xref: /linux/arch/powerpc/platforms/powernv/pci-ioda.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/opal.h>
35 #include <asm/iommu.h>
36 #include <asm/tce.h>
37 #include <asm/xics.h>
38 #include <asm/debug.h>
39 #include <asm/firmware.h>
40 #include <asm/pnv-pci.h>
41 
42 #include <misc/cxl.h>
43 
44 #include "powernv.h"
45 #include "pci.h"
46 
47 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
48 			    const char *fmt, ...)
49 {
50 	struct va_format vaf;
51 	va_list args;
52 	char pfix[32];
53 
54 	va_start(args, fmt);
55 
56 	vaf.fmt = fmt;
57 	vaf.va = &args;
58 
59 	if (pe->pdev)
60 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
61 	else
62 		sprintf(pfix, "%04x:%02x     ",
63 			pci_domain_nr(pe->pbus), pe->pbus->number);
64 
65 	printk("%spci %s: [PE# %.3d] %pV",
66 	       level, pfix, pe->pe_number, &vaf);
67 
68 	va_end(args);
69 }
70 
71 #define pe_err(pe, fmt, ...)					\
72 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
73 #define pe_warn(pe, fmt, ...)					\
74 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
75 #define pe_info(pe, fmt, ...)					\
76 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
77 
78 /*
79  * stdcix is only supposed to be used in hypervisor real mode as per
80  * the architecture spec
81  */
82 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
83 {
84 	__asm__ __volatile__("stdcix %0,0,%1"
85 		: : "r" (val), "r" (paddr) : "memory");
86 }
87 
88 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
89 {
90 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
91 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
92 }
93 
94 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
95 {
96 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
97 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
98 			__func__, pe_no, phb->hose->global_number);
99 		return;
100 	}
101 
102 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
103 		pr_warn("%s: PE %d was assigned on PHB#%x\n",
104 			__func__, pe_no, phb->hose->global_number);
105 		return;
106 	}
107 
108 	phb->ioda.pe_array[pe_no].phb = phb;
109 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
110 }
111 
112 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
113 {
114 	unsigned long pe;
115 
116 	do {
117 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
118 					phb->ioda.total_pe, 0);
119 		if (pe >= phb->ioda.total_pe)
120 			return IODA_INVALID_PE;
121 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
122 
123 	phb->ioda.pe_array[pe].phb = phb;
124 	phb->ioda.pe_array[pe].pe_number = pe;
125 	return pe;
126 }
127 
128 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
129 {
130 	WARN_ON(phb->ioda.pe_array[pe].pdev);
131 
132 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
133 	clear_bit(pe, phb->ioda.pe_alloc);
134 }
135 
136 /* The default M64 BAR is shared by all PEs */
137 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
138 {
139 	const char *desc;
140 	struct resource *r;
141 	s64 rc;
142 
143 	/* Configure the default M64 BAR */
144 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
145 					 OPAL_M64_WINDOW_TYPE,
146 					 phb->ioda.m64_bar_idx,
147 					 phb->ioda.m64_base,
148 					 0, /* unused */
149 					 phb->ioda.m64_size);
150 	if (rc != OPAL_SUCCESS) {
151 		desc = "configuring";
152 		goto fail;
153 	}
154 
155 	/* Enable the default M64 BAR */
156 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
157 				      OPAL_M64_WINDOW_TYPE,
158 				      phb->ioda.m64_bar_idx,
159 				      OPAL_ENABLE_M64_SPLIT);
160 	if (rc != OPAL_SUCCESS) {
161 		desc = "enabling";
162 		goto fail;
163 	}
164 
165 	/* Mark the M64 BAR assigned */
166 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
167 
168 	/*
169 	 * Strip off the segment used by the reserved PE, which is
170 	 * expected to be 0 or last one of PE capabicity.
