700 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
1701 
1702 	return 0;
1703 }
1704 
1705 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1706 {
1707 	unsigned int count;
1708 	const __be32 *prop = of_get_property(phb->hose->dn,
1709 					     "ibm,opal-msi-ranges", NULL);
1710 	if (!prop) {
1711 		/* BML Fallback */
1712 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1713 	}
1714 	if (!prop)
1715 		return;
1716 
1717 	phb->msi_base = be32_to_cpup(prop);
1718 	count = be32_to_cpup(prop + 1);
1719 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
1720 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1721 		       phb->hose->global_number);
1722 		return;
1723 	}
1724 
1725 	phb->msi_setup = pnv_pci_ioda_msi_setup;
1726 	phb->msi32_support = 1;
1727 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1728 		count, phb->msi_base);
1729 }
1730 #else
1731 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1732 #endif /* CONFIG_PCI_MSI */
1733 
1734 /*
1735  * This function is supposed to be called on basis of PE from top
1736  * to bottom style. So the the I/O or MMIO segment assigned to
1737  * parent PE could be overrided by its child PEs if necessary.
1738  */
1739 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1740 				  struct pnv_ioda_pe *pe)
1741 {
1742 	struct pnv_phb *phb = hose->private_data;
1743 	struct pci_bus_region region;
1744 	struct resource *res;
1745 	int i, index;
1746 	int rc;
1747 
1748 	/*
1749 	 * NOTE: We only care PCI bus based PE for now. For PCI
1750 	 * device based PE, for example SRIOV sensitive VF should
1751 	 * be figured out later.
1752 	 */
1753 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1754 
1755 	pci_bus_for_each_resource(pe->pbus, res, i) {
1756 		if (!res || !res->flags ||
1757 		    res->start > res->end)
1758 			continue;
1759 
1760 		if (res->flags & IORESOURCE_IO) {
1761 			region.start = res->start - phb->ioda.io_pci_base;
1762 			region.end   = res->end - phb->ioda.io_pci_base;
1763 			index = region.start / phb->ioda.io_segsize;
1764 
1765 			while (index < phb->ioda.total_pe &&
1766 			       region.start <= region.end) {
1767 				phb->ioda.io_segmap[index] = pe->pe_number;
1768 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1769 					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1770 				if (rc != OPAL_SUCCESS) {
1771 					pr_err("%s: OPAL error %d when mapping IO "
1772 					       "segment #%d to PE#%d\n",
1773 					       __func__, rc, index, pe->pe_number);
1774 					break;
1775 				}
1776 
1777 				region.start += phb->ioda.io_segsize;
1778 				index++;
1779 			}
1780 		} else if (res->flags & IORESOURCE_MEM) {
1781 			region.start = res->start -
1782 				       hose->mem_offset[0] -
1783 				       phb->ioda.m32_pci_base;
1784 			region.end   = res->end -
1785 				       hose->mem_offset[0] -
1786 				       phb->ioda.m32_pci_base;
1787 			index = region.start / phb->ioda.m32_segsize;
1788 
1789 			while (index < phb->ioda.total_pe &&
1790 			       region.start <= region.end) {
1791 				phb->ioda.m32_segmap[index] = pe->pe_number;
1792 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1793 					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1794 				if (rc != OPAL_SUCCESS) {
1795 					pr_err("%s: OPAL error %d when mapping M32 "
1796 					       "segment#%d to PE#%d",
1797 					       __func__, rc, index, pe->pe_number);
1798 					break;
1799 				}
1800 
1801 				region.start += phb->ioda.m32_segsize;
1802 				index++;
1803 			}
1804 		}
1805 	}
1806 }
1807 
1808 static void pnv_pci_ioda_setup_seg(void)
1809 {
1810 	struct pci_controller *tmp, *hose;
1811 	struct pnv_phb *phb;
1812 	struct pnv_ioda_pe *pe;
1813 
1814 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1815 		phb = hose->private_data;
1816 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1817 			pnv_ioda_setup_pe_seg(hose, pe);
1818 		}
1819 	}
1820 }
1821 
1822 static void pnv_pci_ioda_setup_DMA(void)
1823 {
1824 	struct pci_controller *hose, *tmp;
1825 	struct pnv_phb *phb;
1826 
1827 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1828 		pnv_ioda_setup_dma(hose->private_data);
1829 
1830 		/* Mark the PHB initialization done */
1831 		phb = hose->private_data;
1832 		phb->initialized = 1;
1833 	}
1834 }
1835 
1836 static void pnv_pci_ioda_create_dbgfs(void)
1837 {
1838 #ifdef CONFIG_DEBUG_FS
1839 	struct pci_controller *hose, *tmp;
1840 	struct pnv_phb *phb;
1841 	char name[16];
1842 
1843 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1844 		phb = hose->private_data;
1845 
1846 		sprintf(name, "PCI%04x", hose->global_number);
1847 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1848 		if (!phb->dbgfs)
1849 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1850 				__func__, hose->global_number);
1851 	}
1852 #endif /* CONFIG_DEBUG_FS */
1853 }
1854 
1855 static void pnv_pci_ioda_fixup(void)
1856 {
1857 	pnv_pci_ioda_setup_PEs();
1858 	pnv_pci_ioda_setup_seg();
1859 	pnv_pci_ioda_setup_DMA();
1860 
1861 	pnv_pci_ioda_create_dbgfs();
1862 
1863 #ifdef CONFIG_EEH
1864 	eeh_init();
1865 	eeh_addr_cache_build();
1866 #endif
1867 }
1868 
1869 /*
1870  * Returns the alignment for I/O or memory windows for P2P
1871  * bridges. That actually depends on how PEs are segmented.
