xref: /linux/arch/powerpc/platforms/powernv/pci-ioda.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
52 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
53 
54 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
55 #define POWERNV_IOMMU_MAX_LEVELS	5
56 
57 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
58 
59 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
60 			    const char *fmt, ...)
61 {
62 	struct va_format vaf;
63 	va_list args;
64 	char pfix[32];
65 
66 	va_start(args, fmt);
67 
68 	vaf.fmt = fmt;
69 	vaf.va = &args;
70 
71 	if (pe->flags & PNV_IODA_PE_DEV)
72 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
73 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
74 		sprintf(pfix, "%04x:%02x     ",
75 			pci_domain_nr(pe->pbus), pe->pbus->number);
76 #ifdef CONFIG_PCI_IOV
77 	else if (pe->flags & PNV_IODA_PE_VF)
78 		sprintf(pfix, "%04x:%02x:%2x.%d",
79 			pci_domain_nr(pe->parent_dev->bus),
80 			(pe->rid & 0xff00) >> 8,
81 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
82 #endif /* CONFIG_PCI_IOV*/
83 
84 	printk("%spci %s: [PE# %.3d] %pV",
85 	       level, pfix, pe->pe_number, &vaf);
86 
87 	va_end(args);
88 }
89 
90 #define pe_err(pe, fmt, ...)					\
91 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
92 #define pe_warn(pe, fmt, ...)					\
93 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
94 #define pe_info(pe, fmt, ...)					\
95 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
96 
97 static bool pnv_iommu_bypass_disabled __read_mostly;
98 
99 static int __init iommu_setup(char *str)
100 {
101 	if (!str)
102 		return -EINVAL;
103 
104 	while (*str) {
105 		if (!strncmp(str, "nobypass", 8)) {
106 			pnv_iommu_bypass_disabled = true;
107 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
108 			break;
109 		}
110 		str += strcspn(str, ",");
111 		if (*str == ',')
112 			str++;
113 	}
114 
115 	return 0;
116 }
117 early_param("iommu", iommu_setup);
118 
119 /*
120  * stdcix is only supposed to be used in hypervisor real mode as per
121  * the architecture spec
122  */
123 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
124 {
125 	__asm__ __volatile__("stdcix %0,0,%1"
126 		: : "r" (val), "r" (paddr) : "memory");
127 }
128 
129 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
130 {
131 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
132 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
133 }
134 
135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
136 {
137 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
138 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
139 			__func__, pe_no, phb->hose->global_number);
140 		return;
141 	}
142 
143 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
144 		pr_debug("%s: PE %d was reserved on PHB#%x\n",
145 			 __func__, pe_no, phb->hose->global_number);
146 
147 	phb->ioda.pe_array[pe_no].phb = phb;
148 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
149 }
150 
151 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
152 {
153 	unsigned long pe;
154 
155 	do {
156 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
157 					phb->ioda.total_pe, 0);
158 		if (pe >= phb->ioda.total_pe)
159 			return IODA_INVALID_PE;
160 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
161 
162 	phb->ioda.pe_array[pe].phb = phb;
163 	phb->ioda.pe_array[pe].pe_number = pe;
164 	return pe;
165 }
166 
167 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
168 {
169 	WARN_ON(phb->ioda.pe_array[pe].pdev);
170 
171 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
172 	clear_bit(pe, phb->ioda.pe_alloc);
173 }
174 
175 /* The default M64 BAR is shared by all PEs */
176 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
177 {
178 	const char *desc;
179 	struct resource *r;
180 	s64 rc;
181 
182 	/* Configure the default M64 BAR */
183 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
184 					 OPAL_M64_WINDOW_TYPE,
185 					 phb->ioda.m64_bar_idx,
186 					 phb->ioda.m64_base,
187 					 0, /* unused */
188 					 phb->ioda.m64_size);
189 	if (rc != OPAL_SUCCESS) {
190 		desc = "configuring";
191 		goto fail;
192 	}
193 
194 	/* Enable the default M64 BAR */
195 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
196 				      OPAL_M64_WINDOW_TYPE,
197 				      phb->ioda.m64_bar_idx,
198 				      OPAL_ENABLE_M64_SPLIT);
199 	if (rc != OPAL_SUCCESS) {
200 		desc = "enabling";
201 		goto fail;
202 	}
203 
204 	/* Mark the M64 BAR assigned */
205 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
206 
207 	/*
208 	 * Strip off the segment used by the reserved PE, which is
209 	 * expected to be 0 or last one of PE capabicity.
210 	 */
211 	r = &phb->hose->mem_resources[1];
212 	if (phb->ioda.reserved_pe == 0)
213 		r->start += phb->ioda.m64_segsize;
214 	else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
215 		r->end -= phb->ioda.m64_segsize;
216 	else
217 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
218 			phb->ioda.reserved_pe);
219 
220 	return 0;
221 
222 fail:
223 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
224 		rc, desc, phb->ioda.m64_bar_idx);
225 	opal_pci_phb_mmio_enable(phb->opal_id,
226 				 OPAL_M64_WINDOW_TYPE,
227 				 phb->ioda.m64_bar_idx,
228 				 OPAL_DISABLE_M64);
229 	return -EIO;
230 }
231 
232 static void pnv_ioda2_reserve_dev_m64_pe(struct pci_dev *pdev,
233 					 unsigned long *pe_bitmap)
234 {
235 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
236 	struct pnv_phb *phb = hose->private_data;
237 	struct resource *r;
238 	resource_size_t base, sgsz, start, end;
239 	int segno, i;
240 
241 	base = phb->ioda.m64_base;
242 	sgsz = phb->ioda.m64_segsize;
243 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
244 		r = &pdev->resource[i];
245 		if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
246 			continue;
247 
248 		start = _ALIGN_DOWN(r->start - base, sgsz);
249 		end = _ALIGN_UP(r->end - base, sgsz);
250 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
251 			if (pe_bitmap)
252 				set_bit(segno, pe_bitmap);
253 			else
254 				pnv_ioda_reserve_pe(phb, segno);
255 		}
256 	}
257 }
258 
259 static void pnv_ioda2_reserve_m64_pe(struct pci_bus *bus,
260 				     unsigned long *pe_bitmap,
261 				     bool all)
262 {
263 	struct pci_dev *pdev;
264 
265 	list_for_each_entry(pdev, &bus->devices, bus_list) {
266 		pnv_ioda2_reserve_dev_m64_pe(pdev, pe_bitmap);
267 
268 		if (all && pdev->subordinate)
269 			pnv_ioda2_reserve_m64_pe(pdev->subordinate,
270 						 pe_bitmap, all);
271 	}
272 }
273 
274 static int pnv_ioda2_pick_m64_pe(struct pci_bus *bus, bool all)
275 {
276 	struct pci_controller *hose = pci_bus_to_host(bus);
277 	struct pnv_phb *phb = hose->private_data;
278 	struct pnv_ioda_pe *master_pe, *pe;
279 	unsigned long size, *pe_alloc;
280 	int i;
281 
282 	/* Root bus shouldn't use M64 */
283 	if (pci_is_root_bus(bus))
284 		return IODA_INVALID_PE;
285 
286 	/* Allocate bitmap */
287 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
288 	pe_alloc = kzalloc(size, GFP_KERNEL);
289 	if (!pe_alloc) {
290 		pr_warn("%s: Out of memory !\n",
291 			__func__);
292 		return IODA_INVALID_PE;
293 	}
294 
295 	/* Figure out reserved PE numbers by the PE */
296 	pnv_ioda2_reserve_m64_pe(bus, pe_alloc, all);
297 
298 	/*
299 	 * the current bus might not own M64 window and that's all
300 	 * contributed by its child buses. For the case, we needn't
301 	 * pick M64 dependent PE#.
302 	 */
303 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
304 		kfree(pe_alloc);
305 		return IODA_INVALID_PE;
306 	}
307 
308 	/*
309 	 * Figure out the master PE and put all slave PEs to master
310 	 * PE's list to form compound PE.
311 	 */
312 	master_pe = NULL;
313 	i = -1;
314 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
315 		phb->ioda.total_pe) {
316 		pe = &phb->ioda.pe_array[i];
317 
318 		if (!master_pe) {
319 			pe->flags |= PNV_IODA_PE_MASTER;
320 			INIT_LIST_HEAD(&pe->slaves);
321 			master_pe = pe;
322 		} else {
323 			pe->flags |= PNV_IODA_PE_SLAVE;
324 			pe->master = master_pe;
325 			list_add_tail(&pe->list, &master_pe->slaves);
326 		}
327 	}
328 
329 	kfree(pe_alloc);
330 	return master_pe->pe_number;
331 }
332 
333 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
334 {
335 	struct pci_controller *hose = phb->hose;
336 	struct device_node *dn = hose->dn;
337 	struct resource *res;
338 	const u32 *r;
339 	u64 pci_addr;
340 
341 	/* FIXME: Support M64 for P7IOC */
342 	if (phb->type != PNV_PHB_IODA2) {
343 		pr_info("  Not support M64 window\n");
344 		return;
345 	}
346 
347 	if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
348 		pr_info("  Firmware too old to support M64 window\n");
349 		return;
350 	}
351 
352 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
353 	if (!r) {
354 		pr_info("  No <ibm,opal-m64-window> on %s\n",
355 			dn->full_name);
356 		return;
357 	}
358 
359 	res = &hose->mem_resources[1];
360 	res->start = of_translate_address(dn, r + 2);
361 	res->end = res->start + of_read_number(r + 4, 2) - 1;
362 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
363 	pci_addr = of_read_number(r, 2);
364 	hose->mem_offset[1] = res->start - pci_addr;
365 
366 	phb->ioda.m64_size = resource_size(res);
367 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
368 	phb->ioda.m64_base = pci_addr;
369 
370 	pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
371 			res->start, res->end, pci_addr);
372 
373 	/* Use last M64 BAR to cover M64 window */
374 	phb->ioda.m64_bar_idx = 15;
375 	phb->init_m64 = pnv_ioda2_init_m64;
376 	phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
377 	phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
378 }
379 
380 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
381 {
382 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
383 	struct pnv_ioda_pe *slave;
384 	s64 rc;
385 
386 	/* Fetch master PE */
387 	if (pe->flags & PNV_IODA_PE_SLAVE) {
388 		pe = pe->master;
389 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
390 			return;
391 
392 		pe_no = pe->pe_number;
393 	}
394 
395 	/* Freeze master PE */
396 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
397 				     pe_no,
398 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
399 	if (rc != OPAL_SUCCESS) {
400 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
401 			__func__, rc, phb->hose->global_number, pe_no);
402 		return;
403 	}
404 
405 	/* Freeze slave PEs */
406 	if (!(pe->flags & PNV_IODA_PE_MASTER))
407 		return;
408 
409 	list_for_each_entry(slave, &pe->slaves, list) {
410 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
411 					     slave->pe_number,
412 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
413 		if (rc != OPAL_SUCCESS)
414 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
415 				__func__, rc, phb->hose->global_number,
416 				slave->pe_number);
417 	}
418 }
419 
420 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
421 {
422 	struct pnv_ioda_pe *pe, *slave;
423 	s64 rc;
424 
425 	/* Find master PE */
426 	pe = &phb->ioda.pe_array[pe_no];
427 	if (pe->flags & PNV_IODA_PE_SLAVE) {
428 		pe = pe->master;
429 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
430 		pe_no = pe->pe_number;
431 	}
432 
433 	/* Clear frozen state for master PE */
434 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
435 	if (rc != OPAL_SUCCESS) {
436 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
437 			__func__, rc, opt, phb->hose->global_number, pe_no);
438 		return -EIO;
439 	}
440 
441 	if (!(pe->flags & PNV_IODA_PE_MASTER))
442 		return 0;
443 
444 	/* Clear frozen state for slave PEs */
445 	list_for_each_entry(slave, &pe->slaves, list) {
446 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
447 					     slave->pe_number,
448 					     opt);
449 		if (rc != OPAL_SUCCESS) {
450 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
451 				__func__, rc, opt, phb->hose->global_number,
452 				slave->pe_number);
453 			return -EIO;
454 		}
455 	}
456 
457 	return 0;
458 }
459 
460 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
461 {
462 	struct pnv_ioda_pe *slave, *pe;
463 	u8 fstate, state;
464 	__be16 pcierr;
465 	s64 rc;
466 
467 	/* Sanity check on PE number */
468 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
469 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
470 
471 	/*
472 	 * Fetch the master PE and the PE instance might be
473 	 * not initialized yet.