171 	 */
172 	r = &phb->hose->mem_resources[1];
173 	if (phb->ioda.reserved_pe == 0)
174 		r->start += phb->ioda.m64_segsize;
175 	else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
176 		r->end -= phb->ioda.m64_segsize;
177 	else
178 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
179 			phb->ioda.reserved_pe);
180 
181 	return 0;
182 
183 fail:
184 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
185 		rc, desc, phb->ioda.m64_bar_idx);
186 	opal_pci_phb_mmio_enable(phb->opal_id,
187 				 OPAL_M64_WINDOW_TYPE,
188 				 phb->ioda.m64_bar_idx,
189 				 OPAL_DISABLE_M64);
190 	return -EIO;
191 }
192 
193 static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
194 {
195 	resource_size_t sgsz = phb->ioda.m64_segsize;
196 	struct pci_dev *pdev;
197 	struct resource *r;
198 	int base, step, i;
199 
200 	/*
201 	 * Root bus always has full M64 range and root port has
202 	 * M64 range used in reality. So we're checking root port
203 	 * instead of root bus.
204 	 */
205 	list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
206 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
207 			r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
208 			if (!r->parent ||
209 			    !pnv_pci_is_mem_pref_64(r->flags))
210 				continue;
211 
212 			base = (r->start - phb->ioda.m64_base) / sgsz;
213 			for (step = 0; step < resource_size(r) / sgsz; step++)
214 				pnv_ioda_reserve_pe(phb, base + step);
215 		}
216 	}
217 }
218 
219 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
220 				 struct pci_bus *bus, int all)
221 {
222 	resource_size_t segsz = phb->ioda.m64_segsize;
223 	struct pci_dev *pdev;
224 	struct resource *r;
225 	struct pnv_ioda_pe *master_pe, *pe;
226 	unsigned long size, *pe_alloc;
227 	bool found;
228 	int start, i, j;
229 
230 	/* Root bus shouldn't use M64 */
231 	if (pci_is_root_bus(bus))
232 		return IODA_INVALID_PE;
233 
234 	/* We support only one M64 window on each bus */
235 	found = false;
236 	pci_bus_for_each_resource(bus, r, i) {
237 		if (r && r->parent &&
238 		    pnv_pci_is_mem_pref_64(r->flags)) {
239 			found = true;
240 			break;
241 		}
242 	}
243 
244 	/* No M64 window found ? */
245 	if (!found)
246 		return IODA_INVALID_PE;
247 
248 	/* Allocate bitmap */
249 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
250 	pe_alloc = kzalloc(size, GFP_KERNEL);
251 	if (!pe_alloc) {
252 		pr_warn("%s: Out of memory !\n",
253 			__func__);
254 		return IODA_INVALID_PE;
255 	}
256 
257 	/*
258 	 * Figure out reserved PE numbers by the PE
259 	 * the its child PEs.
260 	 */
261 	start = (r->start - phb->ioda.m64_base) / segsz;
262 	for (i = 0; i < resource_size(r) / segsz; i++)
263 		set_bit(start + i, pe_alloc);
264 
265 	if (all)
266 		goto done;
267 
268 	/*
269 	 * If the PE doesn't cover all subordinate buses,
270 	 * we need subtract from reserved PEs for children.
271 	 */
272 	list_for_each_entry(pdev, &bus->devices, bus_list) {
273 		if (!pdev->subordinate)
274 			continue;
275 
276 		pci_bus_for_each_resource(pdev->subordinate, r, i) {
277 			if (!r || !r->parent ||
278 			    !pnv_pci_is_mem_pref_64(r->flags))
279 				continue;
280 
281 			start = (r->start - phb->ioda.m64_base) / segsz;
282 			for (j = 0; j < resource_size(r) / segsz ; j++)
283 				clear_bit(start + j, pe_alloc);
284                 }
285         }
286 
287 	/*
288 	 * the current bus might not own M64 window and that's all
289 	 * contributed by its child buses. For the case, we needn't
290 	 * pick M64 dependent PE#.
291 	 */
292 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
293 		kfree(pe_alloc);
294 		return IODA_INVALID_PE;
295 	}
296 
297 	/*
298 	 * Figure out the master PE and put all slave PEs to master
299 	 * PE's list to form compound PE.