1872  * For now, we return I/O or M32 segment size for PE sensitive
1873  * P2P bridges. Otherwise, the default values (4KiB for I/O,
1874  * 1MiB for memory) will be returned.
1875  *
1876  * The current PCI bus might be put into one PE, which was
1877  * create against the parent PCI bridge. For that case, we
1878  * needn't enlarge the alignment so that we can save some
1879  * resources.
1880  */
1881 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1882 						unsigned long type)
1883 {
1884 	struct pci_dev *bridge;
1885 	struct pci_controller *hose = pci_bus_to_host(bus);
1886 	struct pnv_phb *phb = hose->private_data;
1887 	int num_pci_bridges = 0;
1888 
1889 	bridge = bus->self;
1890 	while (bridge) {
1891 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1892 			num_pci_bridges++;
1893 			if (num_pci_bridges >= 2)
1894 				return 1;
1895 		}
1896 
1897 		bridge = bridge->bus->self;
1898 	}
1899 
1900 	/* We fail back to M32 if M64 isn't supported */
1901 	if (phb->ioda.m64_segsize &&
1902 	    pnv_pci_is_mem_pref_64(type))
1903 		return phb->ioda.m64_segsize;
1904 	if (type & IORESOURCE_MEM)
1905 		return phb->ioda.m32_segsize;
1906 
1907 	return phb->ioda.io_segsize;
1908 }
1909 
1910 /* Prevent enabling devices for which we couldn't properly
1911  * assign a PE
1912  */
1913 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1914 {
1915 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1916 	struct pnv_phb *phb = hose->private_data;
1917 	struct pci_dn *pdn;
1918 
1919 	/* The function is probably called while the PEs have
1920 	 * not be created yet. For example, resource reassignment
1921 	 * during PCI probe period. We just skip the check if
1922 	 * PEs isn't ready.
1923 	 */
1924 	if (!phb->initialized)
1925 		return 0;
1926 
1927 	pdn = pci_get_pdn(dev);
1928 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1929 		return -EINVAL;
1930 
1931 	return 0;
1932 }
1933 
1934 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1935 			       u32 devfn)
1936 {
1937 	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1938 }
1939 
1940 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1941 {
1942 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
1943 		       OPAL_ASSERT_RESET);
1944 }
1945 
1946 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
1947 					 u64 hub_id, int ioda_type)
1948 {
1949 	struct pci_controller *hose;
1950 	struct pnv_phb *phb;
1951 	unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1952 	const __be64 *prop64;
1953 	const __be32 *prop32;
1954 	int len;
1955 	u64 phb_id;
1956 	void *aux;
1957 	long rc;
1958 
1959 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1960 
1961 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1962 	if (!prop64) {
1963 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
1964 		return;
1965 	}
1966 	phb_id = be64_to_cpup(prop64);
1967 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
1968 
1969 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
1970 
1971 	/* Allocate PCI controller */
1972 	phb->hose = hose = pcibios_alloc_controller(np);
1973 	if (!phb->hose) {
1974 		pr_err("  Can't allocate PCI controller for %s\n",
1975 		       np->full_name);
1976 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
1977 		return;
1978 	}
1979 
1980 	spin_lock_init(&phb->lock);
1981 	prop32 = of_get_property(np, "bus-range", &len);
1982 	if (prop32 && len == 8) {
1983 		hose->first_busno = be32_to_cpu(prop32[0]);
1984 		hose->last_busno = be32_to_cpu(prop32[1]);
1985 	} else {
1986 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
1987 		hose->first_busno = 0;
1988 		hose->last_busno = 0xff;
1989 	}
1990 	hose->private_data = phb;
1991 	phb->hub_id = hub_id;
1992 	phb->opal_id = phb_id;
1993 	phb->type = ioda_type;
1994 
1995 	/* Detect specific models for error handling */
1996 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1997 		phb->model = PNV_PHB_MODEL_P7IOC;
1998 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1999 		phb->model = PNV_PHB_MODEL_PHB3;
2000 	else
2001 		phb->model = PNV_PHB_MODEL_UNKNOWN;
2002 
2003 	/* Parse 32-bit and IO ranges (if any) */
2004 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2005 
2006 	/* Get registers */
2007 	phb->regs = of_iomap(np, 0);
2008 	if (phb->regs == NULL)
2009 		pr_err("  Failed to map registers !\n");
2010 
2011 	/* Initialize more IODA stuff */
2012 	phb->ioda.total_pe = 1;
2013 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2014 	if (prop32)
2015 		phb->ioda.total_pe = be32_to_cpup(prop32);
2016 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2017 	if (prop32)
2018 		phb->ioda.reserved_pe = be32_to_cpup(prop32);
2019 
2020 	/* Parse 64-bit MMIO range */
2021 	pnv_ioda_parse_m64_window(phb);
2022 
2023 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2024 	/* FW Has already off top 64k of M32 space (MSI space) */
2025 	phb->ioda.m32_size += 0x10000;
2026 
2027 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