474 	 */
475 	pe = &phb->ioda.pe_array[pe_no];
476 	if (pe->flags & PNV_IODA_PE_SLAVE) {
477 		pe = pe->master;
478 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
479 		pe_no = pe->pe_number;
480 	}
481 
482 	/* Check the master PE */
483 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
484 					&state, &pcierr, NULL);
485 	if (rc != OPAL_SUCCESS) {
486 		pr_warn("%s: Failure %lld getting "
487 			"PHB#%x-PE#%x state\n",
488 			__func__, rc,
489 			phb->hose->global_number, pe_no);
490 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
491 	}
492 
493 	/* Check the slave PE */
494 	if (!(pe->flags & PNV_IODA_PE_MASTER))
495 		return state;
496 
497 	list_for_each_entry(slave, &pe->slaves, list) {
498 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
499 						slave->pe_number,
500 						&fstate,
501 						&pcierr,
502 						NULL);
503 		if (rc != OPAL_SUCCESS) {
504 			pr_warn("%s: Failure %lld getting "
505 				"PHB#%x-PE#%x state\n",
506 				__func__, rc,
507 				phb->hose->global_number, slave->pe_number);
508 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
509 		}
510 
511 		/*
512 		 * Override the result based on the ascending
513 		 * priority.
514 		 */
515 		if (fstate > state)
516 			state = fstate;
517 	}
518 
519 	return state;
520 }
521 
522 /* Currently those 2 are only used when MSIs are enabled, this will change
523  * but in the meantime, we need to protect them to avoid warnings
524  */
525 #ifdef CONFIG_PCI_MSI
526 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
527 {
528 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
529 	struct pnv_phb *phb = hose->private_data;
530 	struct pci_dn *pdn = pci_get_pdn(dev);
531 
532 	if (!pdn)
533 		return NULL;
534 	if (pdn->pe_number == IODA_INVALID_PE)
535 		return NULL;
536 	return &phb->ioda.pe_array[pdn->pe_number];
537 }
538 #endif /* CONFIG_PCI_MSI */
539 
540 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
541 				  struct pnv_ioda_pe *parent,
542 				  struct pnv_ioda_pe *child,
543 				  bool is_add)
544 {
545 	const char *desc = is_add ? "adding" : "removing";
546 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
547 			      OPAL_REMOVE_PE_FROM_DOMAIN;
548 	struct pnv_ioda_pe *slave;
549 	long rc;
550 
551 	/* Parent PE affects child PE */
552 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
553 				child->pe_number, op);
554 	if (rc != OPAL_SUCCESS) {
555 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
556 			rc, desc);
557 		return -ENXIO;
558 	}
559 
560 	if (!(child->flags & PNV_IODA_PE_MASTER))
561 		return 0;
562 
563 	/* Compound case: parent PE affects slave PEs */
564 	list_for_each_entry(slave, &child->slaves, list) {
565 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
566 					slave->pe_number, op);
567 		if (rc != OPAL_SUCCESS) {
568 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
569 				rc, desc);
570 			return -ENXIO;
571 		}
572 	}
573 
574 	return 0;
575 }
576 
577 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
578 			      struct pnv_ioda_pe *pe,
579 			      bool is_add)
580 {
581 	struct pnv_ioda_pe *slave;
582 	struct pci_dev *pdev = NULL;
583 	int ret;
584 
585 	/*
586 	 * Clear PE frozen state. If it's master PE, we need
587 	 * clear slave PE frozen state as well.
588 	 */
589 	if (is_add) {
590 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
591 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
592 		if (pe->flags & PNV_IODA_PE_MASTER) {
593 			list_for_each_entry(slave, &pe->slaves, list)
594 				opal_pci_eeh_freeze_clear(phb->opal_id,
595 							  slave->pe_number,
596 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
597 		}
598 	}
599 
600 	/*
601 	 * Associate PE in PELT. We need add the PE into the
602 	 * corresponding PELT-V as well. Otherwise, the error
603 	 * originated from the PE might contribute to other
604 	 * PEs.
605 	 */
606 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
607 	if (ret)
608 		return ret;
609 
610 	/* For compound PEs, any one affects all of them */
611 	if (pe->flags & PNV_IODA_PE_MASTER) {
612 		list_for_each_entry(slave, &pe->slaves, list) {
613 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
614 			if (ret)
615 				return ret;
616 		}
617 	}
618 
619 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
620 		pdev = pe->pbus->self;
621 	else if (pe->flags & PNV_IODA_PE_DEV)
622 		pdev = pe->pdev->bus->self;
623 #ifdef CONFIG_PCI_IOV
624 	else if (pe->flags & PNV_IODA_PE_VF)
625 		pdev = pe->parent_dev;
626 #endif /* CONFIG_PCI_IOV */
627 	while (pdev) {
628 		struct pci_dn *pdn = pci_get_pdn(pdev);
629 		struct pnv_ioda_pe *parent;
630 
631 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
632 			parent = &phb->ioda.pe_array[pdn->pe_number];
633 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
634 			if (ret)
635 				return ret;
636 		}
637 
638 		pdev = pdev->bus->self;
639 	}
640 
641 	return 0;
642 }
643 
644 #ifdef CONFIG_PCI_IOV
645 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
646 {
647 	struct pci_dev *parent;
648 	uint8_t bcomp, dcomp, fcomp;
649 	int64_t rc;
650 	long rid_end, rid;
651 
652 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
653 	if (pe->pbus) {
654 		int count;
655 
656 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
657 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
658 		parent = pe->pbus->self;
659 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
660 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
661 		else
662 			count = 1;
663 
664 		switch(count) {
665 		case  1: bcomp = OpalPciBusAll;         break;
666 		case  2: bcomp = OpalPciBus7Bits;       break;
667 		case  4: bcomp = OpalPciBus6Bits;       break;
668 		case  8: bcomp = OpalPciBus5Bits;       break;
669 		case 16: bcomp = OpalPciBus4Bits;       break;
670 		case 32: bcomp = OpalPciBus3Bits;       break;
671 		default:
672 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
673 			        count);
674 			/* Do an exact match only */
675 			bcomp = OpalPciBusAll;
676 		}
677 		rid_end = pe->rid + (count << 8);
678 	} else {
679 		if (pe->flags & PNV_IODA_PE_VF)
680 			parent = pe->parent_dev;
681 		else
682 			parent = pe->pdev->bus->self;
683 		bcomp = OpalPciBusAll;
684 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
685 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
686 		rid_end = pe->rid + 1;
687 	}
688 
689 	/* Clear the reverse map */
690 	for (rid = pe->rid; rid < rid_end; rid++)
691 		phb->ioda.pe_rmap[rid] = 0;
692 
693 	/* Release from all parents PELT-V */
694 	while (parent) {
695 		struct pci_dn *pdn = pci_get_pdn(parent);
696 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
697 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
698 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
699 			/* XXX What to do in case of error ? */
700 		}
701 		parent = parent->bus->self;
702 	}
703 
704 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
705 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
706 
707 	/* Disassociate PE in PELT */
708 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
709 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
710 	if (rc)
711 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
712 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
713 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
714 	if (rc)
715 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
716 
717 	pe->pbus = NULL;
718 	pe->pdev = NULL;
719 	pe->parent_dev = NULL;
720 
721 	return 0;
722 }
723 #endif /* CONFIG_PCI_IOV */
724 
725 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
726 {
727 	struct pci_dev *parent;
728 	uint8_t bcomp, dcomp, fcomp;
729 	long rc, rid_end, rid;
730 
731 	/* Bus validation ? */
732 	if (pe->pbus) {
733 		int count;
734 
735 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
736 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
737 		parent = pe->pbus->self;
738 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
739 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
740 		else
741 			count = 1;
742 
743 		switch(count) {
744 		case  1: bcomp = OpalPciBusAll;		break;
745 		case  2: bcomp = OpalPciBus7Bits;	break;
746 		case  4: bcomp = OpalPciBus6Bits;	break;
747 		case  8: bcomp = OpalPciBus5Bits;	break;
748 		case 16: bcomp = OpalPciBus4Bits;	break;
749 		case 32: bcomp = OpalPciBus3Bits;	break;
750 		default:
751 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
752 			        count);
753 			/* Do an exact match only */
754 			bcomp = OpalPciBusAll;
755 		}
756 		rid_end = pe->rid + (count << 8);
757 	} else {
758 #ifdef CONFIG_PCI_IOV
759 		if (pe->flags & PNV_IODA_PE_VF)
760 			parent = pe->parent_dev;
761 		else
762 #endif /* CONFIG_PCI_IOV */
763 			parent = pe->pdev->bus->self;
764 		bcomp = OpalPciBusAll;
765 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
766 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
767 		rid_end = pe->rid + 1;
768 	}
769 
770 	/*
771 	 * Associate PE in PELT. We need add the PE into the
772 	 * corresponding PELT-V as well. Otherwise, the error
773 	 * originated from the PE might contribute to other
774 	 * PEs.
775 	 */
776 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
777 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
778 	if (rc) {
779 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
780 		return -ENXIO;
781 	}
782 
783 	/* Configure PELTV */
784 	pnv_ioda_set_peltv(phb, pe, true);
785 
786 	/* Setup reverse map */
787 	for (rid = pe->rid; rid < rid_end; rid++)
788 		phb->ioda.pe_rmap[rid] = pe->pe_number;
789 
790 	/* Setup one MVTs on IODA1 */
791 	if (phb->type != PNV_PHB_IODA1) {
792 		pe->mve_number = 0;
793 		goto out;
794 	}
795 
796 	pe->mve_number = pe->pe_number;
797 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
798 	if (rc != OPAL_SUCCESS) {
799 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
800 		       rc, pe->mve_number);
801 		pe->mve_number = -1;
802 	} else {
803 		rc = opal_pci_set_mve_enable(phb->opal_id,
804 					     pe->mve_number, OPAL_ENABLE_MVE);
805 		if (rc) {
806 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
807 			       rc, pe->mve_number);
808 			pe->mve_number = -1;
809 		}
810 	}
811 
812 out:
813 	return 0;
814 }
815 
816 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
817 				       struct pnv_ioda_pe *pe)
818 {
819 	struct pnv_ioda_pe *lpe;
820 
821 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
822 		if (lpe->dma_weight < pe->dma_weight) {
823 			list_add_tail(&pe->dma_link, &lpe->dma_link);
824 			return;
825 		}
826 	}
827 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
828 }
829 
830 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
831 {
832 	/* This is quite simplistic. The "base" weight of a device
833 	 * is 10. 0 means no DMA is to be accounted for it.
834 	 */
835 
836 	/* If it's a bridge, no DMA */
837 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
838 		return 0;
839 
840 	/* Reduce the weight of slow USB controllers */
841 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
842 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
843 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
844 		return 3;
845 
846 	/* Increase the weight of RAID (includes Obsidian) */
847 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
848 		return 15;
849 
850 	/* Default */
851 	return 10;
852 }
853 
854 #ifdef CONFIG_PCI_IOV
855 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
856 {
857 	struct pci_dn *pdn = pci_get_pdn(dev);
858 	int i;
859 	struct resource *res, res2;
860 	resource_size_t size;
861 	u16 num_vfs;
862 
863 	if (!dev->is_physfn)
864 		return -EINVAL;
865 
866 	/*
867 	 * "offset" is in VFs.  The M64 windows are sized so that when they
868 	 * are segmented, each segment is the same size as the IOV BAR.