300 	 */
301 done:
302 	master_pe = NULL;
303 	i = -1;
304 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
305 		phb->ioda.total_pe) {
306 		pe = &phb->ioda.pe_array[i];
307 
308 		if (!master_pe) {
309 			pe->flags |= PNV_IODA_PE_MASTER;
310 			INIT_LIST_HEAD(&pe->slaves);
311 			master_pe = pe;
312 		} else {
313 			pe->flags |= PNV_IODA_PE_SLAVE;
314 			pe->master = master_pe;
315 			list_add_tail(&pe->list, &master_pe->slaves);
316 		}
317 	}
318 
319 	kfree(pe_alloc);
320 	return master_pe->pe_number;
321 }
322 
323 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
324 {
325 	struct pci_controller *hose = phb->hose;
326 	struct device_node *dn = hose->dn;
327 	struct resource *res;
328 	const u32 *r;
329 	u64 pci_addr;
330 
331 	/* FIXME: Support M64 for P7IOC */
332 	if (phb->type != PNV_PHB_IODA2) {
333 		pr_info("  Not support M64 window\n");
334 		return;
335 	}
336 
337 	if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
338 		pr_info("  Firmware too old to support M64 window\n");
339 		return;
340 	}
341 
342 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
343 	if (!r) {
344 		pr_info("  No <ibm,opal-m64-window> on %s\n",
345 			dn->full_name);
346 		return;
347 	}
348 
349 	res = &hose->mem_resources[1];
350 	res->start = of_translate_address(dn, r + 2);
351 	res->end = res->start + of_read_number(r + 4, 2) - 1;
352 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
353 	pci_addr = of_read_number(r, 2);
354 	hose->mem_offset[1] = res->start - pci_addr;
355 
356 	phb->ioda.m64_size = resource_size(res);
357 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
358 	phb->ioda.m64_base = pci_addr;
359 
360 	/* Use last M64 BAR to cover M64 window */
361 	phb->ioda.m64_bar_idx = 15;
362 	phb->init_m64 = pnv_ioda2_init_m64;
363 	phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
364 	phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
365 }
366 
367 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
368 {
369 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
370 	struct pnv_ioda_pe *slave;
371 	s64 rc;
372 
373 	/* Fetch master PE */
374 	if (pe->flags & PNV_IODA_PE_SLAVE) {
375 		pe = pe->master;
376 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
377 			return;
378 
379 		pe_no = pe->pe_number;
380 	}
381 
382 	/* Freeze master PE */
383 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
384 				     pe_no,
385 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
386 	if (rc != OPAL_SUCCESS) {
387 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
388 			__func__, rc, phb->hose->global_number, pe_no);
389 		return;
390 	}
391 
392 	/* Freeze slave PEs */
393 	if (!(pe->flags & PNV_IODA_PE_MASTER))
394 		return;
395 
396 	list_for_each_entry(slave, &pe->slaves, list) {
397 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
398 					     slave->pe_number,
399 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
400 		if (rc != OPAL_SUCCESS)
401 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
402 				__func__, rc, phb->hose->global_number,
403 				slave->pe_number);
404 	}
405 }
406 
407 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
408 {
409 	struct pnv_ioda_pe *pe, *slave;
410 	s64 rc;
411 
412 	/* Find master PE */
413 	pe = &phb->ioda.pe_array[pe_no];
414 	if (pe->flags & PNV_IODA_PE_SLAVE) {
415 		pe = pe->master;
416 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
417 		pe_no = pe->pe_number;
418 	}
419 
420 	/* Clear frozen state for master PE */
421 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
422 	if (rc != OPAL_SUCCESS) {
423 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
424 			__func__, rc, opt, phb->hose->global_number, pe_no);
425 		return -EIO;
426 	}
427 
428 	if (!(pe->flags & PNV_IODA_PE_MASTER))
429 		return 0;
430 
431 	/* Clear frozen state for slave PEs */
432 	list_for_each_entry(slave, &pe->slaves, list) {
433 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
434 					     slave->pe_number,
435 					     opt);
436 		if (rc != OPAL_SUCCESS) {
437 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
438 				__func__, rc, opt, phb->hose->global_number,
439 				slave->pe_number);
440 			return -EIO;
441 		}
442 	}
443 
444 	return 0;
445 }
446 
447 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
448 {
449 	struct pnv_ioda_pe *slave, *pe;
450 	u8 fstate, state;
451 	__be16 pcierr;
452 	s64 rc;
453 
454 	/* Sanity check on PE number */
455 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
456 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
457 
458 	/*
459 	 * Fetch the master PE and the PE instance might be
460 	 * not initialized yet.
