1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Support PCI/PCIe on PowerNV platforms 4 * 5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 6 */ 7 8 #undef DEBUG 9 10 #include <linux/kernel.h> 11 #include <linux/pci.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/string.h> 15 #include <linux/init.h> 16 #include <linux/memblock.h> 17 #include <linux/irq.h> 18 #include <linux/io.h> 19 #include <linux/msi.h> 20 #include <linux/iommu.h> 21 #include <linux/rculist.h> 22 #include <linux/sizes.h> 23 #include <linux/debugfs.h> 24 #include <linux/of_address.h> 25 #include <linux/of_irq.h> 26 27 #include <asm/sections.h> 28 #include <asm/io.h> 29 #include <asm/pci-bridge.h> 30 #include <asm/machdep.h> 31 #include <asm/msi_bitmap.h> 32 #include <asm/ppc-pci.h> 33 #include <asm/opal.h> 34 #include <asm/iommu.h> 35 #include <asm/tce.h> 36 #include <asm/xics.h> 37 #include <asm/firmware.h> 38 #include <asm/pnv-pci.h> 39 #include <asm/mmzone.h> 40 #include <asm/xive.h> 41 42 #include "powernv.h" 43 #include "pci.h" 44 #include "../../../../drivers/pci/pci.h" 45 46 /* This array is indexed with enum pnv_phb_type */ 47 static const char * const pnv_phb_names[] = { "IODA2", "NPU_OCAPI" }; 48 49 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable); 50 static void pnv_pci_configure_bus(struct pci_bus *bus); 51 52 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, 53 const char *fmt, ...) 54 { 55 struct va_format vaf; 56 va_list args; 57 char pfix[32]; 58 59 va_start(args, fmt); 60 61 vaf.fmt = fmt; 62 vaf.va = &args; 63 64 if (pe->flags & PNV_IODA_PE_DEV) 65 strscpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); 66 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 67 sprintf(pfix, "%04x:%02x ", 68 pci_domain_nr(pe->pbus), pe->pbus->number); 69 #ifdef CONFIG_PCI_IOV 70 else if (pe->flags & PNV_IODA_PE_VF) 71 sprintf(pfix, "%04x:%02x:%2x.%d", 72 pci_domain_nr(pe->parent_dev->bus), 73 (pe->rid & 0xff00) >> 8, 74 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); 75 #endif /* CONFIG_PCI_IOV*/ 76 77 printk("%spci %s: [PE# %.2x] %pV", 78 level, pfix, pe->pe_number, &vaf); 79 80 va_end(args); 81 } 82 83 static bool pnv_iommu_bypass_disabled __read_mostly; 84 static bool pci_reset_phbs __read_mostly; 85 86 static int __init iommu_setup(char *str) 87 { 88 if (!str) 89 return -EINVAL; 90 91 while (*str) { 92 if (!strncmp(str, "nobypass", 8)) { 93 pnv_iommu_bypass_disabled = true; 94 pr_info("PowerNV: IOMMU bypass window disabled.\n"); 95 break; 96 } 97 str += strcspn(str, ","); 98 if (*str == ',') 99 str++; 100 } 101 102 return 0; 103 } 104 early_param("iommu", iommu_setup); 105 106 static int __init pci_reset_phbs_setup(char *str) 107 { 108 pci_reset_phbs = true; 109 return 0; 110 } 111 112 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup); 113 114 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) 115 { 116 s64 rc; 117 118 phb->ioda.pe_array[pe_no].phb = phb; 119 phb->ioda.pe_array[pe_no].pe_number = pe_no; 120 phb->ioda.pe_array[pe_no].dma_setup_done = false; 121 122 /* 123 * Clear the PE frozen state as it might be put into frozen state 124 * in the last PCI remove path. It's not harmful to do so when the 125 * PE is already in unfrozen state. 126 */ 127 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, 128 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 129 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 130 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n", 131 __func__, rc, phb->hose->global_number, pe_no); 132 133 return &phb->ioda.pe_array[pe_no]; 134 } 135 136 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) 137 { 138 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { 139 pr_warn("%s: Invalid PE %x on PHB#%x\n", 140 __func__, pe_no, phb->hose->global_number); 141 return; 142 } 143 144 mutex_lock(&phb->ioda.pe_alloc_mutex); 145 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) 146 pr_debug("%s: PE %x was reserved on PHB#%x\n", 147 __func__, pe_no, phb->hose->global_number); 148 mutex_unlock(&phb->ioda.pe_alloc_mutex); 149 150 pnv_ioda_init_pe(phb, pe_no); 151 } 152 153 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count) 154 { 155 struct pnv_ioda_pe *ret = NULL; 156 int run = 0, pe, i; 157 158 mutex_lock(&phb->ioda.pe_alloc_mutex); 159 160 /* scan backwards for a run of @count cleared bits */ 161 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { 162 if (test_bit(pe, phb->ioda.pe_alloc)) { 163 run = 0; 164 continue; 165 } 166 167 run++; 168 if (run == count) 169 break; 170 } 171 if (run != count) 172 goto out; 173 174 for (i = pe; i < pe + count; i++) { 175 set_bit(i, phb->ioda.pe_alloc); 176 pnv_ioda_init_pe(phb, i); 177 } 178 ret = &phb->ioda.pe_array[pe]; 179 180 out: 181 mutex_unlock(&phb->ioda.pe_alloc_mutex); 182 return ret; 183 } 184 185 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) 186 { 187 struct pnv_phb *phb = pe->phb; 188 unsigned int pe_num = pe->pe_number; 189 190 WARN_ON(pe->pdev); 191 memset(pe, 0, sizeof(struct pnv_ioda_pe)); 192 193 mutex_lock(&phb->ioda.pe_alloc_mutex); 194 clear_bit(pe_num, phb->ioda.pe_alloc); 195 mutex_unlock(&phb->ioda.pe_alloc_mutex); 196 } 197 198 /* The default M64 BAR is shared by all PEs */ 199 static int pnv_ioda2_init_m64(struct pnv_phb *phb) 200 { 201 const char *desc; 202 struct resource *r; 203 s64 rc; 204 205 /* Configure the default M64 BAR */ 206 rc = opal_pci_set_phb_mem_window(phb->opal_id, 207 OPAL_M64_WINDOW_TYPE, 208 phb->ioda.m64_bar_idx, 209 phb->ioda.m64_base, 210 0, /* unused */ 211 phb->ioda.m64_size); 212 if (rc != OPAL_SUCCESS) { 213 desc = "configuring"; 214 goto fail; 215 } 216 217 /* Enable the default M64 BAR */ 218 rc = opal_pci_phb_mmio_enable(phb->opal_id, 219 OPAL_M64_WINDOW_TYPE, 220 phb->ioda.m64_bar_idx, 221 OPAL_ENABLE_M64_SPLIT); 222 if (rc != OPAL_SUCCESS) { 223 desc = "enabling"; 224 goto fail; 225 } 226 227 /* 228 * Exclude the segments for reserved and root bus PE, which 229 * are first or last two PEs. 230 */ 231 r = &phb->hose->mem_resources[1]; 232 if (phb->ioda.reserved_pe_idx == 0) 233 r->start += (2 * phb->ioda.m64_segsize); 234 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 235 r->end -= (2 * phb->ioda.m64_segsize); 236 else 237 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n", 238 phb->ioda.reserved_pe_idx); 239 240 return 0; 241 242 fail: 243 pr_warn(" Failure %lld %s M64 BAR#%d\n", 244 rc, desc, phb->ioda.m64_bar_idx); 245 opal_pci_phb_mmio_enable(phb->opal_id, 246 OPAL_M64_WINDOW_TYPE, 247 phb->ioda.m64_bar_idx, 248 OPAL_DISABLE_M64); 249 return -EIO; 250 } 251 252 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, 253 unsigned long *pe_bitmap) 254 { 255 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 256 struct resource *r; 257 resource_size_t base, sgsz, start, end; 258 int segno, i; 259 260 base = phb->ioda.m64_base; 261 sgsz = phb->ioda.m64_segsize; 262 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 263 r = &pdev->resource[i]; 264 if (!r->parent || !pnv_pci_is_m64(phb, r)) 265 continue; 266 267 start = ALIGN_DOWN(r->start - base, sgsz); 268 end = ALIGN(r->end - base, sgsz); 269 for (segno = start / sgsz; segno < end / sgsz; segno++) { 270 if (pe_bitmap) 271 set_bit(segno, pe_bitmap); 272 else 273 pnv_ioda_reserve_pe(phb, segno); 274 } 275 } 276 } 277 278 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, 279 unsigned long *pe_bitmap, 280 bool all) 281 { 282 struct pci_dev *pdev; 283 284 list_for_each_entry(pdev, &bus->devices, bus_list) { 285 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); 286 287 if (all && pdev->subordinate) 288 pnv_ioda_reserve_m64_pe(pdev->subordinate, 289 pe_bitmap, all); 290 } 291 } 292 293 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) 294 { 295 struct pnv_phb *phb = pci_bus_to_pnvhb(bus); 296 struct pnv_ioda_pe *master_pe, *pe; 297 unsigned long size, *pe_alloc; 298 int i; 299 300 /* Root bus shouldn't use M64 */ 301 if (pci_is_root_bus(bus)) 302 return NULL; 303 304 /* Allocate bitmap */ 305 size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); 306 pe_alloc = kzalloc(size, GFP_KERNEL); 307 if (!pe_alloc) { 308 pr_warn("%s: Out of memory !\n", 309 __func__); 310 return NULL; 311 } 312 313 /* Figure out reserved PE numbers by the PE */ 314 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); 315 316 /* 317 * the current bus might not own M64 window and that's all 318 * contributed by its child buses. For the case, we needn't 319 * pick M64 dependent PE#. 320 */ 321 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { 322 kfree(pe_alloc); 323 return NULL; 324 } 325 326 /* 327 * Figure out the master PE and put all slave PEs to master 328 * PE's list to form compound PE. 329 */ 330 master_pe = NULL; 331 i = -1; 332 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < 333 phb->ioda.total_pe_num) { 334 pe = &phb->ioda.pe_array[i]; 335 336 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; 337 if (!master_pe) { 338 pe->flags |= PNV_IODA_PE_MASTER; 339 INIT_LIST_HEAD(&pe->slaves); 340 master_pe = pe; 341 } else { 342 pe->flags |= PNV_IODA_PE_SLAVE; 343 pe->master = master_pe; 344 list_add_tail(&pe->list, &master_pe->slaves); 345 } 346 } 347 348 kfree(pe_alloc); 349 return master_pe; 350 } 351 352 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) 353 { 354 struct pci_controller *hose = phb->hose; 355 struct device_node *dn = hose->dn; 356 struct resource *res; 357 u32 m64_range[2], i; 358 const __be32 *r; 359 u64 pci_addr; 360 361 if (phb->type != PNV_PHB_IODA2) { 362 pr_info(" Not support M64 window\n"); 363 return; 364 } 365 366 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 367 pr_info(" Firmware too old to support M64 window\n"); 368 return; 369 } 370 371 r = of_get_property(dn, "ibm,opal-m64-window", NULL); 372 if (!r) { 373 pr_info(" No <ibm,opal-m64-window> on %pOF\n", 374 dn); 375 return; 376 } 377 378 /* 379 * Find the available M64 BAR range and pickup the last one for 380 * covering the whole 64-bits space. We support only one range. 