869 	 * Each segment is in a separate PE, and the high order bits of the
870 	 * address are the PE number.  Therefore, each VF's BAR is in a
871 	 * separate PE, and changing the IOV BAR start address changes the
872 	 * range of PEs the VFs are in.
873 	 */
874 	num_vfs = pdn->num_vfs;
875 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
876 		res = &dev->resource[i + PCI_IOV_RESOURCES];
877 		if (!res->flags || !res->parent)
878 			continue;
879 
880 		if (!pnv_pci_is_mem_pref_64(res->flags))
881 			continue;
882 
883 		/*
884 		 * The actual IOV BAR range is determined by the start address
885 		 * and the actual size for num_vfs VFs BAR.  This check is to
886 		 * make sure that after shifting, the range will not overlap
887 		 * with another device.
888 		 */
889 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
890 		res2.flags = res->flags;
891 		res2.start = res->start + (size * offset);
892 		res2.end = res2.start + (size * num_vfs) - 1;
893 
894 		if (res2.end > res->end) {
895 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
896 				i, &res2, res, num_vfs, offset);
897 			return -EBUSY;
898 		}
899 	}
900 
901 	/*
902 	 * After doing so, there would be a "hole" in the /proc/iomem when
903 	 * offset is a positive value. It looks like the device return some
904 	 * mmio back to the system, which actually no one could use it.
905 	 */
906 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
907 		res = &dev->resource[i + PCI_IOV_RESOURCES];
908 		if (!res->flags || !res->parent)
909 			continue;
910 
911 		if (!pnv_pci_is_mem_pref_64(res->flags))
912 			continue;
913 
914 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
915 		res2 = *res;
916 		res->start += size * offset;
917 
918 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
919 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
920 			 num_vfs, offset);
921 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
922 	}
923 	return 0;
924 }
925 #endif /* CONFIG_PCI_IOV */
926 
927 #if 0
928 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
929 {
930 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
931 	struct pnv_phb *phb = hose->private_data;
932 	struct pci_dn *pdn = pci_get_pdn(dev);
933 	struct pnv_ioda_pe *pe;
934 	int pe_num;
935 
936 	if (!pdn) {
937 		pr_err("%s: Device tree node not associated properly\n",
938 			   pci_name(dev));
939 		return NULL;
940 	}
941 	if (pdn->pe_number != IODA_INVALID_PE)
942 		return NULL;
943 
944 	/* PE#0 has been pre-set */
945 	if (dev->bus->number == 0)
946 		pe_num = 0;
947 	else
948 		pe_num = pnv_ioda_alloc_pe(phb);
949 	if (pe_num == IODA_INVALID_PE) {
950 		pr_warning("%s: Not enough PE# available, disabling device\n",
951 			   pci_name(dev));
952 		return NULL;
953 	}
954 
955 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
956 	 * pointer in the PE data structure, both should be destroyed at the
957 	 * same time. However, this needs to be looked at more closely again
958 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
959 	 *
960 	 * At some point we want to remove the PDN completely anyways
961 	 */
962 	pe = &phb->ioda.pe_array[pe_num];
963 	pci_dev_get(dev);
964 	pdn->pcidev = dev;
965 	pdn->pe_number = pe_num;
966 	pe->pdev = dev;
967 	pe->pbus = NULL;
968 	pe->tce32_seg = -1;
969 	pe->mve_number = -1;
970 	pe->rid = dev->bus->number << 8 | pdn->devfn;
971 
972 	pe_info(pe, "Associated device to PE\n");
973 
974 	if (pnv_ioda_configure_pe(phb, pe)) {
975 		/* XXX What do we do here ? */
976 		if (pe_num)
977 			pnv_ioda_free_pe(phb, pe_num);
978 		pdn->pe_number = IODA_INVALID_PE;
979 		pe->pdev = NULL;
980 		pci_dev_put(dev);
981 		return NULL;
982 	}
983 
984 	/* Assign a DMA weight to the device */
985 	pe->dma_weight = pnv_ioda_dma_weight(dev);
986 	if (pe->dma_weight != 0) {
987 		phb->ioda.dma_weight += pe->dma_weight;
988 		phb->ioda.dma_pe_count++;
989 	}
990 
991 	/* Link the PE */
992 	pnv_ioda_link_pe_by_weight(phb, pe);
993 
994 	return pe;
995 }
996 #endif /* Useful for SRIOV case */
997 
998 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
999 {
1000 	struct pci_dev *dev;
1001 
1002 	list_for_each_entry(dev, &bus->devices, bus_list) {
1003 		struct pci_dn *pdn = pci_get_pdn(dev);
1004 
1005 		if (pdn == NULL) {
1006 			pr_warn("%s: No device node associated with device !\n",
1007 				pci_name(dev));
1008 			continue;
1009 		}
1010 		pdn->pe_number = pe->pe_number;
1011 		pe->dma_weight += pnv_ioda_dma_weight(dev);
1012 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1013 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1014 	}
1015 }
1016 
1017 /*
1018  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1019  * single PCI bus. Another one that contains the primary PCI bus and its
1020  * subordinate PCI devices and buses. The second type of PE is normally
1021  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1022  */
1023 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1024 {
1025 	struct pci_controller *hose = pci_bus_to_host(bus);
1026 	struct pnv_phb *phb = hose->private_data;
1027 	struct pnv_ioda_pe *pe;
1028 	int pe_num = IODA_INVALID_PE;
1029 
1030 	/* Check if PE is determined by M64 */
1031 	if (phb->pick_m64_pe)
1032 		pe_num = phb->pick_m64_pe(bus, all);
1033 
1034 	/* The PE number isn't pinned by M64 */
1035 	if (pe_num == IODA_INVALID_PE)
1036 		pe_num = pnv_ioda_alloc_pe(phb);
1037 
1038 	if (pe_num == IODA_INVALID_PE) {
1039 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1040 			__func__, pci_domain_nr(bus), bus->number);
1041 		return;
1042 	}
1043 
1044 	pe = &phb->ioda.pe_array[pe_num];
1045 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1046 	pe->pbus = bus;
1047 	pe->pdev = NULL;
1048 	pe->tce32_seg = -1;
1049 	pe->mve_number = -1;
1050 	pe->rid = bus->busn_res.start << 8;
1051 	pe->dma_weight = 0;
1052 
1053 	if (all)
1054 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1055 			bus->busn_res.start, bus->busn_res.end, pe_num);
1056 	else
1057 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1058 			bus->busn_res.start, pe_num);
1059 
1060 	if (pnv_ioda_configure_pe(phb, pe)) {
1061 		/* XXX What do we do here ? */
1062 		if (pe_num)
1063 			pnv_ioda_free_pe(phb, pe_num);
1064 		pe->pbus = NULL;
1065 		return;
1066 	}
1067 
1068 	/* Associate it with all child devices */
1069 	pnv_ioda_setup_same_PE(bus, pe);
1070 
1071 	/* Put PE to the list */
1072 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1073 
1074 	/* Account for one DMA PE if at least one DMA capable device exist
1075 	 * below the bridge
1076 	 */
1077 	if (pe->dma_weight != 0) {
1078 		phb->ioda.dma_weight += pe->dma_weight;
1079 		phb->ioda.dma_pe_count++;
1080 	}
1081 
1082 	/* Link the PE */
1083 	pnv_ioda_link_pe_by_weight(phb, pe);
1084 }
1085 
1086 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1087 {
1088 	struct pci_dev *dev;
1089 
1090 	pnv_ioda_setup_bus_PE(bus, false);
1091 
1092 	list_for_each_entry(dev, &bus->devices, bus_list) {
1093 		if (dev->subordinate) {
1094 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1095 				pnv_ioda_setup_bus_PE(dev->subordinate, true);
1096 			else
1097 				pnv_ioda_setup_PEs(dev->subordinate);
1098 		}
1099 	}
1100 }
1101 
1102 /*
1103  * Configure PEs so that the downstream PCI buses and devices
1104  * could have their associated PE#. Unfortunately, we didn't
1105  * figure out the way to identify the PLX bridge yet. So we
1106  * simply put the PCI bus and the subordinate behind the root
1107  * port to PE# here. The game rule here is expected to be changed
1108  * as soon as we can detected PLX bridge correctly.
1109  */
1110 static void pnv_pci_ioda_setup_PEs(void)
1111 {
1112 	struct pci_controller *hose, *tmp;
1113 	struct pnv_phb *phb;
1114 
1115 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1116 		phb = hose->private_data;
1117 
1118 		/* M64 layout might affect PE allocation */
1119 		if (phb->reserve_m64_pe)
1120 			phb->reserve_m64_pe(hose->bus, NULL, true);
1121 
1122 		pnv_ioda_setup_PEs(hose->bus);
1123 	}
1124 }
1125 
1126 #ifdef CONFIG_PCI_IOV
1127 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1128 {
1129 	struct pci_bus        *bus;
1130 	struct pci_controller *hose;
1131 	struct pnv_phb        *phb;
1132 	struct pci_dn         *pdn;
1133 	int                    i, j;
1134 
1135 	bus = pdev->bus;
1136 	hose = pci_bus_to_host(bus);
1137 	phb = hose->private_data;
1138 	pdn = pci_get_pdn(pdev);
1139 
1140 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1141 		for (j = 0; j < M64_PER_IOV; j++) {
1142 			if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1143 				continue;
1144 			opal_pci_phb_mmio_enable(phb->opal_id,
1145 				OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1146 			clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1147 			pdn->m64_wins[i][j] = IODA_INVALID_M64;
1148 		}
1149 
1150 	return 0;
1151 }
1152 
1153 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1154 {
1155 	struct pci_bus        *bus;
1156 	struct pci_controller *hose;
1157 	struct pnv_phb        *phb;
1158 	struct pci_dn         *pdn;
1159 	unsigned int           win;
1160 	struct resource       *res;
1161 	int                    i, j;
1162 	int64_t                rc;
1163 	int                    total_vfs;
1164 	resource_size_t        size, start;
1165 	int                    pe_num;
1166 	int                    vf_groups;
1167 	int                    vf_per_group;
1168 
1169 	bus = pdev->bus;
1170 	hose = pci_bus_to_host(bus);
1171 	phb = hose->private_data;
1172 	pdn = pci_get_pdn(pdev);
1173 	total_vfs = pci_sriov_get_totalvfs(pdev);
1174 
1175 	/* Initialize the m64_wins to IODA_INVALID_M64 */
1176 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1177 		for (j = 0; j < M64_PER_IOV; j++)
1178 			pdn->m64_wins[i][j] = IODA_INVALID_M64;
1179 
1180 	if (pdn->m64_per_iov == M64_PER_IOV) {
1181 		vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1182 		vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1183 			roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1184 	} else {
1185 		vf_groups = 1;
1186 		vf_per_group = 1;
1187 	}
1188 
1189 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1190 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1191 		if (!res->flags || !res->parent)
1192 			continue;
1193 
1194 		if (!pnv_pci_is_mem_pref_64(res->flags))
1195 			continue;
1196 
1197 		for (j = 0; j < vf_groups; j++) {
1198 			do {
1199 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1200 						phb->ioda.m64_bar_idx + 1, 0);
1201 
1202 				if (win >= phb->ioda.m64_bar_idx + 1)
1203 					goto m64_failed;
1204 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1205 
1206 			pdn->m64_wins[i][j] = win;
1207 
1208 			if (pdn->m64_per_iov == M64_PER_IOV) {
1209 				size = pci_iov_resource_size(pdev,
1210 							PCI_IOV_RESOURCES + i);
1211 				size = size * vf_per_group;
1212 				start = res->start + size * j;
1213 			} else {
1214 				size = resource_size(res);
1215 				start = res->start;
1216 			}
1217 
1218 			/* Map the M64 here */
1219 			if (pdn->m64_per_iov == M64_PER_IOV) {
1220 				pe_num = pdn->offset + j;
1221 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1222 						pe_num, OPAL_M64_WINDOW_TYPE,
1223 						pdn->m64_wins[i][j], 0);
1224 			}
1225 
1226 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1227 						 OPAL_M64_WINDOW_TYPE,
1228 						 pdn->m64_wins[i][j],
1229 						 start,
1230 						 0, /* unused */
1231 						 size);
1232 
1233 
1234 			if (rc != OPAL_SUCCESS) {
1235 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1236 					win, rc);
1237 				goto m64_failed;
1238 			}
1239 
1240 			if (pdn->m64_per_iov == M64_PER_IOV)
1241 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1242 				     OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1243 			else
1244 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1245 				     OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1246 
1247 			if (rc != OPAL_SUCCESS) {
1248 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1249 					win, rc);