461 	 */
462 	pe = &phb->ioda.pe_array[pe_no];
463 	if (pe->flags & PNV_IODA_PE_SLAVE) {
464 		pe = pe->master;
465 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
466 		pe_no = pe->pe_number;
467 	}
468 
469 	/* Check the master PE */
470 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
471 					&state, &pcierr, NULL);
472 	if (rc != OPAL_SUCCESS) {
473 		pr_warn("%s: Failure %lld getting "
474 			"PHB#%x-PE#%x state\n",
475 			__func__, rc,
476 			phb->hose->global_number, pe_no);
477 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
478 	}
479 
480 	/* Check the slave PE */
481 	if (!(pe->flags & PNV_IODA_PE_MASTER))
482 		return state;
483 
484 	list_for_each_entry(slave, &pe->slaves, list) {
485 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
486 						slave->pe_number,
487 						&fstate,
488 						&pcierr,
489 						NULL);
490 		if (rc != OPAL_SUCCESS) {
491 			pr_warn("%s: Failure %lld getting "
492 				"PHB#%x-PE#%x state\n",
493 				__func__, rc,
494 				phb->hose->global_number, slave->pe_number);
495 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
496 		}
497 
498 		/*
499 		 * Override the result based on the ascending
500 		 * priority.
501 		 */
502 		if (fstate > state)
503 			state = fstate;
504 	}
505 
506 	return state;
507 }
508 
509 /* Currently those 2 are only used when MSIs are enabled, this will change
510  * but in the meantime, we need to protect them to avoid warnings
511  */
512 #ifdef CONFIG_PCI_MSI
513 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
514 {
515 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
516 	struct pnv_phb *phb = hose->private_data;
517 	struct pci_dn *pdn = pci_get_pdn(dev);
518 
519 	if (!pdn)
520 		return NULL;
521 	if (pdn->pe_number == IODA_INVALID_PE)
522 		return NULL;
523 	return &phb->ioda.pe_array[pdn->pe_number];
524 }
525 #endif /* CONFIG_PCI_MSI */
526 
527 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
528 				  struct pnv_ioda_pe *parent,
529 				  struct pnv_ioda_pe *child,
530 				  bool is_add)
531 {
532 	const char *desc = is_add ? "adding" : "removing";
533 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
534 			      OPAL_REMOVE_PE_FROM_DOMAIN;
535 	struct pnv_ioda_pe *slave;
536 	long rc;
537 
538 	/* Parent PE affects child PE */
539 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
540 				child->pe_number, op);
541 	if (rc != OPAL_SUCCESS) {
542 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
543 			rc, desc);
544 		return -ENXIO;
545 	}
546 
547 	if (!(child->flags & PNV_IODA_PE_MASTER))
548 		return 0;
549 
550 	/* Compound case: parent PE affects slave PEs */
551 	list_for_each_entry(slave, &child->slaves, list) {
552 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
553 					slave->pe_number, op);
554 		if (rc != OPAL_SUCCESS) {
555 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
556 				rc, desc);
557 			return -ENXIO;
558 		}
559 	}
560 
561 	return 0;
562 }
563 
564 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
565 			      struct pnv_ioda_pe *pe,
566 			      bool is_add)
567 {
568 	struct pnv_ioda_pe *slave;
569 	struct pci_dev *pdev;
570 	int ret;
571 
572 	/*
573 	 * Clear PE frozen state. If it's master PE, we need
574 	 * clear slave PE frozen state as well.
575 	 */
576 	if (is_add) {
577 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
578 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
579 		if (pe->flags & PNV_IODA_PE_MASTER) {
580 			list_for_each_entry(slave, &pe->slaves, list)
581 				opal_pci_eeh_freeze_clear(phb->opal_id,
582 							  slave->pe_number,
583 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
584 		}
585 	}
586 
587 	/*
588 	 * Associate PE in PELT. We need add the PE into the
589 	 * corresponding PELT-V as well. Otherwise, the error
590 	 * originated from the PE might contribute to other
591 	 * PEs.