2028 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2029 	phb->ioda.io_size = hose->pci_io_size;
2030 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
2031 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2032 
2033 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2034 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
2035 	m32map_off = size;
2036 	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
2037 	if (phb->type == PNV_PHB_IODA1) {
2038 		iomap_off = size;
2039 		size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
2040 	}
2041 	pemap_off = size;
2042 	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
2043 	aux = memblock_virt_alloc(size, 0);
2044 	phb->ioda.pe_alloc = aux;
2045 	phb->ioda.m32_segmap = aux + m32map_off;
2046 	if (phb->type == PNV_PHB_IODA1)
2047 		phb->ioda.io_segmap = aux + iomap_off;
2048 	phb->ioda.pe_array = aux + pemap_off;
2049 	set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
2050 
2051 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
2052 	INIT_LIST_HEAD(&phb->ioda.pe_list);
2053 
2054 	/* Calculate how many 32-bit TCE segments we have */
2055 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
2056 
2057 #if 0 /* We should really do that ... */
2058 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
2059 					 window_type,
2060 					 window_num,
2061 					 starting_real_address,
2062 					 starting_pci_address,
2063 					 segment_size);
2064 #endif
2065 
2066 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2067 		phb->ioda.total_pe, phb->ioda.reserved_pe,
2068 		phb->ioda.m32_size, phb->ioda.m32_segsize);
2069 	if (phb->ioda.m64_size)
2070 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2071 			phb->ioda.m64_size, phb->ioda.m64_segsize);
2072 	if (phb->ioda.io_size)
2073 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
2074 			phb->ioda.io_size, phb->ioda.io_segsize);
2075 
2076 
2077 	phb->hose->ops = &pnv_pci_ops;
2078 	phb->get_pe_state = pnv_ioda_get_pe_state;
2079 	phb->freeze_pe = pnv_ioda_freeze_pe;
2080 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2081 #ifdef CONFIG_EEH
2082 	phb->eeh_ops = &ioda_eeh_ops;
2083 #endif
2084 
2085 	/* Setup RID -> PE mapping function */
2086 	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
2087 
2088 	/* Setup TCEs */
2089 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
2090 	phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
2091 	phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
2092 
2093 	/* Setup shutdown function for kexec */
2094 	phb->shutdown = pnv_pci_ioda_shutdown;
2095 
2096 	/* Setup MSI support */
2097 	pnv_pci_init_ioda_msis(phb);
2098 
2099 	/*
2100 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2101 	 * to let the PCI core do resource assignment. It's supposed
2102 	 * that the PCI core will do correct I/O and MMIO alignment
2103 	 * for the P2P bridge bars so that each PCI bus (excluding
2104 	 * the child P2P bridges) can form individual PE.
2105 	 */
2106 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2107 	ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
2108 	ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
2109 	ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
2110 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2111 
2112 	/* Reset IODA tables to a clean state */
2113 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2114 	if (rc)
2115 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
2116 
2117 	/* If we're running in kdump kerenl, the previous kerenl never
2118 	 * shutdown PCI devices correctly. We already got IODA table
2119 	 * cleaned out. So we have to issue PHB reset to stop all PCI
2120 	 * transactions from previous kerenl.
2121 	 */
2122 	if (is_kdump_kernel()) {
2123 		pr_info("  Issue PHB reset ...\n");
2124 		ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2125 		ioda_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2126 	}
2127 
2128 	/* Remove M64 resource if we can't configure it successfully */
2129 	if (!phb->init_m64 || phb->init_m64(phb))
2130 		hose->mem_resources[1].flags = 0;
2131 }
2132 
2133 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2134 {
2135 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2136 }
2137 
2138 void __init pnv_pci_init_ioda_hub(struct device_node *np)
2139 {
2140 	struct device_node *phbn;
2141 	const __be64 *prop64;
2142 	u64 hub_id;
2143 
2144 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2145 
2146 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2147 	if (!prop64) {
2148 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2149 		return;
2150 	}
2151 	hub_id = be64_to_cpup(prop64);
2152 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2153 
2154 	/* Count child PHBs */
2155 	for_each_child_of_node(np, phbn) {
2156 		/* Look for IODA1 PHBs */
2157 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
2158 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
2159 	}
2160 }
2161