381 */ 382 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", 383 m64_range, 2)) { 384 /* In absence of the property, assume 0..15 */ 385 m64_range[0] = 0; 386 m64_range[1] = 16; 387 } 388 /* We only support 64 bits in our allocator */ 389 if (m64_range[1] > 63) { 390 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", 391 __func__, m64_range[1], phb->hose->global_number); 392 m64_range[1] = 63; 393 } 394 /* Empty range, no m64 */ 395 if (m64_range[1] <= m64_range[0]) { 396 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", 397 __func__, phb->hose->global_number); 398 return; 399 } 400 401 /* Configure M64 informations */ 402 res = &hose->mem_resources[1]; 403 res->name = dn->full_name; 404 res->start = of_translate_address(dn, r + 2); 405 res->end = res->start + of_read_number(r + 4, 2) - 1; 406 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 407 pci_addr = of_read_number(r, 2); 408 hose->mem_offset[1] = res->start - pci_addr; 409 410 phb->ioda.m64_size = resource_size(res); 411 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; 412 phb->ioda.m64_base = pci_addr; 413 414 /* This lines up nicely with the display from processing OF ranges */ 415 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", 416 res->start, res->end, pci_addr, m64_range[0], 417 m64_range[0] + m64_range[1] - 1); 418 419 /* Mark all M64 used up by default */ 420 phb->ioda.m64_bar_alloc = (unsigned long)-1; 421 422 /* Use last M64 BAR to cover M64 window */ 423 m64_range[1]--; 424 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; 425 426 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); 427 428 /* Mark remaining ones free */ 429 for (i = m64_range[0]; i < m64_range[1]; i++) 430 clear_bit(i, &phb->ioda.m64_bar_alloc); 431 432 /* 433 * Setup init functions for M64 based on IODA version, IODA3 uses 434 * the IODA2 code. 435 */ 436 phb->init_m64 = pnv_ioda2_init_m64; 437 } 438 439 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) 440 { 441 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; 442 struct pnv_ioda_pe *slave; 443 s64 rc; 444 445 /* Fetch master PE */ 446 if (pe->flags & PNV_IODA_PE_SLAVE) { 447 pe = pe->master; 448 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) 449 return; 450 451 pe_no = pe->pe_number; 452 } 453 454 /* Freeze master PE */ 455 rc = opal_pci_eeh_freeze_set(phb->opal_id, 456 pe_no, 457 OPAL_EEH_ACTION_SET_FREEZE_ALL); 458 if (rc != OPAL_SUCCESS) { 459 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 460 __func__, rc, phb->hose->global_number, pe_no); 461 return; 462 } 463 464 /* Freeze slave PEs */ 465 if (!(pe->flags & PNV_IODA_PE_MASTER)) 466 return; 467 468 list_for_each_entry(slave, &pe->slaves, list) { 469 rc = opal_pci_eeh_freeze_set(phb->opal_id, 470 slave->pe_number, 471 OPAL_EEH_ACTION_SET_FREEZE_ALL); 472 if (rc != OPAL_SUCCESS) 473 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 474 __func__, rc, phb->hose->global_number, 475 slave->pe_number); 476 } 477 } 478 479 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) 480 { 481 struct pnv_ioda_pe *pe, *slave; 482 s64 rc; 483 484 /* Find master PE */ 485 pe = &phb->ioda.pe_array[pe_no]; 486 if (pe->flags & PNV_IODA_PE_SLAVE) { 487 pe = pe->master; 488 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 489 pe_no = pe->pe_number; 490 } 491 492 /* Clear frozen state for master PE */ 493 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); 494 if (rc != OPAL_SUCCESS) { 495 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 496 __func__, rc, opt, phb->hose->global_number, pe_no); 497 return -EIO; 498 } 499 500 if (!(pe->flags & PNV_IODA_PE_MASTER)) 501 return 0; 502 503 /* Clear frozen state for slave PEs */ 504 list_for_each_entry(slave, &pe->slaves, list) { 505 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 506 slave->pe_number, 507 opt); 508 if (rc != OPAL_SUCCESS) { 509 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 510 __func__, rc, opt, phb->hose->global_number, 511 slave->pe_number); 512 return -EIO; 513 } 514 } 515 516 return 0; 517 } 518 519 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) 520 { 521 struct pnv_ioda_pe *slave, *pe; 522 u8 fstate = 0, state; 523 __be16 pcierr = 0; 524 s64 rc; 525 526 /* Sanity check on PE number */ 527 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) 528 return OPAL_EEH_STOPPED_PERM_UNAVAIL; 529 530 /* 531 * Fetch the master PE and the PE instance might be 532 * not initialized yet. 533 */ 534 pe = &phb->ioda.pe_array[pe_no]; 535 if (pe->flags & PNV_IODA_PE_SLAVE) { 536 pe = pe->master; 537 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 538 pe_no = pe->pe_number; 539 } 540 541 /* Check the master PE */ 542 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, 543 &state, &pcierr, NULL); 544 if (rc != OPAL_SUCCESS) { 545 pr_warn("%s: Failure %lld getting " 546 "PHB#%x-PE#%x state\n", 547 __func__, rc, 548 phb->hose->global_number, pe_no); 549 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 550 } 551 552 /* Check the slave PE */ 553 if (!(pe->flags & PNV_IODA_PE_MASTER)) 554 return state; 555 556 list_for_each_entry(slave, &pe->slaves, list) { 557 rc = opal_pci_eeh_freeze_status(phb->opal_id, 558 slave->pe_number, 559 &fstate, 560 &pcierr, 561 NULL); 562 if (rc != OPAL_SUCCESS) { 563 pr_warn("%s: Failure %lld getting " 564 "PHB#%x-PE#%x state\n", 565 __func__, rc, 566 phb->hose->global_number, slave->pe_number); 567 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 568 } 569 570 /* 571 * Override the result based on the ascending 572 * priority. 573 */ 574 if (fstate > state) 575 state = fstate; 576 } 577 578 return state; 579 } 580 581 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn) 582 { 583 int pe_number = phb->ioda.pe_rmap[bdfn]; 584 585 if (pe_number == IODA_INVALID_PE) 586 return NULL; 587 588 return &phb->ioda.pe_array[pe_number]; 589 } 590 591 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) 592 { 593 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); 594 struct pci_dn *pdn = pci_get_pdn(dev); 595 596 if (!pdn) 597 return NULL; 598 if (pdn->pe_number == IODA_INVALID_PE) 599 return NULL; 600 return &phb->ioda.pe_array[pdn->pe_number]; 601 } 602 603 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, 604 struct pnv_ioda_pe *parent, 605 struct pnv_ioda_pe *child, 606 bool is_add) 607 { 608 const char *desc = is_add ? "adding" : "removing"; 609 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : 610 OPAL_REMOVE_PE_FROM_DOMAIN; 611 struct pnv_ioda_pe *slave; 612 long rc; 613 614 /* Parent PE affects child PE */ 615 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 616 child->pe_number, op); 617 if (rc != OPAL_SUCCESS) { 618 pe_warn(child, "OPAL error %ld %s to parent PELTV\n", 619 rc, desc); 620 return -ENXIO; 621 } 622 623 if (!(child->flags & PNV_IODA_PE_MASTER)) 624 return 0; 625 626 /* Compound case: parent PE affects slave PEs */ 627 list_for_each_entry(slave, &child->slaves, list) { 628 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 629 slave->pe_number, op); 630 if (rc != OPAL_SUCCESS) { 631 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", 632 rc, desc); 633 return -ENXIO; 634 } 635 } 636 637 return 0; 638 } 639 640 static int pnv_ioda_set_peltv(struct pnv_phb *phb, 641 struct pnv_ioda_pe *pe, 642 bool is_add) 643 { 644 struct pnv_ioda_pe *slave; 645 struct pci_dev *pdev = NULL; 646 int ret; 647 648 /* 649 * Clear PE frozen state. If it's master PE, we need 650 * clear slave PE frozen state as well. 651 */ 652 if (is_add) { 653 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 654 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 655 if (pe->flags & PNV_IODA_PE_MASTER) { 656 list_for_each_entry(slave, &pe->slaves, list) 657 opal_pci_eeh_freeze_clear(phb->opal_id, 658 slave->pe_number, 659 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 660 } 661 } 662 663 /* 664 * Associate PE in PELT. We need add the PE into the 665 * corresponding PELT-V as well. Otherwise, the error 666 * originated from the PE might contribute to other 667 * PEs. 668 */ 669 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); 670 if (ret) 671 return ret; 672 673 /* For compound PEs, any one affects all of them */ 674 if (pe->flags & PNV_IODA_PE_MASTER) { 675 list_for_each_entry(slave, &pe->slaves, list) { 676 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); 677 if (ret) 678 return ret; 679 } 680 } 681 682 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) 683 pdev = pe->pbus->self; 684 else if (pe->flags & PNV_IODA_PE_DEV) 685 pdev = pe->pdev->bus->self; 686 #ifdef CONFIG_PCI_IOV 687 else if (pe->flags & PNV_IODA_PE_VF) 688 pdev = pe->parent_dev; 689 #endif /* CONFIG_PCI_IOV */ 690 while (pdev) { 691 struct pci_dn *pdn = pci_get_pdn(pdev); 692 struct pnv_ioda_pe *parent; 693 694 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 695 parent = &phb->ioda.pe_array[pdn->pe_number]; 696 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); 697 if (ret) 698 return ret; 699 } 700 701 pdev = pdev->bus->self; 702 } 703 704 return 0; 705 } 706 707 static void pnv_ioda_unset_peltv(struct pnv_phb *phb, 708 struct pnv_ioda_pe *pe, 709 struct pci_dev *parent) 710 { 711 int64_t rc; 712 713 while (parent) { 714 struct pci_dn *pdn = pci_get_pdn(parent); 715 716 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 717 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, 718 pe->pe_number, 719 OPAL_REMOVE_PE_FROM_DOMAIN); 720 /* XXX What to do in case of error ? */ 721 } 722 parent = parent->bus->self; 723 } 724 725 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 726 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 727 728 /* Disassociate PE in PELT */ 729 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, 730 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 731 if (rc) 732 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc); 733 } 734 735 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 736 { 737 struct pci_dev *parent; 738 uint8_t bcomp, dcomp, fcomp; 739 int64_t rc; 740 long rid_end, rid; 741 742 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ 743 if (pe->pbus) { 744 int count; 745 746 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 747 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 748 parent = pe->pbus->self; 749 if (pe->flags & PNV_IODA_PE_BUS_ALL) 750 count = resource_size(&pe->pbus->busn_res); 751 else 752 count = 1; 753 754 switch(count) { 755 case 1: bcomp = OpalPciBusAll; break; 756 case 2: bcomp = OpalPciBus7Bits; break; 757 case 4: bcomp = OpalPciBus6Bits; break; 758 case 8: bcomp = OpalPciBus5Bits; break; 759 case 16: bcomp = OpalPciBus4Bits; break; 760 case 32: bcomp = OpalPciBus3Bits; break; 761 default: 762 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 763 