1250 				goto m64_failed;
1251 			}
1252 		}
1253 	}
1254 	return 0;
1255 
1256 m64_failed:
1257 	pnv_pci_vf_release_m64(pdev);
1258 	return -EBUSY;
1259 }
1260 
1261 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1262 		int num);
1263 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1264 
1265 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1266 {
1267 	struct iommu_table    *tbl;
1268 	int64_t               rc;
1269 
1270 	tbl = pe->table_group.tables[0];
1271 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1272 	if (rc)
1273 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1274 
1275 	pnv_pci_ioda2_set_bypass(pe, false);
1276 	if (pe->table_group.group) {
1277 		iommu_group_put(pe->table_group.group);
1278 		BUG_ON(pe->table_group.group);
1279 	}
1280 	pnv_pci_ioda2_table_free_pages(tbl);
1281 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1282 }
1283 
1284 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1285 {
1286 	struct pci_bus        *bus;
1287 	struct pci_controller *hose;
1288 	struct pnv_phb        *phb;
1289 	struct pnv_ioda_pe    *pe, *pe_n;
1290 	struct pci_dn         *pdn;
1291 	u16                    vf_index;
1292 	int64_t                rc;
1293 
1294 	bus = pdev->bus;
1295 	hose = pci_bus_to_host(bus);
1296 	phb = hose->private_data;
1297 	pdn = pci_get_pdn(pdev);
1298 
1299 	if (!pdev->is_physfn)
1300 		return;
1301 
1302 	if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1303 		int   vf_group;
1304 		int   vf_per_group;
1305 		int   vf_index1;
1306 
1307 		vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1308 
1309 		for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1310 			for (vf_index = vf_group * vf_per_group;
1311 				vf_index < (vf_group + 1) * vf_per_group &&
1312 				vf_index < num_vfs;
1313 				vf_index++)
1314 				for (vf_index1 = vf_group * vf_per_group;
1315 					vf_index1 < (vf_group + 1) * vf_per_group &&
1316 					vf_index1 < num_vfs;
1317 					vf_index1++){
1318 
1319 					rc = opal_pci_set_peltv(phb->opal_id,
1320 						pdn->offset + vf_index,
1321 						pdn->offset + vf_index1,
1322 						OPAL_REMOVE_PE_FROM_DOMAIN);
1323 
1324 					if (rc)
1325 					    dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1326 						__func__,
1327 						pdn->offset + vf_index1, rc);
1328 				}
1329 	}
1330 
1331 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1332 		if (pe->parent_dev != pdev)
1333 			continue;
1334 
1335 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1336 
1337 		/* Remove from list */
1338 		mutex_lock(&phb->ioda.pe_list_mutex);
1339 		list_del(&pe->list);
1340 		mutex_unlock(&phb->ioda.pe_list_mutex);
1341 
1342 		pnv_ioda_deconfigure_pe(phb, pe);
1343 
1344 		pnv_ioda_free_pe(phb, pe->pe_number);
1345 	}
1346 }
1347 
1348 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1349 {
1350 	struct pci_bus        *bus;
1351 	struct pci_controller *hose;
1352 	struct pnv_phb        *phb;
1353 	struct pci_dn         *pdn;
1354 	struct pci_sriov      *iov;
1355 	u16 num_vfs;
1356 
1357 	bus = pdev->bus;
1358 	hose = pci_bus_to_host(bus);
1359 	phb = hose->private_data;
1360 	pdn = pci_get_pdn(pdev);
1361 	iov = pdev->sriov;
1362 	num_vfs = pdn->num_vfs;
1363 
1364 	/* Release VF PEs */
1365 	pnv_ioda_release_vf_PE(pdev, num_vfs);
1366 
1367 	if (phb->type == PNV_PHB_IODA2) {
1368 		if (pdn->m64_per_iov == 1)
1369 			pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1370 
1371 		/* Release M64 windows */
1372 		pnv_pci_vf_release_m64(pdev);
1373 
1374 		/* Release PE numbers */
1375 		bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1376 		pdn->offset = 0;
1377 	}
1378 }
1379 
1380 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1381 				       struct pnv_ioda_pe *pe);
1382 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1383 {
1384 	struct pci_bus        *bus;
1385 	struct pci_controller *hose;
1386 	struct pnv_phb        *phb;
1387 	struct pnv_ioda_pe    *pe;
1388 	int                    pe_num;
1389 	u16                    vf_index;
1390 	struct pci_dn         *pdn;
1391 	int64_t                rc;
1392 
1393 	bus = pdev->bus;
1394 	hose = pci_bus_to_host(bus);
1395 	phb = hose->private_data;
1396 	pdn = pci_get_pdn(pdev);
1397 
1398 	if (!pdev->is_physfn)
1399 		return;
1400 
1401 	/* Reserve PE for each VF */
1402 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1403 		pe_num = pdn->offset + vf_index;
1404 
1405 		pe = &phb->ioda.pe_array[pe_num];
1406 		pe->pe_number = pe_num;
1407 		pe->phb = phb;
1408 		pe->flags = PNV_IODA_PE_VF;
1409 		pe->pbus = NULL;
1410 		pe->parent_dev = pdev;
1411 		pe->tce32_seg = -1;
1412 		pe->mve_number = -1;
1413 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1414 			   pci_iov_virtfn_devfn(pdev, vf_index);
1415 
1416 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1417 			hose->global_number, pdev->bus->number,
1418 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1419 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1420 
1421 		if (pnv_ioda_configure_pe(phb, pe)) {
1422 			/* XXX What do we do here ? */
1423 			if (pe_num)
1424 				pnv_ioda_free_pe(phb, pe_num);
1425 			pe->pdev = NULL;
1426 			continue;
1427 		}
1428 
1429 		/* Put PE to the list */
1430 		mutex_lock(&phb->ioda.pe_list_mutex);
1431 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1432 		mutex_unlock(&phb->ioda.pe_list_mutex);
1433 
1434 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1435 	}
1436 
1437 	if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1438 		int   vf_group;
1439 		int   vf_per_group;
1440 		int   vf_index1;
1441 
1442 		vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1443 
1444 		for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1445 			for (vf_index = vf_group * vf_per_group;
1446 			     vf_index < (vf_group + 1) * vf_per_group &&
1447 			     vf_index < num_vfs;
1448 			     vf_index++) {
1449 				for (vf_index1 = vf_group * vf_per_group;
1450 				     vf_index1 < (vf_group + 1) * vf_per_group &&
1451 				     vf_index1 < num_vfs;
1452 				     vf_index1++) {
1453 
1454 					rc = opal_pci_set_peltv(phb->opal_id,
1455 						pdn->offset + vf_index,
1456 						pdn->offset + vf_index1,
1457 						OPAL_ADD_PE_TO_DOMAIN);
1458 
1459 					if (rc)
1460 					    dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1461 						__func__,
1462 						pdn->offset + vf_index1, rc);
1463 				}
1464 			}
1465 		}
1466 	}
1467 }
1468 
1469 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1470 {
1471 	struct pci_bus        *bus;
1472 	struct pci_controller *hose;
1473 	struct pnv_phb        *phb;
1474 	struct pci_dn         *pdn;
1475 	int                    ret;
1476 
1477 	bus = pdev->bus;
1478 	hose = pci_bus_to_host(bus);
1479 	phb = hose->private_data;
1480 	pdn = pci_get_pdn(pdev);
1481 
1482 	if (phb->type == PNV_PHB_IODA2) {
1483 		/* Calculate available PE for required VFs */
1484 		mutex_lock(&phb->ioda.pe_alloc_mutex);
1485 		pdn->offset = bitmap_find_next_zero_area(
1486 			phb->ioda.pe_alloc, phb->ioda.total_pe,
1487 			0, num_vfs, 0);
1488 		if (pdn->offset >= phb->ioda.total_pe) {
1489 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1490 			dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1491 			pdn->offset = 0;
1492 			return -EBUSY;
1493 		}
1494 		bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1495 		pdn->num_vfs = num_vfs;
1496 		mutex_unlock(&phb->ioda.pe_alloc_mutex);
1497 
1498 		/* Assign M64 window accordingly */
1499 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1500 		if (ret) {
1501 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1502 			goto m64_failed;
1503 		}
1504 
1505 		/*
1506 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1507 		 * the IOV BAR according to the PE# allocated to the VFs.
1508 		 * Otherwise, the PE# for the VF will conflict with others.
1509 		 */
1510 		if (pdn->m64_per_iov == 1) {
1511 			ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1512 			if (ret)
1513 				goto m64_failed;
1514 		}
1515 	}
1516 
1517 	/* Setup VF PEs */
1518 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1519 
1520 	return 0;
1521 
1522 m64_failed:
1523 	bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1524 	pdn->offset = 0;
1525 
1526 	return ret;
1527 }
1528 
1529 int pcibios_sriov_disable(struct pci_dev *pdev)
1530 {
1531 	pnv_pci_sriov_disable(pdev);
1532 
1533 	/* Release PCI data */
1534 	remove_dev_pci_data(pdev);
1535 	return 0;
1536 }
1537 
1538 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1539 {
1540 	/* Allocate PCI data */
1541 	add_dev_pci_data(pdev);
1542 
1543 	pnv_pci_sriov_enable(pdev, num_vfs);
1544 	return 0;
1545 }
1546 #endif /* CONFIG_PCI_IOV */
1547 
1548 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1549 {
1550 	struct pci_dn *pdn = pci_get_pdn(pdev);
1551 	struct pnv_ioda_pe *pe;
1552 
1553 	/*
1554 	 * The function can be called while the PE#
1555 	 * hasn't been assigned. Do nothing for the
1556 	 * case.
1557 	 */
1558 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1559 		return;
1560 
1561 	pe = &phb->ioda.pe_array[pdn->pe_number];
1562 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1563 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1564 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1565 	/*
1566 	 * Note: iommu_add_device() will fail here as
1567 	 * for physical PE: the device is already added by now;
1568 	 * for virtual PE: sysfs entries are not ready yet and
1569 	 * tce_iommu_bus_notifier will add the device to a group later.
1570 	 */
1571 }
1572 
1573 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1574 {
1575 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1576 	struct pnv_phb *phb = hose->private_data;
1577 	struct pci_dn *pdn = pci_get_pdn(pdev);
1578 	struct pnv_ioda_pe *pe;
1579 	uint64_t top;
1580 	bool bypass = false;
1581 
1582 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1583 		return -ENODEV;;
1584 
1585 	pe = &phb->ioda.pe_array[pdn->pe_number];
1586 	if (pe->tce_bypass_enabled) {
1587 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1588 		bypass = (dma_mask >= top);
1589 	}
1590 
1591 	if (bypass) {
1592 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1593 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1594 	} else {
1595 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1596 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1597 	}
1598 	*pdev->dev.dma_mask = dma_mask;
1599 	return 0;
1600 }
1601 
1602 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1603 {
1604 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1605 	struct pnv_phb *phb = hose->private_data;
1606 	struct pci_dn *pdn = pci_get_pdn(pdev);
1607 	struct pnv_ioda_pe *pe;
1608 	u64 end, mask;
1609 
1610 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1611 		return 0;
1612 
1613 	pe = &phb->ioda.pe_array[pdn->pe_number];
1614 	if (!pe->tce_bypass_enabled)
1615 		return __dma_get_required_mask(&pdev->dev);
1616 
1617 
1618 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1619 	mask = 1ULL << (fls64(end) - 1);
1620 	mask += mask - 1;
1621 
1622 	return mask;
1623 }
1624 
1625 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1626 				   struct pci_bus *bus)
1627 {
1628 	struct pci_dev *dev;
1629 
1630 	list_for_each_entry(dev, &bus->devices, bus_list) {
1631 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1632 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1633 		iommu_add_device(&dev->dev);
1634 
1635 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1636 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1637 	}
1638 }
1639 
1640 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1641 		unsigned long index, unsigned long npages, bool rm)
1642 {
1643 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1644 			&tbl->it_group_list, struct iommu_table_group_link,
1645 			next);
1646 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1647 			struct pnv_ioda_pe, table_group);
1648 	__be64 __iomem *invalidate = rm ?