592 	 */
593 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
594 	if (ret)
595 		return ret;
596 
597 	/* For compound PEs, any one affects all of them */
598 	if (pe->flags & PNV_IODA_PE_MASTER) {
599 		list_for_each_entry(slave, &pe->slaves, list) {
600 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
601 			if (ret)
602 				return ret;
603 		}
604 	}
605 
606 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
607 		pdev = pe->pbus->self;
608 	else
609 		pdev = pe->pdev->bus->self;
610 	while (pdev) {
611 		struct pci_dn *pdn = pci_get_pdn(pdev);
612 		struct pnv_ioda_pe *parent;
613 
614 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
615 			parent = &phb->ioda.pe_array[pdn->pe_number];
616 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
617 			if (ret)
618 				return ret;
619 		}
620 
621 		pdev = pdev->bus->self;
622 	}
623 
624 	return 0;
625 }
626 
627 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
628 {
629 	struct pci_dev *parent;
630 	uint8_t bcomp, dcomp, fcomp;
631 	long rc, rid_end, rid;
632 
633 	/* Bus validation ? */
634 	if (pe->pbus) {
635 		int count;
636 
637 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
638 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
639 		parent = pe->pbus->self;
640 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
641 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
642 		else
643 			count = 1;
644 
645 		switch(count) {
646 		case  1: bcomp = OpalPciBusAll;		break;
647 		case  2: bcomp = OpalPciBus7Bits;	break;
648 		case  4: bcomp = OpalPciBus6Bits;	break;
649 		case  8: bcomp = OpalPciBus5Bits;	break;
650 		case 16: bcomp = OpalPciBus4Bits;	break;
651 		case 32: bcomp = OpalPciBus3Bits;	break;
652 		default:
653 			pr_err("%s: Number of subordinate busses %d"
654 			       " unsupported\n",
655 			       pci_name(pe->pbus->self), count);
656 			/* Do an exact match only */
657 			bcomp = OpalPciBusAll;
658 		}
659 		rid_end = pe->rid + (count << 8);
660 	} else {
661 		parent = pe->pdev->bus->self;
662 		bcomp = OpalPciBusAll;
663 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
664 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
665 		rid_end = pe->rid + 1;
666 	}
667 
668 	/*
669 	 * Associate PE in PELT. We need add the PE into the
670 	 * corresponding PELT-V as well. Otherwise, the error
671 	 * originated from the PE might contribute to other
672 	 * PEs.
673 	 */
674 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
675 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
676 	if (rc) {
677 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
678 		return -ENXIO;
679 	}
680 
681 	/* Configure PELTV */
682 	pnv_ioda_set_peltv(phb, pe, true);
683 
684 	/* Setup reverse map */
685 	for (rid = pe->rid; rid < rid_end; rid++)
686 		phb->ioda.pe_rmap[rid] = pe->pe_number;
687 
688 	/* Setup one MVTs on IODA1 */
689 	if (phb->type != PNV_PHB_IODA1) {
690 		pe->mve_number = 0;
691 		goto out;
692 	}
693 
694 	pe->mve_number = pe->pe_number;
695 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
696 	if (rc != OPAL_SUCCESS) {
697 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
698 		       rc, pe->mve_number);
699 		pe->mve_number = -1;
700 	} else {
701 		rc = opal_pci_set_mve_enable(phb->opal_id,
702 					     pe->mve_number, OPAL_ENABLE_MVE);
703 		if (rc) {
704 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
705 			       rc, pe->mve_number);
706 			pe->mve_number = -1;
707 		}
708 	}
709 
710 out:
711 	return 0;
712 }
713 
714 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
715 				       struct pnv_ioda_pe *pe)
716 {
717 	struct pnv_ioda_pe *lpe;
718 
719 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
720 		if (lpe->dma_weight < pe->dma_weight) {
721 			list_add_tail(&pe->dma_link, &lpe->dma_link);
722 			return;
723 		}
724 	}
725 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
726 }
727 
728 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
729 {
730 	/* This is quite simplistic. The "base" weight of a device
731 	 * is 10. 0 means no DMA is to be accounted for it.