count); 764 /* Do an exact match only */ 765 bcomp = OpalPciBusAll; 766 } 767 rid_end = pe->rid + (count << 8); 768 } else { 769 #ifdef CONFIG_PCI_IOV 770 if (pe->flags & PNV_IODA_PE_VF) 771 parent = pe->parent_dev; 772 else 773 #endif 774 parent = pe->pdev->bus->self; 775 bcomp = OpalPciBusAll; 776 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 777 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 778 rid_end = pe->rid + 1; 779 } 780 781 /* Clear the reverse map */ 782 for (rid = pe->rid; rid < rid_end; rid++) 783 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; 784 785 /* 786 * Release from all parents PELT-V. NPUs don't have a PELTV 787 * table 788 */ 789 if (phb->type != PNV_PHB_NPU_OCAPI) 790 pnv_ioda_unset_peltv(phb, pe, parent); 791 792 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 793 bcomp, dcomp, fcomp, OPAL_UNMAP_PE); 794 if (rc) 795 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc); 796 797 pe->pbus = NULL; 798 pe->pdev = NULL; 799 #ifdef CONFIG_PCI_IOV 800 pe->parent_dev = NULL; 801 #endif 802 803 return 0; 804 } 805 806 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 807 { 808 uint8_t bcomp, dcomp, fcomp; 809 long rc, rid_end, rid; 810 811 /* Bus validation ? */ 812 if (pe->pbus) { 813 int count; 814 815 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 816 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 817 if (pe->flags & PNV_IODA_PE_BUS_ALL) 818 count = resource_size(&pe->pbus->busn_res); 819 else 820 count = 1; 821 822 switch(count) { 823 case 1: bcomp = OpalPciBusAll; break; 824 case 2: bcomp = OpalPciBus7Bits; break; 825 case 4: bcomp = OpalPciBus6Bits; break; 826 case 8: bcomp = OpalPciBus5Bits; break; 827 case 16: bcomp = OpalPciBus4Bits; break; 828 case 32: bcomp = OpalPciBus3Bits; break; 829 default: 830 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 831 count); 832 /* Do an exact match only */ 833 bcomp = OpalPciBusAll; 834 } 835 rid_end = pe->rid + (count << 8); 836 } else { 837 bcomp = OpalPciBusAll; 838 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 839 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 840 rid_end = pe->rid + 1; 841 } 842 843 /* 844 * Associate PE in PELT. We need add the PE into the 845 * corresponding PELT-V as well. Otherwise, the error 846 * originated from the PE might contribute to other 847 * PEs. 848 */ 849 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 850 bcomp, dcomp, fcomp, OPAL_MAP_PE); 851 if (rc) { 852 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 853 return -ENXIO; 854 } 855 856 /* 857 * Configure PELTV. NPUs don't have a PELTV table so skip 858 * configuration on them. 859 */ 860 if (phb->type != PNV_PHB_NPU_OCAPI) 861 pnv_ioda_set_peltv(phb, pe, true); 862 863 /* Setup reverse map */ 864 for (rid = pe->rid; rid < rid_end; rid++) 865 phb->ioda.pe_rmap[rid] = pe->pe_number; 866 867 pe->mve_number = 0; 868 869 return 0; 870 } 871 872 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) 873 { 874 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); 875 struct pci_dn *pdn = pci_get_pdn(dev); 876 struct pnv_ioda_pe *pe; 877 878 if (!pdn) { 879 pr_err("%s: Device tree node not associated properly\n", 880 pci_name(dev)); 881 return NULL; 882 } 883 if (pdn->pe_number != IODA_INVALID_PE) 884 return NULL; 885 886 pe = pnv_ioda_alloc_pe(phb, 1); 887 if (!pe) { 888 pr_warn("%s: Not enough PE# available, disabling device\n", 889 pci_name(dev)); 890 return NULL; 891 } 892 893 /* NOTE: We don't get a reference for the pointer in the PE 894 * data structure, both the device and PE structures should be 895 * destroyed at the same time. 896 * 897 * At some point we want to remove the PDN completely anyways 898 */ 899 pdn->pe_number = pe->pe_number; 900 pe->flags = PNV_IODA_PE_DEV; 901 pe->pdev = dev; 902 pe->pbus = NULL; 903 pe->mve_number = -1; 904 pe->rid = dev->bus->number << 8 | pdn->devfn; 905 pe->device_count++; 906 907 pe_info(pe, "Associated device to PE\n"); 908 909 if (pnv_ioda_configure_pe(phb, pe)) { 910 /* XXX What do we do here ? */ 911 pnv_ioda_free_pe(pe); 912 pdn->pe_number = IODA_INVALID_PE; 913 pe->pdev = NULL; 914 return NULL; 915 } 916 917 /* Put PE to the list */ 918 mutex_lock(&phb->ioda.pe_list_mutex); 919 list_add_tail(&pe->list, &phb->ioda.pe_list); 920 mutex_unlock(&phb->ioda.pe_list_mutex); 921 return pe; 922 } 923 924 /* 925 * There're 2 types of PCI bus sensitive PEs: One that is compromised of 926 * single PCI bus. Another one that contains the primary PCI bus and its 927 * subordinate PCI devices and buses. The second type of PE is normally 928 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. 929 */ 930 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) 931 { 932 struct pnv_phb *phb = pci_bus_to_pnvhb(bus); 933 struct pnv_ioda_pe *pe = NULL; 934 unsigned int pe_num; 935 936 /* 937 * In partial hotplug case, the PE instance might be still alive. 938 * We should reuse it instead of allocating a new one. 939 */ 940 pe_num = phb->ioda.pe_rmap[bus->number << 8]; 941 if (WARN_ON(pe_num != IODA_INVALID_PE)) { 942 pe = &phb->ioda.pe_array[pe_num]; 943 return NULL; 944 } 945 946 /* PE number for root bus should have been reserved */ 947 if (pci_is_root_bus(bus)) 948 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; 949 950 /* Check if PE is determined by M64 */ 951 if (!pe) 952 pe = pnv_ioda_pick_m64_pe(bus, all); 953 954 /* The PE number isn't pinned by M64 */ 955 if (!pe) 956 pe = pnv_ioda_alloc_pe(phb, 1); 957 958 if (!pe) { 959 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n", 960 __func__, pci_domain_nr(bus), bus->number); 961 return NULL; 962 } 963 964 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); 965 pe->pbus = bus; 966 pe->pdev = NULL; 967 pe->mve_number = -1; 968 pe->rid = bus->busn_res.start << 8; 969 970 if (all) 971 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n", 972 &bus->busn_res.start, &bus->busn_res.end, 973 pe->pe_number); 974 else 975 pe_info(pe, "Secondary bus %pad associated with PE#%x\n", 976 &bus->busn_res.start, pe->pe_number); 977 978 if (pnv_ioda_configure_pe(phb, pe)) { 979 /* XXX What do we do here ? */ 980 pnv_ioda_free_pe(pe); 981 pe->pbus = NULL; 982 return NULL; 983 } 984 985 /* Put PE to the list */ 986 list_add_tail(&pe->list, &phb->ioda.pe_list); 987 988 return pe; 989 } 990 991 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev) 992 { 993 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 994 struct pci_dn *pdn = pci_get_pdn(pdev); 995 struct pnv_ioda_pe *pe; 996 997 /* Check if the BDFN for this device is associated with a PE yet */ 998 pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev)); 999 if (!pe) { 1000 /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */ 1001 if (WARN_ON(pdev->is_virtfn)) 1002 return; 1003 1004 pnv_pci_configure_bus(pdev->bus); 1005 pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev)); 1006 pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff); 1007 1008 1009 /* 1010 * If we can't setup the IODA PE something has gone horribly 1011 * wrong and we can't enable DMA for the device. 1012 */ 1013 if (WARN_ON(!pe)) 1014 return; 1015 } else { 1016 pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number); 1017 } 1018 1019 /* 1020 * We assume that bridges *probably* don't need to do any DMA so we can 1021 * skip allocating a TCE table, etc unless we get a non-bridge device. 1022 */ 1023 if (!pe->dma_setup_done && !pci_is_bridge(pdev)) { 1024 switch (phb->type) { 1025 case PNV_PHB_IODA2: 1026 pnv_pci_ioda2_setup_dma_pe(phb, pe); 1027 break; 1028 default: 1029 pr_warn("%s: No DMA for PHB#%x (type %d)\n", 1030 __func__, phb->hose->global_number, phb->type); 1031 } 1032 } 1033 1034 if (pdn) 1035 pdn->pe_number = pe->pe_number; 1036 pe->device_count++; 1037 1038 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); 1039 pdev->dev.archdata.dma_offset = pe->tce_bypass_base; 1040 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); 1041 1042 /* PEs with a DMA weight of zero won't have a group */ 1043 if (pe->table_group.group) 1044 iommu_add_device(&pe->table_group, &pdev->dev); 1045 } 1046 1047 /* 1048 * Reconfigure TVE#0 to be usable as 64-bit DMA space. 1049 * 1050 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses. 1051 * Devices can only access more than that if bit 59 of the PCI address is set 1052 * by hardware, which indicates TVE#1 should be used instead of TVE#0. 1053 * Many PCI devices are not capable of addressing that many bits, and as a 1054 * result are limited to the 4GB of virtual memory made available to 32-bit 1055 * devices in TVE#0. 1056 * 1057 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit 1058 * devices by configuring the virtual memory past the first 4GB inaccessible 1059 * by 64-bit DMAs. This should only be used by devices that want more than 1060 * 4GB, and only on PEs that have no 32-bit devices. 1061 * 1062 * Currently this will only work on PHB3 (POWER8). 1063 */ 1064 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe) 1065 { 1066 u64 window_size, table_size, tce_count, addr; 1067 struct page *table_pages; 1068 u64 tce_order = 28; /* 256MB TCEs */ 1069 __be64 *tces; 1070 s64 rc; 1071 1072 /* 1073 * Window size needs to be a power of two, but needs to account for 1074 * shifting memory by the 4GB offset required to skip 32bit space. 1075 */ 1076 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32)); 1077 tce_count = window_size >> tce_order; 1078 table_size = tce_count << 3; 1079 1080 if (table_size < PAGE_SIZE) 1081 table_size = PAGE_SIZE; 1082 1083 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL, 1084 get_order(table_size)); 1085 if (!table_pages) 1086 goto err; 1087 1088 tces = page_address(table_pages); 1089 if (!tces) 1090 goto err; 1091 1092 memset(tces, 0, table_size); 1093 1094 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) { 1095 tces[(addr + (1ULL << 32)) >> tce_order] = 1096 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE); 1097 } 1098 1099 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id, 1100 pe->pe_number, 1101 /* reconfigure window 0 */ 1102 (pe->pe_number << 1) + 0, 1103 1, 1104 __pa(tces), 1105 table_size, 1106 1 << tce_order); 1107 if (rc == OPAL_SUCCESS) { 1108 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n"); 1109 return 0; 1110 } 1111 err: 1112 pe_err(pe, "Error configuring 64-bit DMA bypass\n"); 1113 return -EIO; 1114 } 1115 1116 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev, 1117 u64 dma_mask) 1118 { 1119 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 1120 struct pci_dn *pdn = pci_get_pdn(pdev); 1121 struct pnv_ioda_pe *pe; 1122 1123 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1124 return false; 1125 1126 pe = &phb->ioda.pe_array[pdn->pe_number]; 1127 if (pe->tce_bypass_enabled) { 1128 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; 1129 if (dma_mask >= top) 1130 return true; 1131 } 1132 1133 /* 1134 * If the device can't set the TCE bypass bit but still wants 1135 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to 1136 * bypass the 32-bit region and be usable for 64-bit DMAs. 1137 * The device needs to be able to address all of this space. 