1649 		(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1650 		pe->phb->ioda.tce_inval_reg;
1651 	unsigned long start, end, inc;
1652 	const unsigned shift = tbl->it_page_shift;
1653 
1654 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1655 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1656 			npages - 1);
1657 
1658 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1659 	if (tbl->it_busno) {
1660 		start <<= shift;
1661 		end <<= shift;
1662 		inc = 128ull << shift;
1663 		start |= tbl->it_busno;
1664 		end |= tbl->it_busno;
1665 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1666 		/* p7ioc-style invalidation, 2 TCEs per write */
1667 		start |= (1ull << 63);
1668 		end |= (1ull << 63);
1669 		inc = 16;
1670         } else {
1671 		/* Default (older HW) */
1672                 inc = 128;
1673 	}
1674 
1675         end |= inc - 1;	/* round up end to be different than start */
1676 
1677         mb(); /* Ensure above stores are visible */
1678         while (start <= end) {
1679 		if (rm)
1680 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1681 		else
1682 			__raw_writeq(cpu_to_be64(start), invalidate);
1683                 start += inc;
1684         }
1685 
1686 	/*
1687 	 * The iommu layer will do another mb() for us on build()
1688 	 * and we don't care on free()
1689 	 */
1690 }
1691 
1692 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1693 		long npages, unsigned long uaddr,
1694 		enum dma_data_direction direction,
1695 		struct dma_attrs *attrs)
1696 {
1697 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1698 			attrs);
1699 
1700 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1701 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1702 
1703 	return ret;
1704 }
1705 
1706 #ifdef CONFIG_IOMMU_API
1707 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1708 		unsigned long *hpa, enum dma_data_direction *direction)
1709 {
1710 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1711 
1712 	if (!ret && (tbl->it_type &
1713 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1714 		pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1715 
1716 	return ret;
1717 }
1718 #endif
1719 
1720 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1721 		long npages)
1722 {
1723 	pnv_tce_free(tbl, index, npages);
1724 
1725 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1726 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1727 }
1728 
1729 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1730 	.set = pnv_ioda1_tce_build,
1731 #ifdef CONFIG_IOMMU_API
1732 	.exchange = pnv_ioda1_tce_xchg,
1733 #endif
1734 	.clear = pnv_ioda1_tce_free,
1735 	.get = pnv_tce_get,
1736 };
1737 
1738 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1739 {
1740 	/* 01xb - invalidate TCEs that match the specified PE# */
1741 	unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1742 	struct pnv_phb *phb = pe->phb;
1743 
1744 	if (!phb->ioda.tce_inval_reg)
1745 		return;
1746 
1747 	mb(); /* Ensure above stores are visible */
1748 	__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1749 }
1750 
1751 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1752 		__be64 __iomem *invalidate, unsigned shift,
1753 		unsigned long index, unsigned long npages)
1754 {
1755 	unsigned long start, end, inc;
1756 
1757 	/* We'll invalidate DMA address in PE scope */
1758 	start = 0x2ull << 60;
1759 	start |= (pe_number & 0xFF);
1760 	end = start;
1761 
1762 	/* Figure out the start, end and step */
1763 	start |= (index << shift);
1764 	end |= ((index + npages - 1) << shift);
1765 	inc = (0x1ull << shift);
1766 	mb();
1767 
1768 	while (start <= end) {
1769 		if (rm)
1770 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1771 		else
1772 			__raw_writeq(cpu_to_be64(start), invalidate);
1773 		start += inc;
1774 	}
1775 }
1776 
1777 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1778 		unsigned long index, unsigned long npages, bool rm)
1779 {
1780 	struct iommu_table_group_link *tgl;
1781 
1782 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1783 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1784 				struct pnv_ioda_pe, table_group);
1785 		__be64 __iomem *invalidate = rm ?
1786 			(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1787 			pe->phb->ioda.tce_inval_reg;
1788 
1789 		pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1790 			invalidate, tbl->it_page_shift,
1791 			index, npages);
1792 	}
1793 }
1794 
1795 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1796 		long npages, unsigned long uaddr,
1797 		enum dma_data_direction direction,
1798 		struct dma_attrs *attrs)
1799 {
1800 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1801 			attrs);
1802 
1803 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1804 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1805 
1806 	return ret;
1807 }
1808 
1809 #ifdef CONFIG_IOMMU_API
1810 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1811 		unsigned long *hpa, enum dma_data_direction *direction)
1812 {
1813 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1814 
1815 	if (!ret && (tbl->it_type &
1816 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1817 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1818 
1819 	return ret;
1820 }
1821 #endif
1822 
1823 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1824 		long npages)
1825 {
1826 	pnv_tce_free(tbl, index, npages);
1827 
1828 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1829 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1830 }
1831 
1832 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1833 {
1834 	pnv_pci_ioda2_table_free_pages(tbl);
1835 	iommu_free_table(tbl, "pnv");
1836 }
1837 
1838 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1839 	.set = pnv_ioda2_tce_build,
1840 #ifdef CONFIG_IOMMU_API
1841 	.exchange = pnv_ioda2_tce_xchg,
1842 #endif
1843 	.clear = pnv_ioda2_tce_free,
1844 	.get = pnv_tce_get,
1845 	.free = pnv_ioda2_table_free,
1846 };
1847 
1848 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1849 				      struct pnv_ioda_pe *pe, unsigned int base,
1850 				      unsigned int segs)
1851 {
1852 
1853 	struct page *tce_mem = NULL;
1854 	struct iommu_table *tbl;
1855 	unsigned int i;
1856 	int64_t rc;
1857 	void *addr;
1858 
1859 	/* XXX FIXME: Handle 64-bit only DMA devices */
1860 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1861 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1862 
1863 	/* We shouldn't already have a 32-bit DMA associated */
1864 	if (WARN_ON(pe->tce32_seg >= 0))
1865 		return;
1866 
1867 	tbl = pnv_pci_table_alloc(phb->hose->node);
1868 	iommu_register_group(&pe->table_group, phb->hose->global_number,
1869 			pe->pe_number);
1870 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1871 
1872 	/* Grab a 32-bit TCE table */
1873 	pe->tce32_seg = base;
1874 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1875 		(base << 28), ((base + segs) << 28) - 1);
1876 
1877 	/* XXX Currently, we allocate one big contiguous table for the
1878 	 * TCEs. We only really need one chunk per 256M of TCE space
1879 	 * (ie per segment) but that's an optimization for later, it
1880 	 * requires some added smarts with our get/put_tce implementation
1881 	 */
1882 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1883 				   get_order(TCE32_TABLE_SIZE * segs));
1884 	if (!tce_mem) {
1885 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1886 		goto fail;
1887 	}
1888 	addr = page_address(tce_mem);
1889 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
1890 
1891 	/* Configure HW */
1892 	for (i = 0; i < segs; i++) {
1893 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1894 					      pe->pe_number,
1895 					      base + i, 1,
1896 					      __pa(addr) + TCE32_TABLE_SIZE * i,
1897 					      TCE32_TABLE_SIZE, 0x1000);
1898 		if (rc) {
1899 			pe_err(pe, " Failed to configure 32-bit TCE table,"
1900 			       " err %ld\n", rc);
1901 			goto fail;
1902 		}
1903 	}
1904 
1905 	/* Setup linux iommu table */
1906 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1907 				  base << 28, IOMMU_PAGE_SHIFT_4K);
1908 
1909 	/* OPAL variant of P7IOC SW invalidated TCEs */
1910 	if (phb->ioda.tce_inval_reg)
1911 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1912 				 TCE_PCI_SWINV_FREE   |
1913 				 TCE_PCI_SWINV_PAIR);
1914 
1915 	tbl->it_ops = &pnv_ioda1_iommu_ops;
1916 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1917 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1918 	iommu_init_table(tbl, phb->hose->node);
1919 
1920 	if (pe->flags & PNV_IODA_PE_DEV) {
1921 		/*
1922 		 * Setting table base here only for carrying iommu_group
1923 		 * further down to let iommu_add_device() do the job.
1924 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1925 		 */
1926 		set_iommu_table_base(&pe->pdev->dev, tbl);
1927 		iommu_add_device(&pe->pdev->dev);
1928 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1929 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
1930 
1931 	return;
1932  fail:
1933 	/* XXX Failure: Try to fallback to 64-bit only ? */
1934 	if (pe->tce32_seg >= 0)
1935 		pe->tce32_seg = -1;
1936 	if (tce_mem)
1937 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1938 	if (tbl) {
1939 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1940 		iommu_free_table(tbl, "pnv");
1941 	}
1942 }
1943 
1944 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1945 		int num, struct iommu_table *tbl)
1946 {
1947 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1948 			table_group);
1949 	struct pnv_phb *phb = pe->phb;
1950 	int64_t rc;
1951 	const unsigned long size = tbl->it_indirect_levels ?
1952 			tbl->it_level_size : tbl->it_size;
1953 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1954 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1955 
1956 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
1957 			start_addr, start_addr + win_size - 1,
1958 			IOMMU_PAGE_SIZE(tbl));
1959 
1960 	/*
1961 	 * Map TCE table through TVT. The TVE index is the PE number
1962 	 * shifted by 1 bit for 32-bits DMA space.
1963 	 */
1964 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
1965 			pe->pe_number,
1966 			(pe->pe_number << 1) + num,
1967 			tbl->it_indirect_levels + 1,
1968 			__pa(tbl->it_base),
1969 			size << 3,
1970 			IOMMU_PAGE_SIZE(tbl));
1971 	if (rc) {
1972 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
1973 		return rc;
1974 	}
1975 
1976 	pnv_pci_link_table_and_group(phb->hose->node, num,
1977 			tbl, &pe->table_group);
1978 	pnv_pci_ioda2_tce_invalidate_entire(pe);
1979 
1980 	return 0;
1981 }
1982 
1983 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1984 {
1985 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
1986 	int64_t rc;
1987 
1988 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1989 	if (enable) {
1990 		phys_addr_t top = memblock_end_of_DRAM();
1991 
1992 		top = roundup_pow_of_two(top);
1993 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1994 						     pe->pe_number,
1995 						     window_id,
1996 						     pe->tce_bypass_base,
1997 						     top);
1998 	} else {
1999 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2000 						     pe->pe_number,
2001 						     window_id,
2002 						     pe->tce_bypass_base,
2003 						     0);
2004 	}
2005 	if (rc)
2006 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2007 	else
2008 		pe->tce_bypass_enabled = enable;
2009 }
2010 
2011 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2012 		__u32 page_shift, __u64 window_size, __u32 levels,
2013 		struct iommu_table *tbl);
2014 
2015 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2016 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2017 		struct iommu_table **ptbl)
2018 {
2019 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2020 			table_group);
2021 	int nid = pe->phb->hose->node;
2022 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2023 	long ret;
2024 	struct iommu_table *tbl;
2025 
2026 	tbl = pnv_pci_table_alloc(nid);
2027 	if (!tbl)
2028 		return -ENOMEM;
2029 
2030 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2031 			bus_offset, page_shift, window_size,
2032 			levels, tbl);
2033 	if (ret) {
2034 		iommu_free_table(tbl, "pnv");
2035 		return ret;
2036 	}
2037 
2038 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2039 	if (pe->phb->ioda.tce_inval_reg)
2040 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2041 
2042 	*ptbl = tbl;
2043 
2044 	return 0;
2045 }
2046 
2047 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2048 {
2049 	struct iommu_table *tbl = NULL;
2050 	long rc;
2051 
2052 	/*
2053 	 * crashkernel= specifies the kdump kernel's maximum memory at
2054 	 * some offset and there is no guaranteed the result is a power
2055 	 * of 2, which will cause errors later.