732 	 */
733 
734 	/* If it's a bridge, no DMA */
735 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
736 		return 0;
737 
738 	/* Reduce the weight of slow USB controllers */
739 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
740 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
741 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
742 		return 3;
743 
744 	/* Increase the weight of RAID (includes Obsidian) */
745 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
746 		return 15;
747 
748 	/* Default */
749 	return 10;
750 }
751 
752 #if 0
753 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
754 {
755 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
756 	struct pnv_phb *phb = hose->private_data;
757 	struct pci_dn *pdn = pci_get_pdn(dev);
758 	struct pnv_ioda_pe *pe;
759 	int pe_num;
760 
761 	if (!pdn) {
762 		pr_err("%s: Device tree node not associated properly\n",
763 			   pci_name(dev));
764 		return NULL;
765 	}
766 	if (pdn->pe_number != IODA_INVALID_PE)
767 		return NULL;
768 
769 	/* PE#0 has been pre-set */
770 	if (dev->bus->number == 0)
771 		pe_num = 0;
772 	else
773 		pe_num = pnv_ioda_alloc_pe(phb);
774 	if (pe_num == IODA_INVALID_PE) {
775 		pr_warning("%s: Not enough PE# available, disabling device\n",
776 			   pci_name(dev));
777 		return NULL;
778 	}
779 
780 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
781 	 * pointer in the PE data structure, both should be destroyed at the
782 	 * same time. However, this needs to be looked at more closely again
783 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
784 	 *
785 	 * At some point we want to remove the PDN completely anyways
786 	 */
787 	pe = &phb->ioda.pe_array[pe_num];
788 	pci_dev_get(dev);
789 	pdn->pcidev = dev;
790 	pdn->pe_number = pe_num;
791 	pe->pdev = dev;
792 	pe->pbus = NULL;
793 	pe->tce32_seg = -1;
794 	pe->mve_number = -1;
795 	pe->rid = dev->bus->number << 8 | pdn->devfn;
796 
797 	pe_info(pe, "Associated device to PE\n");
798 
799 	if (pnv_ioda_configure_pe(phb, pe)) {
800 		/* XXX What do we do here ? */
801 		if (pe_num)
802 			pnv_ioda_free_pe(phb, pe_num);
803 		pdn->pe_number = IODA_INVALID_PE;
804 		pe->pdev = NULL;
805 		pci_dev_put(dev);
806 		return NULL;
807 	}
808 
809 	/* Assign a DMA weight to the device */
810 	pe->dma_weight = pnv_ioda_dma_weight(dev);
811 	if (pe->dma_weight != 0) {
812 		phb->ioda.dma_weight += pe->dma_weight;
813 		phb->ioda.dma_pe_count++;
814 	}
815 
816 	/* Link the PE */
817 	pnv_ioda_link_pe_by_weight(phb, pe);
818 
819 	return pe;
820 }
821 #endif /* Useful for SRIOV case */
822 
823 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
824 {
825 	struct pci_dev *dev;
826 
827 	list_for_each_entry(dev, &bus->devices, bus_list) {
828 		struct pci_dn *pdn = pci_get_pdn(dev);
829 
830 		if (pdn == NULL) {
831 			pr_warn("%s: No device node associated with device !\n",
832 				pci_name(dev));
833 			continue;
834 		}
835 		pdn->pcidev = dev;
836 		pdn->pe_number = pe->pe_number;
837 		pe->dma_weight += pnv_ioda_dma_weight(dev);
838 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
839 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
840 	}
841 }
842 
843 /*
844  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
845  * single PCI bus. Another one that contains the primary PCI bus and its
846  * subordinate PCI devices and buses. The second type of PE is normally
847  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
848  */
849 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
850 {
851 	struct pci_controller *hose = pci_bus_to_host(bus);
852 	struct pnv_phb *phb = hose->private_data;
853 	struct pnv_ioda_pe *pe;
854 	int pe_num = IODA_INVALID_PE;
855 
856 	/* Check if PE is determined by M64 */
857 	if (phb->pick_m64_pe)
858 		pe_num = phb->pick_m64_pe(phb, bus, all);
859 
860 	/* The PE number isn't pinned by M64 */
861 	if (pe_num == IODA_INVALID_PE)
862 		pe_num = pnv_ioda_alloc_pe(phb);
863 
864 	if (pe_num == IODA_INVALID_PE) {
865 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
866 			__func__, pci_domain_nr(bus), bus->number);
867 		return;
868 	}
869 
870 	pe = &phb->ioda.pe_array[pe_num];
871 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
872 	pe->pbus = bus;
873 	pe->pdev = NULL;
874 	pe->tce32_seg = -1;
875 	pe->mve_number = -1;
876 	pe->rid = bus->busn_res.start << 8;
877 	pe->dma_weight = 0;
878 
879 	if (all)
880 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
881 			bus->busn_res.start, bus->busn_res.end, pe_num);
882 	else
883 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
884 			bus->busn_res.start, pe_num);
885 
886 	if (pnv_ioda_configure_pe(phb, pe)) {