1138 */ 1139 if (dma_mask >> 32 && 1140 dma_mask > (memory_hotplug_max() + (1ULL << 32)) && 1141 /* pe->pdev should be set if it's a single device, pe->pbus if not */ 1142 (pe->device_count == 1 || !pe->pbus) && 1143 phb->model == PNV_PHB_MODEL_PHB3) { 1144 /* Configure the bypass mode */ 1145 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe); 1146 if (rc) 1147 return false; 1148 /* 4GB offset bypasses 32-bit space */ 1149 pdev->dev.archdata.dma_offset = (1ULL << 32); 1150 return true; 1151 } 1152 1153 return false; 1154 } 1155 1156 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb) 1157 { 1158 return phb->regs + 0x210; 1159 } 1160 1161 #ifdef CONFIG_IOMMU_API 1162 /* Common for IODA1 and IODA2 */ 1163 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index, 1164 unsigned long *hpa, enum dma_data_direction *direction) 1165 { 1166 return pnv_tce_xchg(tbl, index, hpa, direction); 1167 } 1168 #endif 1169 1170 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) 1171 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) 1172 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) 1173 1174 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1175 { 1176 /* 01xb - invalidate TCEs that match the specified PE# */ 1177 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb); 1178 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); 1179 1180 mb(); /* Ensure above stores are visible */ 1181 __raw_writeq_be(val, invalidate); 1182 } 1183 1184 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, 1185 unsigned shift, unsigned long index, 1186 unsigned long npages) 1187 { 1188 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb); 1189 unsigned long start, end, inc; 1190 1191 /* We'll invalidate DMA address in PE scope */ 1192 start = PHB3_TCE_KILL_INVAL_ONE; 1193 start |= (pe->pe_number & 0xFF); 1194 end = start; 1195 1196 /* Figure out the start, end and step */ 1197 start |= (index << shift); 1198 end |= ((index + npages - 1) << shift); 1199 inc = (0x1ull << shift); 1200 mb(); 1201 1202 while (start <= end) { 1203 __raw_writeq_be(start, invalidate); 1204 start += inc; 1205 } 1206 } 1207 1208 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1209 { 1210 struct pnv_phb *phb = pe->phb; 1211 1212 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1213 pnv_pci_phb3_tce_invalidate_pe(pe); 1214 else 1215 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, 1216 pe->pe_number, 0, 0, 0); 1217 } 1218 1219 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, 1220 unsigned long index, unsigned long npages) 1221 { 1222 struct iommu_table_group_link *tgl; 1223 1224 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) { 1225 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1226 struct pnv_ioda_pe, table_group); 1227 struct pnv_phb *phb = pe->phb; 1228 unsigned int shift = tbl->it_page_shift; 1229 1230 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1231 pnv_pci_phb3_tce_invalidate(pe, shift, 1232 index, npages); 1233 else 1234 opal_pci_tce_kill(phb->opal_id, 1235 OPAL_PCI_TCE_KILL_PAGES, 1236 pe->pe_number, 1u << shift, 1237 index << shift, npages); 1238 } 1239 } 1240 1241 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, 1242 long npages, unsigned long uaddr, 1243 enum dma_data_direction direction, 1244 unsigned long attrs) 1245 { 1246 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1247 attrs); 1248 1249 if (!ret) 1250 pnv_pci_ioda2_tce_invalidate(tbl, index, npages); 1251 1252 return ret; 1253 } 1254 1255 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, 1256 long npages) 1257 { 1258 pnv_tce_free(tbl, index, npages); 1259 1260 pnv_pci_ioda2_tce_invalidate(tbl, index, npages); 1261 } 1262 1263 static struct iommu_table_ops pnv_ioda2_iommu_ops = { 1264 .set = pnv_ioda2_tce_build, 1265 #ifdef CONFIG_IOMMU_API 1266 .xchg_no_kill = pnv_ioda_tce_xchg_no_kill, 1267 .tce_kill = pnv_pci_ioda2_tce_invalidate, 1268 .useraddrptr = pnv_tce_useraddrptr, 1269 #endif 1270 .clear = pnv_ioda2_tce_free, 1271 .get = pnv_tce_get, 1272 .free = pnv_pci_ioda2_table_free_pages, 1273 }; 1274 1275 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, 1276 int num, struct iommu_table *tbl) 1277 { 1278 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 1279 table_group); 1280 struct pnv_phb *phb = pe->phb; 1281 int64_t rc; 1282 const unsigned long size = tbl->it_indirect_levels ? 1283 tbl->it_level_size : tbl->it_size; 1284 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; 1285 const __u64 win_size = tbl->it_size << tbl->it_page_shift; 1286 1287 pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n", 1288 num, start_addr, start_addr + win_size - 1, 1289 IOMMU_PAGE_SIZE(tbl)); 1290 1291 /* 1292 * Map TCE table through TVT. The TVE index is the PE number 1293 * shifted by 1 bit for 32-bits DMA space. 1294 */ 1295 rc = opal_pci_map_pe_dma_window(phb->opal_id, 1296 pe->pe_number, 1297 (pe->pe_number << 1) + num, 1298 tbl->it_indirect_levels + 1, 1299 __pa(tbl->it_base), 1300 size << 3, 1301 IOMMU_PAGE_SIZE(tbl)); 1302 if (rc) { 1303 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc); 1304 return rc; 1305 } 1306 1307 pnv_pci_link_table_and_group(phb->hose->node, num, 1308 tbl, &pe->table_group); 1309 pnv_pci_ioda2_tce_invalidate_pe(pe); 1310 1311 return 0; 1312 } 1313 1314 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) 1315 { 1316 uint16_t window_id = (pe->pe_number << 1 ) + 1; 1317 int64_t rc; 1318 1319 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); 1320 if (enable) { 1321 phys_addr_t top = memblock_end_of_DRAM(); 1322 1323 top = roundup_pow_of_two(top); 1324 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 1325 pe->pe_number, 1326 window_id, 1327 pe->tce_bypass_base, 1328 top); 1329 } else { 1330 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 1331 pe->pe_number, 1332 window_id, 1333 pe->tce_bypass_base, 1334 0); 1335 } 1336 if (rc) 1337 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); 1338 else 1339 pe->tce_bypass_enabled = enable; 1340 } 1341 1342 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, 1343 int num, __u32 page_shift, __u64 window_size, __u32 levels, 1344 bool alloc_userspace_copy, struct iommu_table **ptbl) 1345 { 1346 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 1347 table_group); 1348 int nid = pe->phb->hose->node; 1349 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; 1350 long ret; 1351 struct iommu_table *tbl; 1352 1353 tbl = pnv_pci_table_alloc(nid); 1354 if (!tbl) 1355 return -ENOMEM; 1356 1357 tbl->it_ops = &pnv_ioda2_iommu_ops; 1358 1359 ret = pnv_pci_ioda2_table_alloc_pages(nid, 1360 bus_offset, page_shift, window_size, 1361 levels, alloc_userspace_copy, tbl); 1362 if (ret) { 1363 iommu_tce_table_put(tbl); 1364 return ret; 1365 } 1366 1367 *ptbl = tbl; 1368 1369 return 0; 1370 } 1371 1372 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) 1373 { 1374 struct iommu_table *tbl = NULL; 1375 long rc; 1376 unsigned long res_start, res_end; 1377 1378 /* 1379 * crashkernel= specifies the kdump kernel's maximum memory at 1380 * some offset and there is no guaranteed the result is a power 1381 * of 2, which will cause errors later. 1382 */ 1383 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); 1384 1385 /* 1386 * In memory constrained environments, e.g. kdump kernel, the 1387 * DMA window can be larger than available memory, which will 1388 * cause errors later. 1389 */ 1390 const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_PAGE_ORDER); 1391 1392 /* 1393 * We create the default window as big as we can. The constraint is 1394 * the max order of allocation possible. The TCE table is likely to 1395 * end up being multilevel and with on-demand allocation in place, 1396 * the initial use is not going to be huge as the default window aims 1397 * to support crippled devices (i.e. not fully 64bit DMAble) only. 1398 */ 1399 /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */ 1400 const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory); 1401 /* Each TCE level cannot exceed maxblock so go multilevel if needed */ 1402 unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT); 1403 unsigned long tcelevel_order = ilog2(maxblock >> 3); 1404 unsigned int levels = tces_order / tcelevel_order; 1405 1406 if (tces_order % tcelevel_order) 1407 levels += 1; 1408 /* 1409 * We try to stick to default levels (which is >1 at the moment) in 1410 * order to save memory by relying on on-demain TCE level allocation. 