2056 	 */
2057 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2058 
2059 	/*
2060 	 * In memory constrained environments, e.g. kdump kernel, the
2061 	 * DMA window can be larger than available memory, which will
2062 	 * cause errors later.
2063 	 */
2064 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2065 
2066 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2067 			IOMMU_PAGE_SHIFT_4K,
2068 			window_size,
2069 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2070 	if (rc) {
2071 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2072 				rc);
2073 		return rc;
2074 	}
2075 
2076 	iommu_init_table(tbl, pe->phb->hose->node);
2077 
2078 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2079 	if (rc) {
2080 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2081 				rc);
2082 		pnv_ioda2_table_free(tbl);
2083 		return rc;
2084 	}
2085 
2086 	if (!pnv_iommu_bypass_disabled)
2087 		pnv_pci_ioda2_set_bypass(pe, true);
2088 
2089 	/* OPAL variant of PHB3 invalidated TCEs */
2090 	if (pe->phb->ioda.tce_inval_reg)
2091 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2092 
2093 	/*
2094 	 * Setting table base here only for carrying iommu_group
2095 	 * further down to let iommu_add_device() do the job.
2096 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2097 	 */
2098 	if (pe->flags & PNV_IODA_PE_DEV)
2099 		set_iommu_table_base(&pe->pdev->dev, tbl);
2100 
2101 	return 0;
2102 }
2103 
2104 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2105 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2106 		int num)
2107 {
2108 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2109 			table_group);
2110 	struct pnv_phb *phb = pe->phb;
2111 	long ret;
2112 
2113 	pe_info(pe, "Removing DMA window #%d\n", num);
2114 
2115 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2116 			(pe->pe_number << 1) + num,
2117 			0/* levels */, 0/* table address */,
2118 			0/* table size */, 0/* page size */);
2119 	if (ret)
2120 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2121 	else
2122 		pnv_pci_ioda2_tce_invalidate_entire(pe);
2123 
2124 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2125 
2126 	return ret;
2127 }
2128 #endif
2129 
2130 #ifdef CONFIG_IOMMU_API
2131 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2132 		__u64 window_size, __u32 levels)
2133 {
2134 	unsigned long bytes = 0;
2135 	const unsigned window_shift = ilog2(window_size);
2136 	unsigned entries_shift = window_shift - page_shift;
2137 	unsigned table_shift = entries_shift + 3;
2138 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2139 	unsigned long direct_table_size;
2140 
2141 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2142 			(window_size > memory_hotplug_max()) ||
2143 			!is_power_of_2(window_size))
2144 		return 0;
2145 
2146 	/* Calculate a direct table size from window_size and levels */
2147 	entries_shift = (entries_shift + levels - 1) / levels;
2148 	table_shift = entries_shift + 3;
2149 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2150 	direct_table_size =  1UL << table_shift;
2151 
2152 	for ( ; levels; --levels) {
2153 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2154 
2155 		tce_table_size /= direct_table_size;
2156 		tce_table_size <<= 3;
2157 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2158 	}
2159 
2160 	return bytes;
2161 }
2162 
2163 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2164 {
2165 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2166 						table_group);
2167 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2168 	struct iommu_table *tbl = pe->table_group.tables[0];
2169 
2170 	pnv_pci_ioda2_set_bypass(pe, false);
2171 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2172 	pnv_ioda2_table_free(tbl);
2173 }
2174 
2175 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2176 {
2177 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2178 						table_group);
2179 
2180 	pnv_pci_ioda2_setup_default_config(pe);
2181 }
2182 
2183 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2184 	.get_table_size = pnv_pci_ioda2_get_table_size,
2185 	.create_table = pnv_pci_ioda2_create_table,
2186 	.set_window = pnv_pci_ioda2_set_window,
2187 	.unset_window = pnv_pci_ioda2_unset_window,
2188 	.take_ownership = pnv_ioda2_take_ownership,
2189 	.release_ownership = pnv_ioda2_release_ownership,
2190 };
2191 #endif
2192 
2193 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2194 {
2195 	const __be64 *swinvp;
2196 
2197 	/* OPAL variant of PHB3 invalidated TCEs */
2198 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2199 	if (!swinvp)
2200 		return;
2201 
2202 	phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2203 	phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2204 }
2205 
2206 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2207 		unsigned levels, unsigned long limit,
2208 		unsigned long *current_offset, unsigned long *total_allocated)
2209 {
2210 	struct page *tce_mem = NULL;
2211 	__be64 *addr, *tmp;
2212 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2213 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2214 	unsigned entries = 1UL << (shift - 3);
2215 	long i;
2216 
2217 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2218 	if (!tce_mem) {
2219 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2220 		return NULL;
2221 	}
2222 	addr = page_address(tce_mem);
2223 	memset(addr, 0, allocated);
2224 	*total_allocated += allocated;
2225 
2226 	--levels;
2227 	if (!levels) {
2228 		*current_offset += allocated;
2229 		return addr;
2230 	}
2231 
2232 	for (i = 0; i < entries; ++i) {
2233 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2234 				levels, limit, current_offset, total_allocated);
2235 		if (!tmp)
2236 			break;
2237 
2238 		addr[i] = cpu_to_be64(__pa(tmp) |
2239 				TCE_PCI_READ | TCE_PCI_WRITE);
2240 
2241 		if (*current_offset >= limit)
2242 			break;
2243 	}
2244 
2245 	return addr;
2246 }
2247 
2248 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2249 		unsigned long size, unsigned level);
2250 
2251 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2252 		__u32 page_shift, __u64 window_size, __u32 levels,
2253 		struct iommu_table *tbl)
2254 {
2255 	void *addr;
2256 	unsigned long offset = 0, level_shift, total_allocated = 0;
2257 	const unsigned window_shift = ilog2(window_size);
2258 	unsigned entries_shift = window_shift - page_shift;
2259 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2260 	const unsigned long tce_table_size = 1UL << table_shift;
2261 
2262 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2263 		return -EINVAL;
2264 
2265 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2266 		return -EINVAL;
2267 
2268 	/* Adjust direct table size from window_size and levels */
2269 	entries_shift = (entries_shift + levels - 1) / levels;
2270 	level_shift = entries_shift + 3;
2271 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2272 
2273 	/* Allocate TCE table */
2274 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2275 			levels, tce_table_size, &offset, &total_allocated);
2276 
2277 	/* addr==NULL means that the first level allocation failed */
2278 	if (!addr)
2279 		return -ENOMEM;
2280 
2281 	/*
2282 	 * First level was allocated but some lower level failed as
2283 	 * we did not allocate as much as we wanted,
2284 	 * release partially allocated table.
2285 	 */
2286 	if (offset < tce_table_size) {
2287 		pnv_pci_ioda2_table_do_free_pages(addr,
2288 				1ULL << (level_shift - 3), levels - 1);
2289 		return -ENOMEM;
2290 	}
2291 
2292 	/* Setup linux iommu table */
2293 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2294 			page_shift);
2295 	tbl->it_level_size = 1ULL << (level_shift - 3);
2296 	tbl->it_indirect_levels = levels - 1;
2297 	tbl->it_allocated_size = total_allocated;
2298 
2299 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2300 			window_size, tce_table_size, bus_offset);
2301 
2302 	return 0;
2303 }
2304 
2305 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2306 		unsigned long size, unsigned level)
2307 {
2308 	const unsigned long addr_ul = (unsigned long) addr &
2309 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2310 
2311 	if (level) {
2312 		long i;
2313 		u64 *tmp = (u64 *) addr_ul;
2314 
2315 		for (i = 0; i < size; ++i) {
2316 			unsigned long hpa = be64_to_cpu(tmp[i]);
2317 
2318 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2319 				continue;
2320 
2321 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2322 					level - 1);
2323 		}
2324 	}
2325 
2326 	free_pages(addr_ul, get_order(size << 3));
2327 }
2328 
2329 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2330 {
2331 	const unsigned long size = tbl->it_indirect_levels ?
2332 			tbl->it_level_size : tbl->it_size;
2333 
2334 	if (!tbl->it_size)
2335 		return;
2336 
2337 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2338 			tbl->it_indirect_levels);
2339 }
2340 
2341 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2342 				       struct pnv_ioda_pe *pe)
2343 {
2344 	int64_t rc;
2345 
2346 	/* We shouldn't already have a 32-bit DMA associated */
2347 	if (WARN_ON(pe->tce32_seg >= 0))
2348 		return;
2349 
2350 	/* TVE #1 is selected by PCI address bit 59 */
2351 	pe->tce_bypass_base = 1ull << 59;
2352 
2353 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2354 			pe->pe_number);
2355 
2356 	/* The PE will reserve all possible 32-bits space */
2357 	pe->tce32_seg = 0;
2358 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2359 		phb->ioda.m32_pci_base);
2360 
2361 	/* Setup linux iommu table */
2362 	pe->table_group.tce32_start = 0;
2363 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2364 	pe->table_group.max_dynamic_windows_supported =
2365 			IOMMU_TABLE_GROUP_MAX_TABLES;
2366 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2367 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2368 #ifdef CONFIG_IOMMU_API
2369 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2370 #endif
2371 
2372 	rc = pnv_pci_ioda2_setup_default_config(pe);
2373 	if (rc) {
2374 		if (pe->tce32_seg >= 0)
2375 			pe->tce32_seg = -1;
2376 		return;
2377 	}
2378 
2379 	if (pe->flags & PNV_IODA_PE_DEV)
2380 		iommu_add_device(&pe->pdev->dev);
2381 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2382 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2383 }
2384 
2385 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2386 {
2387 	struct pci_controller *hose = phb->hose;
2388 	unsigned int residual, remaining, segs, tw, base;
2389 	struct pnv_ioda_pe *pe;
2390 
2391 	/* If we have more PE# than segments available, hand out one
2392 	 * per PE until we run out and let the rest fail. If not,
2393 	 * then we assign at least one segment per PE, plus more based
2394 	 * on the amount of devices under that PE
2395 	 */
2396 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2397 		residual = 0;
2398 	else
2399 		residual = phb->ioda.tce32_count -
2400 			phb->ioda.dma_pe_count;
2401 
2402 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2403 		hose->global_number, phb->ioda.tce32_count);
2404 	pr_info("PCI: %d PE# for a total weight of %d\n",
2405 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2406 
2407 	pnv_pci_ioda_setup_opal_tce_kill(phb);
2408 
2409 	/* Walk our PE list and configure their DMA segments, hand them
2410 	 * out one base segment plus any residual segments based on
2411 	 * weight
2412 	 */
2413 	remaining = phb->ioda.tce32_count;
2414 	tw = phb->ioda.dma_weight;
2415 	base = 0;
2416 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2417 		if (!pe->dma_weight)
2418 			continue;
2419 		if (!remaining) {
2420 			pe_warn(pe, "No DMA32 resources available\n");
2421 			continue;
2422 		}
2423 		segs = 1;
2424 		if (residual) {
2425 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2426 			if (segs > remaining)
2427 				segs = remaining;
2428 		}
2429 
2430 		/*
2431 		 * For IODA2 compliant PHB3, we needn't care about the weight.
2432 		 * The all available 32-bits DMA space will be assigned to
2433 		 * the specific PE.