887 		/* XXX What do we do here ? */
888 		if (pe_num)
889 			pnv_ioda_free_pe(phb, pe_num);
890 		pe->pbus = NULL;
891 		return;
892 	}
893 
894 	/* Associate it with all child devices */
895 	pnv_ioda_setup_same_PE(bus, pe);
896 
897 	/* Put PE to the list */
898 	list_add_tail(&pe->list, &phb->ioda.pe_list);
899 
900 	/* Account for one DMA PE if at least one DMA capable device exist
901 	 * below the bridge
902 	 */
903 	if (pe->dma_weight != 0) {
904 		phb->ioda.dma_weight += pe->dma_weight;
905 		phb->ioda.dma_pe_count++;
906 	}
907 
908 	/* Link the PE */
909 	pnv_ioda_link_pe_by_weight(phb, pe);
910 }
911 
912 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
913 {
914 	struct pci_dev *dev;
915 
916 	pnv_ioda_setup_bus_PE(bus, 0);
917 
918 	list_for_each_entry(dev, &bus->devices, bus_list) {
919 		if (dev->subordinate) {
920 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
921 				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
922 			else
923 				pnv_ioda_setup_PEs(dev->subordinate);
924 		}
925 	}
926 }
927 
928 /*
929  * Configure PEs so that the downstream PCI buses and devices
930  * could have their associated PE#. Unfortunately, we didn't
931  * figure out the way to identify the PLX bridge yet. So we
932  * simply put the PCI bus and the subordinate behind the root
933  * port to PE# here. The game rule here is expected to be changed
934  * as soon as we can detected PLX bridge correctly.
935  */
936 static void pnv_pci_ioda_setup_PEs(void)
937 {
938 	struct pci_controller *hose, *tmp;
939 	struct pnv_phb *phb;
940 
941 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
942 		phb = hose->private_data;
943 
944 		/* M64 layout might affect PE allocation */
945 		if (phb->reserve_m64_pe)
946 			phb->reserve_m64_pe(phb);
947 
948 		pnv_ioda_setup_PEs(hose->bus);
949 	}
950 }
951 
952 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
953 {
954 	struct pci_dn *pdn = pci_get_pdn(pdev);
955 	struct pnv_ioda_pe *pe;
956 
957 	/*
958 	 * The function can be called while the PE#
959 	 * hasn't been assigned. Do nothing for the
960 	 * case.
961 	 */
962 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
963 		return;
964 
965 	pe = &phb->ioda.pe_array[pdn->pe_number];
966 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
967 	set_iommu_table_base_and_group(&pdev->dev, &pe->tce32_table);
968 }
969 
970 static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
971 				     struct pci_dev *pdev, u64 dma_mask)
972 {
973 	struct pci_dn *pdn = pci_get_pdn(pdev);
974 	struct pnv_ioda_pe *pe;
975 	uint64_t top;
976 	bool bypass = false;
977 
978 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
979 		return -ENODEV;;
980 
981 	pe = &phb->ioda.pe_array[pdn->pe_number];
982 	if (pe->tce_bypass_enabled) {
983 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
984 		bypass = (dma_mask >= top);
985 	}
986 
987 	if (bypass) {
988 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
989 		set_dma_ops(&pdev->dev, &dma_direct_ops);
990 		set_dma_offset(&pdev->dev, pe->tce_bypass_base);
991 	} else {
992 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
993 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
994 		set_iommu_table_base(&pdev->dev, &pe->tce32_table);
995 	}
996 	*pdev->dev.dma_mask = dma_mask;
997 	return 0;
998 }
999 
1000 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1001 					      struct pci_dev *pdev)
1002 {
1003 	struct pci_dn *pdn = pci_get_pdn(pdev);
1004 	struct pnv_ioda_pe *pe;
1005 	u64 end, mask;
1006 
1007 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1008 		return 0;
1009 
1010 	pe = &phb->ioda.pe_array[pdn->pe_number];
1011 	if (!pe->tce_bypass_enabled)
1012 		return __dma_get_required_mask(&pdev->dev);
1013 
1014 
1015 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1016 	mask = 1ULL << (fls64(end) - 1);
1017 	mask += mask - 1;
1018 
1019 	return mask;
1020 }
1021 
1022 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1023 				   struct pci_bus *bus,
1024 				   bool add_to_iommu_group)
1025 {
1026 	struct pci_dev *dev;
1027 
1028 	list_for_each_entry(dev, &bus->devices, bus_list) {
1029 		if (add_to_iommu_group)
1030 			set_iommu_table_base_and_group(&dev->dev,
1031 						       &pe->tce32_table);
1032 		else
1033 			set_iommu_table_base(&dev->dev, &pe->tce32_table);
1034 
1035 		if (dev->subordinate)
1036 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1037 					       add_to_iommu_group);
1038 	}
1039 }
1040 
1041 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
1042 					 struct iommu_table *tbl,
1043 					 __be64 *startp, __be64 *endp, bool rm)
1044 {
1045 	__be64 __iomem *invalidate = rm ?