1411 */ 1412 levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS); 1413 1414 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT, 1415 window_size, levels, false, &tbl); 1416 if (rc) { 1417 pe_err(pe, "Failed to create 32-bit TCE table, err %ld", 1418 rc); 1419 return rc; 1420 } 1421 1422 /* We use top part of 32bit space for MMIO so exclude it from DMA */ 1423 res_start = 0; 1424 res_end = 0; 1425 if (window_size > pe->phb->ioda.m32_pci_base) { 1426 res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift; 1427 res_end = min(window_size, SZ_4G) >> tbl->it_page_shift; 1428 } 1429 1430 tbl->it_index = (pe->phb->hose->global_number << 16) | pe->pe_number; 1431 if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end)) 1432 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); 1433 else 1434 rc = -ENOMEM; 1435 if (rc) { 1436 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc); 1437 iommu_tce_table_put(tbl); 1438 tbl = NULL; /* This clears iommu_table_base below */ 1439 } 1440 if (!pnv_iommu_bypass_disabled) 1441 pnv_pci_ioda2_set_bypass(pe, true); 1442 1443 /* 1444 * Set table base for the case of IOMMU DMA use. Usually this is done 1445 * from dma_dev_setup() which is not called when a device is returned 1446 * from VFIO so do it here. 1447 */ 1448 if (pe->pdev) 1449 set_iommu_table_base(&pe->pdev->dev, tbl); 1450 1451 return 0; 1452 } 1453 1454 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 1455 int num) 1456 { 1457 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 1458 table_group); 1459 struct pnv_phb *phb = pe->phb; 1460 long ret; 1461 1462 pe_info(pe, "Removing DMA window #%d\n", num); 1463 1464 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 1465 (pe->pe_number << 1) + num, 1466 0/* levels */, 0/* table address */, 1467 0/* table size */, 0/* page size */); 1468 if (ret) 1469 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); 1470 else 1471 pnv_pci_ioda2_tce_invalidate_pe(pe); 1472 1473 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 1474 1475 return ret; 1476 } 1477 1478 #ifdef CONFIG_IOMMU_API 1479 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, 1480 __u64 window_size, __u32 levels) 1481 { 1482 unsigned long bytes = 0; 1483 const unsigned window_shift = ilog2(window_size); 1484 unsigned entries_shift = window_shift - page_shift; 1485 unsigned table_shift = entries_shift + 3; 1486 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); 1487 unsigned long direct_table_size; 1488 1489 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || 1490 !is_power_of_2(window_size)) 1491 return 0; 1492 1493 /* Calculate a direct table size from window_size and levels */ 1494 entries_shift = (entries_shift + levels - 1) / levels; 1495 table_shift = entries_shift + 3; 1496 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); 1497 direct_table_size = 1UL << table_shift; 1498 1499 for ( ; levels; --levels) { 1500 bytes += ALIGN(tce_table_size, direct_table_size); 1501 1502 tce_table_size /= direct_table_size; 1503 tce_table_size <<= 3; 1504 tce_table_size = max_t(unsigned long, 1505 tce_table_size, direct_table_size); 1506 } 1507 1508 return bytes + bytes; /* one for HW table, one for userspace copy */ 1509 } 1510 1511 static long pnv_pci_ioda2_create_table_userspace( 1512 struct iommu_table_group *table_group, 1513 int num, __u32 page_shift, __u64 window_size, __u32 levels, 1514 struct iommu_table **ptbl) 1515 { 1516 long ret = pnv_pci_ioda2_create_table(table_group, 1517 num, page_shift, window_size, levels, true, ptbl); 1518 1519 if (!ret) 1520 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size( 1521 page_shift, window_size, levels); 1522 return ret; 1523 } 1524 1525 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus) 1526 { 1527 struct pci_dev *dev; 1528 1529 list_for_each_entry(dev, &bus->devices, bus_list) { 1530 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); 1531 dev->dev.archdata.dma_offset = pe->tce_bypass_base; 1532 1533 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1534 pnv_ioda_setup_bus_dma(pe, dev->subordinate); 1535 } 1536 } 1537 1538 static long pnv_ioda2_take_ownership(struct iommu_table_group *table_group, 1539 struct device *dev __maybe_unused) 1540 { 1541 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 1542 table_group); 1543 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ 1544 struct iommu_table *tbl = pe->table_group.tables[0]; 1545 1546 /* 1547 * iommu_ops transfers the ownership per a device and we mode 1548 * the group ownership with the first device in the group. 1549 */ 1550 if (!tbl) 1551 return 0; 1552 1553 pnv_pci_ioda2_set_bypass(pe, false); 1554 pnv_pci_ioda2_unset_window(&pe->table_group, 0); 1555 if (pe->pbus) 1556 pnv_ioda_setup_bus_dma(pe, pe->pbus); 1557 else if (pe->pdev) 1558 set_iommu_table_base(&pe->pdev->dev, NULL); 1559 iommu_tce_table_put(tbl); 1560 1561 return 0; 1562 } 1563 1564 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group, 1565 struct device *dev __maybe_unused) 1566 { 1567 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 1568 table_group); 1569 1570 /* See the comment about iommu_ops above */ 1571 if (pe->table_group.tables[0]) 1572 return; 1573 pnv_pci_ioda2_setup_default_config(pe); 1574 if (pe->pbus) 1575 pnv_ioda_setup_bus_dma(pe, pe->pbus); 1576 } 1577 1578 static struct iommu_table_group_ops pnv_pci_ioda2_ops = { 1579 .get_table_size = pnv_pci_ioda2_get_table_size, 1580 .create_table = pnv_pci_ioda2_create_table_userspace, 1581 .set_window = pnv_pci_ioda2_set_window, 1582 .unset_window = pnv_pci_ioda2_unset_window, 1583 .take_ownership = pnv_ioda2_take_ownership, 1584 .release_ownership = pnv_ioda2_release_ownership, 1585 }; 1586 #endif 1587 1588 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 1589 struct pnv_ioda_pe *pe) 1590 { 1591 int64_t rc; 1592 1593 /* TVE #1 is selected by PCI address bit 59 */ 1594 pe->tce_bypass_base = 1ull << 59; 1595 1596 /* The PE will reserve all possible 32-bits space */ 1597 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", 1598 phb->ioda.m32_pci_base); 1599 1600 /* Setup linux iommu table */ 1601 pe->table_group.tce32_start = 0; 1602 pe->table_group.tce32_size = phb->ioda.m32_pci_base; 1603 pe->table_group.max_dynamic_windows_supported = 1604 IOMMU_TABLE_GROUP_MAX_TABLES; 1605 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; 1606 pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb); 1607 1608 rc = pnv_pci_ioda2_setup_default_config(pe); 1609 if (rc) 1610 return; 1611 1612 #ifdef CONFIG_IOMMU_API 1613 pe->table_group.ops = &pnv_pci_ioda2_ops; 1614 iommu_register_group(&pe->table_group, phb->hose->global_number, 1615 pe->pe_number); 1616 #endif 1617 pe->dma_setup_done = true; 1618 } 1619 1620 /* 1621 * Called from KVM in real mode to EOI passthru interrupts. The ICP 1622 * EOI is handled directly in KVM in kvmppc_deliver_irq_passthru(). 1623 * 1624 * The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call 1625 * needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ 1626 * numbers of the in-the-middle MSI domain are vector numbers and it's 1627 * good enough for OPAL. Use that. 1628 */ 1629 int64_t pnv_opal_pci_msi_eoi(struct irq_data *d) 1630 { 1631 struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data); 1632 struct pnv_phb *phb = hose->private_data; 1633 1634 return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq); 1635 } 1636 1637 static struct irq_chip pnv_pci_msi_irq_chip; 1638 1639 /* 1640 * Returns true iff chip is something that we could call 1641 * pnv_opal_pci_msi_eoi for. 1642 */ 1643 bool is_pnv_opal_msi(struct irq_chip *chip) 1644 { 1645 return chip == &pnv_pci_msi_irq_chip; 1646 } 1647 EXPORT_SYMBOL_GPL(is_pnv_opal_msi); 1648 1649 static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, 1650 unsigned int xive_num, 1651 unsigned int is_64, struct msi_msg *msg) 1652 { 1653 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); 1654 __be32 data; 1655 int rc; 1656 1657 dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__, 1658 is_64 ? "64" : "32", xive_num); 1659 1660 /* No PE assigned ? bail out ... no MSI for you ! */ 1661 if (pe == NULL) 1662 return -ENXIO; 1663 1664 /* Check if we have an MVE */ 1665 if (pe->mve_number < 0) 1666 return -ENXIO; 1667 1668 /* Force 32-bit MSI on some broken devices */ 1669 if (dev->no_64bit_msi) 1670 is_64 = 0; 1671 1672 /* Assign XIVE to PE */ 1673 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); 1674 if (rc) { 1675 pr_warn("%s: OPAL error %d setting XIVE %d PE\n", 1676 pci_name(dev), rc, xive_num); 1677 return -EIO; 1678 } 1679 1680 if (is_64) { 1681 __be64 addr64; 1682 1683 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, 1684 &addr64, &data); 1685 if (rc) { 1686 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", 1687 pci_name(dev), rc); 1688 return -EIO; 1689 } 1690 msg->address_hi = be64_to_cpu(addr64) >> 32; 1691 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; 1692 } else { 1693 __be32 addr32; 1694 1695 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, 1696 &addr32, &data); 1697 if (rc) { 1698 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", 1699 pci_name(dev), rc); 1700 return -EIO; 1701 } 1702 msg->address_hi = 0; 1703 msg->address_lo = be32_to_cpu(addr32); 1704 } 1705 msg->data = be32_to_cpu(data); 1706 1707 return 0; 1708 } 1709 1710 /* 1711 * The msi_free() op is called before irq_domain_free_irqs_top() when 1712 * the handler data is still available. Use that to clear the XIVE 1713 * controller. 1714 */ 1715 static void pnv_msi_ops_msi_free(struct irq_domain *domain, 1716 struct msi_domain_info *info, 1717 unsigned int irq) 1718 { 1719 if (xive_enabled()) 1720 xive_irq_free_data(irq); 1721 } 1722 1723 static struct msi_domain_ops pnv_pci_msi_domain_ops = { 1724 .msi_free = pnv_msi_ops_msi_free, 1725 }; 1726 1727 static void pnv_msi_shutdown(struct irq_data *d) 1728 { 1729 d = d->parent_data; 1730 if (d->chip->irq_shutdown) 1731 d->chip->irq_shutdown(d); 1732 } 1733 1734 static void pnv_msi_mask(struct irq_data *d) 1735 { 1736 pci_msi_mask_irq(d); 1737 irq_chip_mask_parent(d); 1738 } 1739 1740 static void pnv_msi_unmask(struct irq_data *d) 1741 { 1742 pci_msi_unmask_irq(d); 1743 irq_chip_unmask_parent(d); 1744 } 1745 1746 static struct irq_chip pnv_pci_msi_irq_chip = { 1747 .name = "PNV-PCI-MSI", 1748 .irq_shutdown = pnv_msi_shutdown, 1749 .irq_mask = pnv_msi_mask, 1750 .irq_unmask = pnv_msi_unmask, 1751 .irq_eoi = irq_chip_eoi_parent, 1752 }; 1753 1754 static struct msi_domain_info pnv_msi_domain_info = { 1755 .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 1756 MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX), 1757 .ops = &pnv_pci_msi_domain_ops, 1758 .chip = &pnv_pci_msi_irq_chip, 1759 }; 1760 1761 static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg) 1762 { 1763 struct msi_desc *entry = irq_data_get_msi_desc(d); 1764 struct pci_dev *pdev = msi_desc_to_pci_dev(entry); 1765 struct pci_controller *hose = irq_data_get_irq_chip_data(d); 1766 struct pnv_phb *phb = hose->private_data; 1767 int rc; 1768 1769 rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq, 1770 entry->pci.msi_attrib.is_64, msg); 1771 if (rc) 1772 dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n", 1773 entry->pci.msi_attrib.is_64 ? "64" : "32", d->hwirq, rc); 1774 } 1775 1776 /* 1777 * The IRQ data is mapped in the MSI domain in which HW IRQ numbers 1778 * correspond to vector numbers. 