2434 		 */
2435 		if (phb->type == PNV_PHB_IODA1) {
2436 			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2437 				pe->dma_weight, segs);
2438 			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2439 		} else {
2440 			pe_info(pe, "Assign DMA32 space\n");
2441 			segs = 0;
2442 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
2443 		}
2444 
2445 		remaining -= segs;
2446 		base += segs;
2447 	}
2448 }
2449 
2450 #ifdef CONFIG_PCI_MSI
2451 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2452 {
2453 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2454 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2455 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2456 					   ioda.irq_chip);
2457 	int64_t rc;
2458 
2459 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2460 	WARN_ON_ONCE(rc);
2461 
2462 	icp_native_eoi(d);
2463 }
2464 
2465 
2466 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2467 {
2468 	struct irq_data *idata;
2469 	struct irq_chip *ichip;
2470 
2471 	if (phb->type != PNV_PHB_IODA2)
2472 		return;
2473 
2474 	if (!phb->ioda.irq_chip_init) {
2475 		/*
2476 		 * First time we setup an MSI IRQ, we need to setup the
2477 		 * corresponding IRQ chip to route correctly.
2478 		 */
2479 		idata = irq_get_irq_data(virq);
2480 		ichip = irq_data_get_irq_chip(idata);
2481 		phb->ioda.irq_chip_init = 1;
2482 		phb->ioda.irq_chip = *ichip;
2483 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2484 	}
2485 	irq_set_chip(virq, &phb->ioda.irq_chip);
2486 }
2487 
2488 #ifdef CONFIG_CXL_BASE
2489 
2490 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2491 {
2492 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2493 
2494 	return of_node_get(hose->dn);
2495 }
2496 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2497 
2498 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2499 {
2500 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2501 	struct pnv_phb *phb = hose->private_data;
2502 	struct pnv_ioda_pe *pe;
2503 	int rc;
2504 
2505 	pe = pnv_ioda_get_pe(dev);
2506 	if (!pe)
2507 		return -ENODEV;
2508 
2509 	pe_info(pe, "Switching PHB to CXL\n");
2510 
2511 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2512 	if (rc)
2513 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2514 
2515 	return rc;
2516 }
2517 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2518 
2519 /* Find PHB for cxl dev and allocate MSI hwirqs?
2520  * Returns the absolute hardware IRQ number
2521  */
2522 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2523 {
2524 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2525 	struct pnv_phb *phb = hose->private_data;
2526 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2527 
2528 	if (hwirq < 0) {
2529 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
2530 		return -ENOSPC;
2531 	}
2532 
2533 	return phb->msi_base + hwirq;
2534 }
2535 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2536 
2537 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2538 {
2539 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2540 	struct pnv_phb *phb = hose->private_data;
2541 
2542 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2543 }
2544 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2545 
2546 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2547 				  struct pci_dev *dev)
2548 {
2549 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2550 	struct pnv_phb *phb = hose->private_data;
2551 	int i, hwirq;
2552 
2553 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
2554 		if (!irqs->range[i])
2555 			continue;
2556 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2557 			 i, irqs->offset[i],
2558 			 irqs->range[i]);
2559 		hwirq = irqs->offset[i] - phb->msi_base;
2560 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2561 				       irqs->range[i]);
2562 	}
2563 }
2564 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2565 
2566 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2567 			       struct pci_dev *dev, int num)
2568 {
2569 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2570 	struct pnv_phb *phb = hose->private_data;
2571 	int i, hwirq, try;
2572 
2573 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2574 
2575 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
2576 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2577 		try = num;
2578 		while (try) {
2579 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2580 			if (hwirq >= 0)
2581 				break;
2582 			try /= 2;
2583 		}
2584 		if (!try)
2585 			goto fail;
2586 
2587 		irqs->offset[i] = phb->msi_base + hwirq;
2588 		irqs->range[i] = try;
2589 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2590 			 i, irqs->offset[i], irqs->range[i]);
2591 		num -= try;
2592 	}
2593 	if (num)
2594 		goto fail;
2595 
2596 	return 0;
2597 fail:
2598 	pnv_cxl_release_hwirq_ranges(irqs, dev);
2599 	return -ENOSPC;
2600 }
2601 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2602 
2603 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2604 {
2605 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2606 	struct pnv_phb *phb = hose->private_data;
2607 
2608 	return phb->msi_bmp.irq_count;
2609 }
2610 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2611 
2612 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2613 			   unsigned int virq)
2614 {
2615 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2616 	struct pnv_phb *phb = hose->private_data;
2617 	unsigned int xive_num = hwirq - phb->msi_base;
2618 	struct pnv_ioda_pe *pe;
2619 	int rc;
2620 
2621 	if (!(pe = pnv_ioda_get_pe(dev)))
2622 		return -ENODEV;
2623 
2624 	/* Assign XIVE to PE */
2625 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2626 	if (rc) {
2627 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2628 			"hwirq 0x%x XIVE 0x%x PE\n",
2629 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2630 		return -EIO;
2631 	}
2632 	set_msi_irq_chip(phb, virq);
2633 
2634 	return 0;
2635 }
2636 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2637 #endif
2638 
2639 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2640 				  unsigned int hwirq, unsigned int virq,
2641 				  unsigned int is_64, struct msi_msg *msg)
2642 {
2643 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2644 	unsigned int xive_num = hwirq - phb->msi_base;
2645 	__be32 data;
2646 	int rc;
2647 
2648 	/* No PE assigned ? bail out ... no MSI for you ! */
2649 	if (pe == NULL)
2650 		return -ENXIO;
2651 
2652 	/* Check if we have an MVE */
2653 	if (pe->mve_number < 0)
2654 		return -ENXIO;
2655 
2656 	/* Force 32-bit MSI on some broken devices */
2657 	if (dev->no_64bit_msi)
2658 		is_64 = 0;
2659 
2660 	/* Assign XIVE to PE */
2661 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2662 	if (rc) {
2663 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2664 			pci_name(dev), rc, xive_num);
2665 		return -EIO;
2666 	}
2667 
2668 	if (is_64) {
2669 		__be64 addr64;
2670 
2671 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2672 				     &addr64, &data);
2673 		if (rc) {
2674 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2675 				pci_name(dev), rc);
2676 			return -EIO;
2677 		}
2678 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2679 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2680 	} else {
2681 		__be32 addr32;
2682 
2683 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2684 				     &addr32, &data);
2685 		if (rc) {
2686 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2687 				pci_name(dev), rc);
2688 			return -EIO;
2689 		}
2690 		msg->address_hi = 0;
2691 		msg->address_lo = be32_to_cpu(addr32);
2692 	}
2693 	msg->data = be32_to_cpu(data);
2694 
2695 	set_msi_irq_chip(phb, virq);
2696 
2697 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2698 		 " address=%x_%08x data=%x PE# %d\n",
2699 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2700 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2701 
2702 	return 0;
2703 }
2704 
2705 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2706 {
2707 	unsigned int count;
2708 	const __be32 *prop = of_get_property(phb->hose->dn,
2709 					     "ibm,opal-msi-ranges", NULL);
2710 	if (!prop) {
2711 		/* BML Fallback */
2712 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2713 	}
2714 	if (!prop)
2715 		return;
2716 
2717 	phb->msi_base = be32_to_cpup(prop);
2718 	count = be32_to_cpup(prop + 1);
2719 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2720 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2721 		       phb->hose->global_number);
2722 		return;
2723 	}
2724 
2725 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2726 	phb->msi32_support = 1;
2727 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2728 		count, phb->msi_base);
2729 }
2730 #else
2731 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2732 #endif /* CONFIG_PCI_MSI */
2733 
2734 #ifdef CONFIG_PCI_IOV
2735 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2736 {
2737 	struct pci_controller *hose;
2738 	struct pnv_phb *phb;
2739 	struct resource *res;
2740 	int i;
2741 	resource_size_t size;
2742 	struct pci_dn *pdn;
2743 	int mul, total_vfs;
2744 
2745 	if (!pdev->is_physfn || pdev->is_added)
2746 		return;
2747 
2748 	hose = pci_bus_to_host(pdev->bus);
2749 	phb = hose->private_data;
2750 
2751 	pdn = pci_get_pdn(pdev);
2752 	pdn->vfs_expanded = 0;
2753 
2754 	total_vfs = pci_sriov_get_totalvfs(pdev);
2755 	pdn->m64_per_iov = 1;
2756 	mul = phb->ioda.total_pe;
2757 
2758 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2759 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2760 		if (!res->flags || res->parent)
2761 			continue;
2762 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2763 			dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2764 				 i, res);
2765 			continue;
2766 		}
2767 
2768 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2769 
2770 		/* bigger than 64M */
2771 		if (size > (1 << 26)) {
2772 			dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2773 				 i, res);
2774 			pdn->m64_per_iov = M64_PER_IOV;
2775 			mul = roundup_pow_of_two(total_vfs);
2776 			break;
2777 		}
2778 	}
2779 
2780 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2781 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2782 		if (!res->flags || res->parent)
2783 			continue;
2784 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2785 			dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2786 				 i, res);
2787 			continue;
2788 		}
2789 
2790 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2791 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2792 		res->end = res->start + size * mul - 1;
2793 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2794 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2795 			 i, res, mul);
2796 	}
2797 	pdn->vfs_expanded = mul;
2798 }
2799 #endif /* CONFIG_PCI_IOV */
2800 
2801 /*
2802  * This function is supposed to be called on basis of PE from top
2803  * to bottom style. So the the I/O or MMIO segment assigned to
2804  * parent PE could be overrided by its child PEs if necessary.
2805  */
2806 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2807 				  struct pnv_ioda_pe *pe)
2808 {
2809 	struct pnv_phb *phb = hose->private_data;
2810 	struct pci_bus_region region;
2811 	struct resource *res;
2812 	int i, index;
2813 	int rc;
2814 
2815 	/*
2816 	 * NOTE: We only care PCI bus based PE for now. For PCI
2817 	 * device based PE, for example SRIOV sensitive VF should
2818 	 * be figured out later.