1779 */ 1780 static void pnv_msi_eoi(struct irq_data *d) 1781 { 1782 struct pci_controller *hose = irq_data_get_irq_chip_data(d); 1783 struct pnv_phb *phb = hose->private_data; 1784 1785 if (phb->model == PNV_PHB_MODEL_PHB3) { 1786 /* 1787 * The EOI OPAL call takes an OPAL HW IRQ number but 1788 * since it is translated into a vector number in 1789 * OPAL, use that directly. 1790 */ 1791 WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq)); 1792 } 1793 1794 irq_chip_eoi_parent(d); 1795 } 1796 1797 static struct irq_chip pnv_msi_irq_chip = { 1798 .name = "PNV-MSI", 1799 .irq_shutdown = pnv_msi_shutdown, 1800 .irq_mask = irq_chip_mask_parent, 1801 .irq_unmask = irq_chip_unmask_parent, 1802 .irq_eoi = pnv_msi_eoi, 1803 .irq_set_affinity = irq_chip_set_affinity_parent, 1804 .irq_compose_msi_msg = pnv_msi_compose_msg, 1805 }; 1806 1807 static int pnv_irq_parent_domain_alloc(struct irq_domain *domain, 1808 unsigned int virq, int hwirq) 1809 { 1810 struct irq_fwspec parent_fwspec; 1811 int ret; 1812 1813 parent_fwspec.fwnode = domain->parent->fwnode; 1814 parent_fwspec.param_count = 2; 1815 parent_fwspec.param[0] = hwirq; 1816 parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 1817 1818 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec); 1819 if (ret) 1820 return ret; 1821 1822 return 0; 1823 } 1824 1825 static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1826 unsigned int nr_irqs, void *arg) 1827 { 1828 struct pci_controller *hose = domain->host_data; 1829 struct pnv_phb *phb = hose->private_data; 1830 msi_alloc_info_t *info = arg; 1831 struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc); 1832 int hwirq; 1833 int i, ret; 1834 1835 hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs); 1836 if (hwirq < 0) { 1837 dev_warn(&pdev->dev, "failed to find a free MSI\n"); 1838 return -ENOSPC; 1839 } 1840 1841 dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__, 1842 hose->dn, virq, hwirq, nr_irqs); 1843 1844 for (i = 0; i < nr_irqs; i++) { 1845 ret = pnv_irq_parent_domain_alloc(domain, virq + i, 1846 phb->msi_base + hwirq + i); 1847 if (ret) 1848 goto out; 1849 1850 irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i, 1851 &pnv_msi_irq_chip, hose); 1852 } 1853 1854 return 0; 1855 1856 out: 1857 irq_domain_free_irqs_parent(domain, virq, i - 1); 1858 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs); 1859 return ret; 1860 } 1861 1862 static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1863 unsigned int nr_irqs) 1864 { 1865 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 1866 struct pci_controller *hose = irq_data_get_irq_chip_data(d); 1867 struct pnv_phb *phb = hose->private_data; 1868 1869 pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn, 1870 virq, d->hwirq, nr_irqs); 1871 1872 msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs); 1873 /* XIVE domain is cleared through ->msi_free() */ 1874 } 1875 1876 static const struct irq_domain_ops pnv_irq_domain_ops = { 1877 .alloc = pnv_irq_domain_alloc, 1878 .free = pnv_irq_domain_free, 1879 }; 1880 1881 static int __init pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count) 1882 { 1883 struct pnv_phb *phb = hose->private_data; 1884 struct irq_domain *parent = irq_get_default_domain(); 1885 1886 hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id); 1887 if (!hose->fwnode) 1888 return -ENOMEM; 1889 1890 hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count, 1891 hose->fwnode, 1892 &pnv_irq_domain_ops, hose); 1893 if (!hose->dev_domain) { 1894 pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n", 1895 hose->dn, hose->global_number); 1896 irq_domain_free_fwnode(hose->fwnode); 1897 return -ENOMEM; 1898 } 1899 1900 hose->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(hose->dn), 1901 &pnv_msi_domain_info, 1902 hose->dev_domain); 1903 if (!hose->msi_domain) { 1904 pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n", 1905 hose->dn, hose->global_number); 1906 irq_domain_free_fwnode(hose->fwnode); 1907 irq_domain_remove(hose->dev_domain); 1908 return -ENOMEM; 1909 } 1910 1911 return 0; 1912 } 1913 1914 static void __init pnv_pci_init_ioda_msis(struct pnv_phb *phb) 1915 { 1916 unsigned int count; 1917 const __be32 *prop = of_get_property(phb->hose->dn, 1918 "ibm,opal-msi-ranges", NULL); 1919 if (!prop) { 1920 /* BML Fallback */ 1921 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); 1922 } 1923 if (!prop) 1924 return; 1925 1926 phb->msi_base = be32_to_cpup(prop); 1927 count = be32_to_cpup(prop + 1); 1928 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { 1929 pr_err("PCI %d: Failed to allocate MSI bitmap !\n", 1930 phb->hose->global_number); 1931 return; 1932 } 1933 1934 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", 1935 count, phb->msi_base); 1936 1937 pnv_msi_allocate_domains(phb->hose, count); 1938 } 1939 1940 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, 1941 struct resource *res) 1942 { 1943 struct pnv_phb *phb = pe->phb; 1944 struct pci_bus_region region; 1945 int index; 1946 int64_t rc; 1947 1948 if (!res || !res->flags || res->start > res->end || 1949 res->flags & IORESOURCE_UNSET) 1950 return; 1951 1952 if (res->flags & IORESOURCE_IO) { 1953 region.start = res->start - phb->ioda.io_pci_base; 1954 region.end = res->end - phb->ioda.io_pci_base; 1955 index = region.start / phb->ioda.io_segsize; 1956 1957 while (index < phb->ioda.total_pe_num && 1958 region.start <= region.end) { 1959 phb->ioda.io_segmap[index] = pe->pe_number; 1960 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 1961 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); 1962 if (rc != OPAL_SUCCESS) { 1963 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n", 1964 __func__, rc, index, pe->pe_number); 1965 break; 1966 } 1967 1968 region.start += phb->ioda.io_segsize; 1969 index++; 1970 } 1971 } else if ((res->flags & IORESOURCE_MEM) && 1972 !pnv_pci_is_m64(phb, res)) { 1973 region.start = res->start - 1974 phb->hose->mem_offset[0] - 1975 phb->ioda.m32_pci_base; 1976 region.end = res->end - 1977 phb->hose->mem_offset[0] - 1978 phb->ioda.m32_pci_base; 1979 index = region.start / phb->ioda.m32_segsize; 1980 1981 while (index < phb->ioda.total_pe_num && 1982 region.start <= region.end) { 1983 phb->ioda.m32_segmap[index] = pe->pe_number; 1984 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 1985 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); 1986 if (rc != OPAL_SUCCESS) { 1987 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x", 1988 __func__, rc, index, pe->pe_number); 1989 break; 1990 } 1991 1992 region.start += phb->ioda.m32_segsize; 1993 index++; 1994 } 1995 } 1996 } 1997 1998 /* 1999 * This function is supposed to be called on basis of PE from top 2000 * to bottom style. So the I/O or MMIO segment assigned to 2001 * parent PE could be overridden by its child PEs if necessary. 2002 */ 2003 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) 2004 { 2005 struct pci_dev *pdev; 2006 int i; 2007 2008 /* 2009 * NOTE: We only care PCI bus based PE for now. For PCI 2010 * device based PE, for example SRIOV sensitive VF should 2011 * be figured out later. 2012 */ 2013 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); 2014 2015 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 2016 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2017 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); 2018 2019 /* 2020 * If the PE contains all subordinate PCI buses, the 2021 * windows of the child bridges should be mapped to 2022 * the PE as well. 2023 */ 2024 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) 2025 continue; 2026 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) 2027 pnv_ioda_setup_pe_res(pe, 2028 &pdev->resource[PCI_BRIDGE_RESOURCES + i]); 2029 } 2030 } 2031 2032 #ifdef CONFIG_DEBUG_FS 2033 static int pnv_pci_diag_data_set(void *data, u64 val) 2034 { 2035 struct pnv_phb *phb = data; 2036 s64 ret; 2037 2038 /* Retrieve the diag data from firmware */ 2039 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data, 2040 phb->diag_data_size); 2041 if (ret != OPAL_SUCCESS) 2042 return -EIO; 2043 2044 /* Print the diag data to the kernel log */ 2045 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data); 2046 return 0; 2047 } 2048 2049 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set, 2050 "%llu\n"); 2051 2052 static int pnv_pci_ioda_pe_dump(void *data, u64 val) 2053 { 2054 struct pnv_phb *phb = data; 2055 int pe_num; 2056 2057 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 2058 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num]; 2059 2060 if (!test_bit(pe_num, phb->ioda.pe_alloc)) 2061 continue; 2062 2063 pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n", 2064 pe->rid, pe->device_count, 2065 (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "", 2066 (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "", 2067 (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "", 2068 (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "", 2069 (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "", 2070 (pe->flags & PNV_IODA_PE_VF) ? "vf " : ""); 2071 } 2072 2073 return 0; 2074 } 2075 2076 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL, 2077 pnv_pci_ioda_pe_dump, "%llu\n"); 2078 2079 #endif /* CONFIG_DEBUG_FS */ 2080 2081 static void pnv_pci_ioda_create_dbgfs(void) 2082 { 2083 #ifdef CONFIG_DEBUG_FS 2084 struct pci_controller *hose, *tmp; 2085 struct pnv_phb *phb; 2086 char name[16]; 2087 2088 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 2089 phb = hose->private_data; 2090 2091 sprintf(name, "PCI%04x", hose->global_number); 2092 phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir); 2093 2094 debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs, 2095 phb, &pnv_pci_diag_data_fops); 2096 debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs, 2097 phb, &pnv_pci_ioda_pe_dump_fops); 2098 } 2099 #endif /* CONFIG_DEBUG_FS */ 2100 } 2101 2102 static void pnv_pci_enable_bridge(struct pci_bus *bus) 2103 { 2104 struct pci_dev *dev = bus->self; 2105 struct pci_bus *child; 2106 2107 /* Empty bus ? bail */ 2108 if (list_empty(&bus->devices)) 2109 return; 2110 2111 /* 2112 * If there's a bridge associated with that bus enable it. This works 2113 * around races in the generic code if the enabling is done during 2114 * parallel probing. This can be removed once those races have been 2115 * fixed. 2116 */ 2117 if (dev) { 2118 int rc = pci_enable_device(dev); 2119 if (rc) 2120 pci_err(dev, "Error enabling bridge (%d)\n", rc); 2121 pci_set_master(dev); 2122 } 2123 2124 /* Perform the same to child busses */ 2125 list_for_each_entry(child, &bus->children, node) 2126 pnv_pci_enable_bridge(child); 2127 } 2128 2129 static void pnv_pci_enable_bridges(void) 2130 { 2131 struct pci_controller *hose; 2132 2133 list_for_each_entry(hose, &hose_list, list_node) 2134 pnv_pci_enable_bridge(hose->bus); 2135 } 2136 2137 static void pnv_pci_ioda_fixup(void) 2138 { 2139 pnv_pci_ioda_create_dbgfs(); 2140 2141 pnv_pci_enable_bridges(); 2142 2143 #ifdef CONFIG_EEH 2144 pnv_eeh_post_init(); 2145 #endif 2146 } 2147 2148 /* 2149 * Returns the alignment for I/O or memory windows for P2P 2150 * bridges. That actually depends on how PEs are segmented. 2151 * For now, we return I/O or M32 segment size for PE sensitive 2152 * P2P bridges. Otherwise, the default values (4KiB for I/O, 2153 * 1MiB for memory) will be returned. 2154 * 2155 * The current PCI bus might be put into one PE, which was 2156 * create against the parent PCI bridge. For that case, we 2157 * needn't enlarge the alignment so that we can save some 2158 * resources. 2159 */ 2160 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, 2161 unsigned long type) 2162 { 2163 struct pnv_phb *phb = pci_bus_to_pnvhb(bus); 2164 int num_pci_bridges = 0; 2165 struct pci_dev *bridge; 2166 2167 bridge = bus->self; 2168 while (bridge) { 2169 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { 2170 num_pci_bridges++; 2171 if (num_pci_bridges >= 2) 2172 return 1; 2173 } 2174 2175 bridge = bridge->bus->self; 2176 } 2177 2178 /* 2179 * We fall back to M32 if M64 isn't supported. We enforce the M64 2180 * alignment for any 64-bit resource, PCIe doesn't care and 2181 * bridges only do 64-bit prefetchable anyway. 2182 */ 2183 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type)) 2184 return phb->ioda.m64_segsize; 2185 if (type & IORESOURCE_MEM) 2186 return phb->ioda.m32_segsize; 2187 2188 return phb->ioda.io_segsize; 2189 } 2190 2191 /* 2192 * We are updating root port or the upstream port of the 2193 * bridge behind the root port with PHB's windows in order 2194 * to accommodate the changes on required resources during 2195 * PCI (slot) hotplug, which is connected to either root 2196 * port or the downstream ports of PCIe switch behind the 2197 * root port. 2198 */ 2199 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, 2200 unsigned long type) 2201 { 2202 struct pci_controller *hose = pci_bus_to_host(bus); 2203 struct pnv_phb *phb = hose->private_data; 2204 struct pci_dev *bridge = bus->self; 2205 struct resource *r, *w; 2206 bool msi_region = false; 2207 int i; 2208 2209 /* Check if we need apply fixup to the bridge's windows */ 2210 if (!pci_is_root_bus(bridge->bus) && 2211 !pci_is_root_bus(bridge->bus->self->bus)) 2212 return; 2213 2214 /* Fixup the resources */ 2215 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { 2216 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; 2217 if (!r->flags || !r->parent) 2218 continue; 2219 2220 w = NULL; 2221 if (r->flags & type & IORESOURCE_IO) 2222 w = &hose->io_resource; 2223 else if (pnv_pci_is_m64(phb, r) && 2224 (type & IORESOURCE_PREFETCH) && 2225 phb->ioda.m64_segsize) 2226 w = &hose->mem_resources[1]; 2227 else if (r->flags & type & IORESOURCE_MEM) { 2228 w = &hose->mem_resources[0]; 2229 msi_region = true; 2230 } 2231 2232 r->start = w->start; 2233 r->end = w->end; 2234 2235 /* The 64KB 32-bits MSI region shouldn't be included in 2236 * the 32-bits bridge window. Otherwise, we can see strange 2237 * issues. One of them is EEH error observed on Garrison. 2238 * 2239 * Exclude top 1MB region which is the minimal alignment of 2240 * 32-bits bridge window. 2241 */ 2242 if (msi_region) { 2243 r->end += 0x10000; 2244 r->end -= 0x100000; 2245 } 2246 } 2247 } 2248 2249 static void pnv_pci_configure_bus(struct pci_bus *bus) 2250 { 2251 struct pci_dev *bridge = bus->self; 2252 struct pnv_ioda_pe *pe; 2253 bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); 2254 2255 dev_info(&bus->dev, "Configuring PE for bus\n"); 2256 2257 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ 2258 if (WARN_ON(list_empty(&bus->devices))) 2259 return; 2260 2261 /* Reserve PEs according to used M64 resources */ 2262 pnv_ioda_reserve_m64_pe(bus, NULL, all); 2263 2264 /* 2265 * Assign PE. We might run here because of partial hotplug. 2266 * For the case, we just pick up the existing PE and should 2267 * not allocate resources again. 2268 */ 2269 pe = pnv_ioda_setup_bus_PE(bus, all); 2270 if (!pe) 2271 return; 2272 2273 pnv_ioda_setup_pe_seg(pe); 2274 } 2275 2276 static resource_size_t pnv_pci_default_alignment(void) 2277 { 2278 return PAGE_SIZE; 2279 } 2280 2281 /* Prevent enabling devices for which we couldn't properly 2282 * assign a PE 2283 */ 2284 static bool pnv_pci_enable_device_hook(struct pci_dev *dev) 2285 { 2286 struct pci_dn *pdn; 2287 2288 pdn = pci_get_pdn(dev); 2289 if (!pdn || pdn->pe_number == IODA_INVALID_PE) { 2290 pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n"); 2291 return false; 2292 } 2293 2294 return true; 2295 } 2296 2297 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev) 2298 { 2299 struct pci_dn *pdn; 2300 struct pnv_ioda_pe *pe; 2301 2302 pdn = pci_get_pdn(dev); 2303 if (!pdn) 2304 return false; 2305 2306 if (pdn->pe_number == IODA_INVALID_PE) { 2307 pe = pnv_ioda_setup_dev_PE(dev); 2308 if (!pe) 2309 return false; 2310 } 2311 return true; 2312 } 2313 2314 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) 2315 { 2316 struct iommu_table *tbl = pe->table_group.tables[0]; 2317 int64_t rc; 2318 2319 if (!pe->dma_setup_done) 2320 return; 2321 2322 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2323 if (rc) 2324 pe_warn(pe, "OPAL error %lld release DMA window\n", rc); 2325 2326 pnv_pci_ioda2_set_bypass(pe, false); 2327 if (pe->table_group.group) { 2328 iommu_group_put(pe->table_group.group); 2329 WARN_ON(pe->table_group.group); 2330 } 2331 2332 iommu_tce_table_put(tbl); 2333 } 2334 2335 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, 2336 unsigned short win, 2337 unsigned int *map) 2338 { 2339 struct pnv_phb *phb = pe->phb; 2340 int idx; 2341 int64_t rc; 2342 2343 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { 2344 if (map[idx] != pe->pe_number) 2345 continue; 2346 2347 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 2348 phb->ioda.reserved_pe_idx, win, 0, idx); 2349 2350 if (rc != OPAL_SUCCESS) 2351 pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n", 2352 rc, win, idx); 2353 2354 map[idx] = IODA_INVALID_PE; 2355 } 2356 } 2357 2358 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) 2359 { 2360 struct pnv_phb *phb = pe->phb; 2361 2362 if (phb->type == PNV_PHB_IODA2) { 2363 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 2364 phb->ioda.m32_segmap); 2365 } 2366 } 2367 2368 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) 2369 { 2370 struct pnv_phb *phb = pe->phb; 2371 struct pnv_ioda_pe *slave, *tmp; 2372 2373 pe_info(pe, "Releasing PE\n"); 2374 2375 mutex_lock(&phb->ioda.pe_list_mutex); 2376 list_del(&pe->list); 2377 mutex_unlock(&phb->ioda.pe_list_mutex); 2378 2379 switch (phb->type) { 2380 case PNV_PHB_IODA2: 2381 pnv_pci_ioda2_release_pe_dma(pe); 2382 break; 2383 case PNV_PHB_NPU_OCAPI: 2384 break; 2385 default: 2386 WARN_ON(1); 2387 } 2388 2389 pnv_ioda_release_pe_seg(pe); 2390 pnv_ioda_deconfigure_pe(pe->phb, pe); 2391 2392 /* Release slave PEs in the compound PE */ 2393 if (pe->flags & PNV_IODA_PE_MASTER) { 2394 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { 2395 list_del(&slave->list); 2396 pnv_ioda_free_pe(slave); 2397 } 2398 } 2399 2400 /* 2401 * The PE for root bus can be removed because of hotplug in EEH 2402 * recovery for fenced PHB error. We need to mark the PE dead so 2403 * that it can be populated again in PCI hot add path. The PE 2404 * shouldn't be destroyed as it's the global reserved resource. 2405 */ 2406 if (phb->ioda.root_pe_idx == pe->pe_number) 2407 return; 2408 2409 pnv_ioda_free_pe(pe); 2410 } 2411 2412 static void pnv_pci_release_device(struct pci_dev *pdev) 2413 { 2414 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 2415 struct pci_dn *pdn = pci_get_pdn(pdev); 2416 struct pnv_ioda_pe *pe; 2417 2418 /* The VF PE state is torn down when sriov_disable() is called */ 2419 if (pdev->is_virtfn) 2420 return; 2421 2422 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 2423 return; 2424 2425 #ifdef CONFIG_PCI_IOV 2426 /* 2427 * FIXME: Try move this to sriov_disable(). It's here since we allocate 2428 * the iov state at probe time since we need to fiddle with the IOV 2429 * resources. 2430 */ 2431 if (pdev->is_physfn) 2432 kfree(pdev->dev.archdata.iov_data); 2433 #endif 2434 2435 /* 2436 * PCI hotplug can happen as part of EEH error recovery. The @pdn 2437 * isn't removed and added afterwards in this scenario. We should 2438 * set the PE number in @pdn to an invalid one. Otherwise, the PE's 2439 * device count is decreased on removing devices while failing to 2440 * be increased on adding devices. It leads to unbalanced PE's device 2441 * count and eventually make normal PCI hotplug path broken. 2442 */ 2443 pe = &phb->ioda.pe_array[pdn->pe_number]; 2444 pdn->pe_number = IODA_INVALID_PE; 2445 2446 WARN_ON(--pe->device_count < 0); 2447 if (pe->device_count == 0) 2448 pnv_ioda_release_pe(pe); 2449 } 2450 2451 static void pnv_pci_ioda_shutdown(struct pci_controller *hose) 2452 { 2453 struct pnv_phb *phb = hose->private_data; 2454 2455 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, 2456 OPAL_ASSERT_RESET); 2457 } 2458 2459 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus) 2460 { 2461 struct pnv_phb *phb = pci_bus_to_pnvhb(bus); 2462 struct pnv_ioda_pe *pe; 2463 2464 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2465 if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))) 2466 continue; 2467 2468 if (!pe->pbus) 2469 continue; 2470 2471 if (bus->number == ((pe->rid >> 8) & 0xFF)) { 2472 pe->pbus = bus; 2473 break; 2474 } 2475 } 2476 } 2477 2478 #ifdef CONFIG_IOMMU_API 2479 static struct iommu_group *pnv_pci_device_group(struct pci_controller *hose, 2480 struct pci_dev *pdev) 2481 { 2482 struct pnv_phb *phb = hose->private_data; 2483 struct pnv_ioda_pe *pe; 2484 2485 if (WARN_ON(!phb)) 2486 return ERR_PTR(-ENODEV); 2487 2488 pe = pnv_pci_bdfn_to_pe(phb, pci_dev_id(pdev)); 2489 if (!pe) 2490 return ERR_PTR(-ENODEV); 2491 2492 if (!pe->table_group.group) 2493 return ERR_PTR(-ENODEV); 2494 2495 return iommu_group_ref_get(pe->table_group.group); 2496 } 2497 #endif 2498 2499 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { 2500 .dma_dev_setup = pnv_pci_ioda_dma_dev_setup, 2501 .dma_bus_setup = pnv_pci_ioda_dma_bus_setup, 2502 .