2819 	 */
2820 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2821 
2822 	pci_bus_for_each_resource(pe->pbus, res, i) {
2823 		if (!res || !res->flags ||
2824 		    res->start > res->end)
2825 			continue;
2826 
2827 		if (res->flags & IORESOURCE_IO) {
2828 			region.start = res->start - phb->ioda.io_pci_base;
2829 			region.end   = res->end - phb->ioda.io_pci_base;
2830 			index = region.start / phb->ioda.io_segsize;
2831 
2832 			while (index < phb->ioda.total_pe &&
2833 			       region.start <= region.end) {
2834 				phb->ioda.io_segmap[index] = pe->pe_number;
2835 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2836 					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2837 				if (rc != OPAL_SUCCESS) {
2838 					pr_err("%s: OPAL error %d when mapping IO "
2839 					       "segment #%d to PE#%d\n",
2840 					       __func__, rc, index, pe->pe_number);
2841 					break;
2842 				}
2843 
2844 				region.start += phb->ioda.io_segsize;
2845 				index++;
2846 			}
2847 		} else if ((res->flags & IORESOURCE_MEM) &&
2848 			   !pnv_pci_is_mem_pref_64(res->flags)) {
2849 			region.start = res->start -
2850 				       hose->mem_offset[0] -
2851 				       phb->ioda.m32_pci_base;
2852 			region.end   = res->end -
2853 				       hose->mem_offset[0] -
2854 				       phb->ioda.m32_pci_base;
2855 			index = region.start / phb->ioda.m32_segsize;
2856 
2857 			while (index < phb->ioda.total_pe &&
2858 			       region.start <= region.end) {
2859 				phb->ioda.m32_segmap[index] = pe->pe_number;
2860 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2861 					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2862 				if (rc != OPAL_SUCCESS) {
2863 					pr_err("%s: OPAL error %d when mapping M32 "
2864 					       "segment#%d to PE#%d",
2865 					       __func__, rc, index, pe->pe_number);
2866 					break;
2867 				}
2868 
2869 				region.start += phb->ioda.m32_segsize;
2870 				index++;
2871 			}
2872 		}
2873 	}
2874 }
2875 
2876 static void pnv_pci_ioda_setup_seg(void)
2877 {
2878 	struct pci_controller *tmp, *hose;
2879 	struct pnv_phb *phb;
2880 	struct pnv_ioda_pe *pe;
2881 
2882 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2883 		phb = hose->private_data;
2884 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2885 			pnv_ioda_setup_pe_seg(hose, pe);
2886 		}
2887 	}
2888 }
2889 
2890 static void pnv_pci_ioda_setup_DMA(void)
2891 {
2892 	struct pci_controller *hose, *tmp;
2893 	struct pnv_phb *phb;
2894 
2895 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2896 		pnv_ioda_setup_dma(hose->private_data);
2897 
2898 		/* Mark the PHB initialization done */
2899 		phb = hose->private_data;
2900 		phb->initialized = 1;
2901 	}
2902 }
2903 
2904 static void pnv_pci_ioda_create_dbgfs(void)
2905 {
2906 #ifdef CONFIG_DEBUG_FS
2907 	struct pci_controller *hose, *tmp;
2908 	struct pnv_phb *phb;
2909 	char name[16];
2910 
2911 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2912 		phb = hose->private_data;
2913 
2914 		sprintf(name, "PCI%04x", hose->global_number);
2915 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2916 		if (!phb->dbgfs)
2917 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2918 				__func__, hose->global_number);
2919 	}
2920 #endif /* CONFIG_DEBUG_FS */
2921 }
2922 
2923 static void pnv_pci_ioda_fixup(void)
2924 {
2925 	pnv_pci_ioda_setup_PEs();
2926 	pnv_pci_ioda_setup_seg();
2927 	pnv_pci_ioda_setup_DMA();
2928 
2929 	pnv_pci_ioda_create_dbgfs();
2930 
2931 #ifdef CONFIG_EEH
2932 	eeh_init();
2933 	eeh_addr_cache_build();
2934 #endif
2935 }
2936 
2937 /*
2938  * Returns the alignment for I/O or memory windows for P2P
2939  * bridges. That actually depends on how PEs are segmented.
2940  * For now, we return I/O or M32 segment size for PE sensitive
2941  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2942  * 1MiB for memory) will be returned.
2943  *
2944  * The current PCI bus might be put into one PE, which was
2945  * create against the parent PCI bridge. For that case, we
2946  * needn't enlarge the alignment so that we can save some
2947  * resources.
2948  */
2949 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2950 						unsigned long type)
2951 {
2952 	struct pci_dev *bridge;
2953 	struct pci_controller *hose = pci_bus_to_host(bus);
2954 	struct pnv_phb *phb = hose->private_data;
2955 	int num_pci_bridges = 0;
2956 
2957 	bridge = bus->self;
2958 	while (bridge) {
2959 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2960 			num_pci_bridges++;
2961 			if (num_pci_bridges >= 2)
2962 				return 1;
2963 		}
2964 
2965 		bridge = bridge->bus->self;
2966 	}
2967 
2968 	/* We fail back to M32 if M64 isn't supported */
2969 	if (phb->ioda.m64_segsize &&
2970 	    pnv_pci_is_mem_pref_64(type))
2971 		return phb->ioda.m64_segsize;
2972 	if (type & IORESOURCE_MEM)
2973 		return phb->ioda.m32_segsize;
2974 
2975 	return phb->ioda.io_segsize;
2976 }
2977 
2978 #ifdef CONFIG_PCI_IOV
2979 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2980 						      int resno)
2981 {
2982 	struct pci_dn *pdn = pci_get_pdn(pdev);
2983 	resource_size_t align, iov_align;
2984 
2985 	iov_align = resource_size(&pdev->resource[resno]);
2986 	if (iov_align)
2987 		return iov_align;
2988 
2989 	align = pci_iov_resource_size(pdev, resno);
2990 	if (pdn->vfs_expanded)
2991 		return pdn->vfs_expanded * align;
2992 
2993 	return align;
2994 }
2995 #endif /* CONFIG_PCI_IOV */
2996 
2997 /* Prevent enabling devices for which we couldn't properly
2998  * assign a PE
2999  */
3000 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3001 {
3002 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3003 	struct pnv_phb *phb = hose->private_data;
3004 	struct pci_dn *pdn;
3005 
3006 	/* The function is probably called while the PEs have
3007 	 * not be created yet. For example, resource reassignment
3008 	 * during PCI probe period. We just skip the check if
3009 	 * PEs isn't ready.
3010 	 */
3011 	if (!phb->initialized)
3012 		return true;
3013 
3014 	pdn = pci_get_pdn(dev);
3015 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3016 		return false;
3017 
3018 	return true;
3019 }
3020 
3021 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
3022 			       u32 devfn)
3023 {
3024 	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
3025 }
3026 
3027 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3028 {
3029 	struct pnv_phb *phb = hose->private_data;
3030 
3031 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3032 		       OPAL_ASSERT_RESET);
3033 }
3034 
3035 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3036        .dma_dev_setup = pnv_pci_dma_dev_setup,
3037 #ifdef CONFIG_PCI_MSI
3038        .setup_msi_irqs = pnv_setup_msi_irqs,
3039        .teardown_msi_irqs = pnv_teardown_msi_irqs,
3040 #endif
3041        .enable_device_hook = pnv_pci_enable_device_hook,
3042        .window_alignment = pnv_pci_window_alignment,
3043        .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3044        .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3045        .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3046        .shutdown = pnv_pci_ioda_shutdown,
3047 };
3048 
3049 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3050 					 u64 hub_id, int ioda_type)
3051 {
3052 	struct pci_controller *hose;
3053 	struct pnv_phb *phb;
3054 	unsigned long size, m32map_off, pemap_off, iomap_off = 0;
3055 	const __be64 *prop64;
3056 	const __be32 *prop32;
3057 	int len;
3058 	u64 phb_id;
3059 	void *aux;
3060 	long rc;
3061 
3062 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3063 
3064 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3065 	if (!prop64) {
3066 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3067 		return;
3068 	}
3069 	phb_id = be64_to_cpup(prop64);
3070 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3071 
3072 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3073 
3074 	/* Allocate PCI controller */
3075 	phb->hose = hose = pcibios_alloc_controller(np);
3076 	if (!phb->hose) {
3077 		pr_err("  Can't allocate PCI controller for %s\n",
3078 		       np->full_name);
3079 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3080 		return;
3081 	}
3082 
3083 	spin_lock_init(&phb->lock);
3084 	prop32 = of_get_property(np, "bus-range", &len);
3085 	if (prop32 && len == 8) {
3086 		hose->first_busno = be32_to_cpu(prop32[0]);
3087 		hose->last_busno = be32_to_cpu(prop32[1]);
3088 	} else {
3089 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3090 		hose->first_busno = 0;
3091 		hose->last_busno = 0xff;
3092 	}
3093 	hose->private_data = phb;
3094 	phb->hub_id = hub_id;
3095 	phb->opal_id = phb_id;
3096 	phb->type = ioda_type;
3097 	mutex_init(&phb->ioda.pe_alloc_mutex);
3098 
3099 	/* Detect specific models for error handling */
3100 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3101 		phb->model = PNV_PHB_MODEL_P7IOC;
3102 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3103 		phb->model = PNV_PHB_MODEL_PHB3;
3104 	else
3105 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3106 
3107 	/* Parse 32-bit and IO ranges (if any) */
3108 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3109 
3110 	/* Get registers */
3111 	phb->regs = of_iomap(np, 0);
3112 	if (phb->regs == NULL)
3113 		pr_err("  Failed to map registers !\n");
3114 
3115 	/* Initialize more IODA stuff */
3116 	phb->ioda.total_pe = 1;
3117 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3118 	if (prop32)
3119 		phb->ioda.total_pe = be32_to_cpup(prop32);
3120 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3121 	if (prop32)
3122 		phb->ioda.reserved_pe = be32_to_cpup(prop32);
3123 
3124 	/* Parse 64-bit MMIO range */
3125 	pnv_ioda_parse_m64_window(phb);
3126 
3127 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3128 	/* FW Has already off top 64k of M32 space (MSI space) */
3129 	phb->ioda.m32_size += 0x10000;
3130 
3131 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
3132 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3133 	phb->ioda.io_size = hose->pci_io_size;
3134 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
3135 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3136 
3137 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3138 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
3139 	m32map_off = size;
3140 	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
3141 	if (phb->type == PNV_PHB_IODA1) {
3142 		iomap_off = size;
3143 		size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
3144 	}
3145 	pemap_off = size;
3146 	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
3147 	aux = memblock_virt_alloc(size, 0);
3148 	phb->ioda.pe_alloc = aux;
3149 	phb->ioda.m32_segmap = aux + m32map_off;
3150 	if (phb->type == PNV_PHB_IODA1)
3151 		phb->ioda.io_segmap = aux + iomap_off;
3152 	phb->ioda.pe_array = aux + pemap_off;
3153 	set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
3154 
3155 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
3156 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3157 	mutex_init(&phb->ioda.pe_list_mutex);
3158 
3159 	/* Calculate how many 32-bit TCE segments we have */
3160 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
3161 
3162 #if 0 /* We should really do that ... */
3163 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3164 					 window_type,
3165 					 window_num,
3166 					 starting_real_address,
3167 					 starting_pci_address,
3168 					 segment_size);
3169 #endif
3170 
3171 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3172 		phb->ioda.total_pe, phb->ioda.reserved_pe,
3173 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3174 	if (phb->ioda.m64_size)
3175 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3176 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3177 	if (phb->ioda.io_size)
3178 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3179 			phb->ioda.io_size, phb->ioda.io_segsize);
3180 
3181 
3182 	phb->hose->ops = &pnv_pci_ops;
3183 	phb->get_pe_state = pnv_ioda_get_pe_state;
3184 	phb->freeze_pe = pnv_ioda_freeze_pe;
3185 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3186 
3187 	/* Setup RID -> PE mapping function */
3188 	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
3189 
3190 	/* Setup TCEs */
3191 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3192 
3193 	/* Setup MSI support */
3194 	pnv_pci_init_ioda_msis(phb);
3195 
3196 	/*
3197 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3198 	 * to let the PCI core do resource assignment. It's supposed
3199 	 * that the PCI core will do correct I/O and MMIO alignment
3200 	 * for the P2P bridge bars so that each PCI bus (excluding
3201 	 * the child P2P bridges) can form individual PE.
3202 	 */
3203 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3204 	hose->controller_ops = pnv_pci_ioda_controller_ops;
3205 
3206 #ifdef CONFIG_PCI_IOV
3207 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3208 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3209 #endif
3210 
3211 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3212 
3213 	/* Reset IODA tables to a clean state */
3214 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3215 	if (rc)
3216 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3217 
3218 	/* If we're running in kdump kerenl, the previous kerenl never
3219 	 * shutdown PCI devices correctly. We already got IODA table
3220 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3221 	 * transactions from previous kerenl.
3222 	 */
3223 	if (is_kdump_kernel()) {
3224 		pr_info("  Issue PHB reset ...\n");
3225 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3226 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3227 	}
3228 
3229 	/* Remove M64 resource if we can't configure it successfully */
3230 	if (!phb->init_m64 || phb->init_m64(phb))
3231 		hose->mem_resources[1].flags = 0;
3232 }
3233 
3234 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3235 {
3236 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3237 }
3238 
3239 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3240 {
3241 	struct device_node *phbn;
3242 	const __be64 *prop64;
3243 	u64 hub_id;
3244 
3245 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3246 
3247 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3248 	if (!prop64) {
3249 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3250 		return;
3251 	}
3252 	hub_id = be64_to_cpup(prop64);
3253 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3254 
3255 	/* Count child PHBs */
3256 	for_each_child_of_node(np, phbn) {
3257 		/* Look for IODA1 PHBs */
3258 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3259 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3260 	}
3261 }
3262