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported, 2503 .enable_device_hook = pnv_pci_enable_device_hook, 2504 .release_device = pnv_pci_release_device, 2505 .window_alignment = pnv_pci_window_alignment, 2506 .setup_bridge = pnv_pci_fixup_bridge_resources, 2507 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 2508 .shutdown = pnv_pci_ioda_shutdown, 2509 #ifdef CONFIG_IOMMU_API 2510 .device_group = pnv_pci_device_group, 2511 #endif 2512 }; 2513 2514 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = { 2515 .enable_device_hook = pnv_ocapi_enable_device_hook, 2516 .release_device = pnv_pci_release_device, 2517 .window_alignment = pnv_pci_window_alignment, 2518 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 2519 .shutdown = pnv_pci_ioda_shutdown, 2520 }; 2521 2522 static void __init pnv_pci_init_ioda_phb(struct device_node *np, 2523 u64 hub_id, int ioda_type) 2524 { 2525 struct pci_controller *hose; 2526 struct pnv_phb *phb; 2527 unsigned long size, m64map_off, m32map_off, pemap_off; 2528 struct pnv_ioda_pe *root_pe; 2529 struct resource r; 2530 const __be64 *prop64; 2531 const __be32 *prop32; 2532 int len; 2533 unsigned int segno; 2534 u64 phb_id; 2535 void *aux; 2536 long rc; 2537 2538 if (!of_device_is_available(np)) 2539 return; 2540 2541 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np); 2542 2543 prop64 = of_get_property(np, "ibm,opal-phbid", NULL); 2544 if (!prop64) { 2545 pr_err(" Missing \"ibm,opal-phbid\" property !\n"); 2546 return; 2547 } 2548 phb_id = be64_to_cpup(prop64); 2549 pr_debug(" PHB-ID : 0x%016llx\n", phb_id); 2550 2551 phb = kzalloc(sizeof(*phb), GFP_KERNEL); 2552 if (!phb) 2553 panic("%s: Failed to allocate %zu bytes\n", __func__, 2554 sizeof(*phb)); 2555 2556 /* Allocate PCI controller */ 2557 phb->hose = hose = pcibios_alloc_controller(np); 2558 if (!phb->hose) { 2559 pr_err(" Can't allocate PCI controller for %pOF\n", 2560 np); 2561 memblock_free(phb, sizeof(struct pnv_phb)); 2562 return; 2563 } 2564 2565 spin_lock_init(&phb->lock); 2566 prop32 = of_get_property(np, "bus-range", &len); 2567 if (prop32 && len == 8) { 2568 hose->first_busno = be32_to_cpu(prop32[0]); 2569 hose->last_busno = be32_to_cpu(prop32[1]); 2570 } else { 2571 pr_warn(" Broken <bus-range> on %pOF\n", np); 2572 hose->first_busno = 0; 2573 hose->last_busno = 0xff; 2574 } 2575 hose->private_data = phb; 2576 phb->hub_id = hub_id; 2577 phb->opal_id = phb_id; 2578 phb->type = ioda_type; 2579 mutex_init(&phb->ioda.pe_alloc_mutex); 2580 2581 /* Detect specific models for error handling */ 2582 if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) 2583 phb->model = PNV_PHB_MODEL_P7IOC; 2584 else if (of_device_is_compatible(np, "ibm,power8-pciex")) 2585 phb->model = PNV_PHB_MODEL_PHB3; 2586 else 2587 phb->model = PNV_PHB_MODEL_UNKNOWN; 2588 2589 /* Initialize diagnostic data buffer */ 2590 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL); 2591 if (prop32) 2592 phb->diag_data_size = be32_to_cpup(prop32); 2593 else 2594 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE; 2595 2596 phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL); 2597 if (!phb->diag_data) 2598 panic("%s: Failed to allocate %u bytes\n", __func__, 2599 phb->diag_data_size); 2600 2601 /* Parse 32-bit and IO ranges (if any) */ 2602 pci_process_bridge_OF_ranges(hose, np, !hose->global_number); 2603 2604 /* Get registers */ 2605 if (!of_address_to_resource(np, 0, &r)) { 2606 phb->regs_phys = r.start; 2607 phb->regs = ioremap(r.start, resource_size(&r)); 2608 if (phb->regs == NULL) 2609 pr_err(" Failed to map registers !\n"); 2610 } 2611 2612 /* Initialize more IODA stuff */ 2613 phb->ioda.total_pe_num = 1; 2614 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); 2615 if (prop32) 2616 phb->ioda.total_pe_num = be32_to_cpup(prop32); 2617 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); 2618 if (prop32) 2619 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); 2620 2621 /* Invalidate RID to PE# mapping */ 2622 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) 2623 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; 2624 2625 /* Parse 64-bit MMIO range */ 2626 pnv_ioda_parse_m64_window(phb); 2627 2628 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); 2629 /* FW Has already off top 64k of M32 space (MSI space) */ 2630 phb->ioda.m32_size += 0x10000; 2631 2632 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; 2633 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; 2634 phb->ioda.io_size = hose->pci_io_size; 2635 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; 2636 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ 2637 2638 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ 2639 size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, 2640 sizeof(unsigned long)); 2641 m64map_off = size; 2642 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); 2643 m32map_off = size; 2644 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); 2645 pemap_off = size; 2646 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); 2647 aux = kzalloc(size, GFP_KERNEL); 2648 if (!aux) 2649 panic("%s: Failed to allocate %lu bytes\n", __func__, size); 2650 2651 phb->ioda.pe_alloc = aux; 2652 phb->ioda.m64_segmap = aux + m64map_off; 2653 phb->ioda.m32_segmap = aux + m32map_off; 2654 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { 2655 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; 2656 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; 2657 } 2658 phb->ioda.pe_array = aux + pemap_off; 2659 2660 /* 2661 * Choose PE number for root bus, which shouldn't have 2662 * M64 resources consumed by its child devices. To pick 2663 * the PE number adjacent to the reserved one if possible. 2664 */ 2665 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); 2666 if (phb->ioda.reserved_pe_idx == 0) { 2667 phb->ioda.root_pe_idx = 1; 2668 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 2669 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { 2670 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; 2671 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 2672 } else { 2673 /* otherwise just allocate one */ 2674 root_pe = pnv_ioda_alloc_pe(phb, 1); 2675 phb->ioda.root_pe_idx = root_pe->pe_number; 2676 } 2677 2678 INIT_LIST_HEAD(&phb->ioda.pe_list); 2679 mutex_init(&phb->ioda.pe_list_mutex); 2680 2681 #if 0 /* We should really do that ... */ 2682 rc = opal_pci_set_phb_mem_window(opal->phb_id, 2683 window_type, 2684 window_num, 2685 starting_real_address, 2686 starting_pci_address, 2687 segment_size); 2688 #endif 2689 2690 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", 2691 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, 2692 phb->ioda.m32_size, phb->ioda.m32_segsize); 2693 if (phb->ioda.m64_size) 2694 pr_info(" M64: 0x%lx [segment=0x%lx]\n", 2695 phb->ioda.m64_size, phb->ioda.m64_segsize); 2696 if (phb->ioda.io_size) 2697 pr_info(" IO: 0x%x [segment=0x%x]\n", 2698 phb->ioda.io_size, phb->ioda.io_segsize); 2699 2700 2701 phb->hose->ops = &pnv_pci_ops; 2702 phb->get_pe_state = pnv_ioda_get_pe_state; 2703 phb->freeze_pe = pnv_ioda_freeze_pe; 2704 phb->unfreeze_pe = pnv_ioda_unfreeze_pe; 2705 2706 /* Setup MSI support */ 2707 pnv_pci_init_ioda_msis(phb); 2708 2709 /* 2710 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here 2711 * to let the PCI core do resource assignment. It's supposed 2712 * that the PCI core will do correct I/O and MMIO alignment 2713 * for the P2P bridge bars so that each PCI bus (excluding 2714 * the child P2P bridges) can form individual PE. 2715 */ 2716 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; 2717 2718 switch (phb->type) { 2719 case PNV_PHB_NPU_OCAPI: 2720 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops; 2721 break; 2722 default: 2723 hose->controller_ops = pnv_pci_ioda_controller_ops; 2724 } 2725 2726 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment; 2727 2728 #ifdef CONFIG_PCI_IOV 2729 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov; 2730 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; 2731 ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable; 2732 ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable; 2733 #endif 2734 2735 pci_add_flags(PCI_REASSIGN_ALL_RSRC); 2736 2737 /* Reset IODA tables to a clean state */ 2738 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); 2739 if (rc) 2740 pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc); 2741 2742 /* 2743 * If we're running in kdump kernel, the previous kernel never 2744 * shutdown PCI devices correctly. We already got IODA table 2745 * cleaned out. So we have to issue PHB reset to stop all PCI 2746 * transactions from previous kernel. The ppc_pci_reset_phbs 2747 * kernel parameter will force this reset too. Additionally, 2748 * if the IODA reset above failed then use a bigger hammer. 2749 * This can happen if we get a PHB fatal error in very early 2750 * boot. 2751 */ 2752 if (is_kdump_kernel() || pci_reset_phbs || rc) { 2753 pr_info(" Issue PHB reset ...\n"); 2754 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); 2755 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); 2756 } 2757 2758 /* Remove M64 resource if we can't configure it successfully */ 2759 if (!phb->init_m64 || phb->init_m64(phb)) 2760 hose->mem_resources[1].flags = 0; 2761 2762 /* create pci_dn's for DT nodes under this PHB */ 2763 pci_devs_phb_init_dynamic(hose); 2764 } 2765 2766 void __init pnv_pci_init_ioda2_phb(struct device_node *np) 2767 { 2768 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); 2769 } 2770 2771 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np) 2772 { 2773 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI); 2774 } 2775 2776 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev) 2777 { 2778 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); 2779 2780 if (!machine_is(powernv)) 2781 return; 2782 2783 if (phb->type == PNV_PHB_NPU_OCAPI) 2784 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE; 2785 } 2786 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup); 2787