1046 		(__be64 __iomem *)pe->tce_inval_reg_phys :
1047 		(__be64 __iomem *)tbl->it_index;
1048 	unsigned long start, end, inc;
1049 	const unsigned shift = tbl->it_page_shift;
1050 
1051 	start = __pa(startp);
1052 	end = __pa(endp);
1053 
1054 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1055 	if (tbl->it_busno) {
1056 		start <<= shift;
1057 		end <<= shift;
1058 		inc = 128ull << shift;
1059 		start |= tbl->it_busno;
1060 		end |= tbl->it_busno;
1061 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1062 		/* p7ioc-style invalidation, 2 TCEs per write */
1063 		start |= (1ull << 63);
1064 		end |= (1ull << 63);
1065 		inc = 16;
1066         } else {
1067 		/* Default (older HW) */
1068                 inc = 128;
1069 	}
1070 
1071         end |= inc - 1;	/* round up end to be different than start */
1072 
1073         mb(); /* Ensure above stores are visible */
1074         while (start <= end) {
1075 		if (rm)
1076 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1077 		else
1078 			__raw_writeq(cpu_to_be64(start), invalidate);
1079                 start += inc;
1080         }
1081 
1082 	/*
1083 	 * The iommu layer will do another mb() for us on build()
1084 	 * and we don't care on free()
1085 	 */
1086 }
1087 
1088 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
1089 					 struct iommu_table *tbl,
1090 					 __be64 *startp, __be64 *endp, bool rm)
1091 {
1092 	unsigned long start, end, inc;
1093 	__be64 __iomem *invalidate = rm ?
1094 		(__be64 __iomem *)pe->tce_inval_reg_phys :
1095 		(__be64 __iomem *)tbl->it_index;
1096 	const unsigned shift = tbl->it_page_shift;
1097 
1098 	/* We'll invalidate DMA address in PE scope */
1099 	start = 0x2ull << 60;
1100 	start |= (pe->pe_number & 0xFF);
1101 	end = start;
1102 
1103 	/* Figure out the start, end and step */
1104 	inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
1105 	start |= (inc << shift);
1106 	inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
1107 	end |= (inc << shift);
1108 	inc = (0x1ull << shift);
1109 	mb();
1110 
1111 	while (start <= end) {
1112 		if (rm)
1113 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1114 		else
1115 			__raw_writeq(cpu_to_be64(start), invalidate);
1116 		start += inc;
1117 	}
1118 }
1119 
1120 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
1121 				 __be64 *startp, __be64 *endp, bool rm)
1122 {
1123 	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
1124 					      tce32_table);
1125 	struct pnv_phb *phb = pe->phb;
1126 
1127 	if (phb->type == PNV_PHB_IODA1)
1128 		pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
1129 	else
1130 		pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
1131 }
1132 
1133 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1134 				      struct pnv_ioda_pe *pe, unsigned int base,
1135 				      unsigned int segs)
1136 {
1137 
1138 	struct page *tce_mem = NULL;
1139 	const __be64 *swinvp;
1140 	struct iommu_table *tbl;
1141 	unsigned int i;
1142 	int64_t rc;
1143 	void *addr;
1144 
1145 	/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
1146 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
1147 
1148 	/* XXX FIXME: Handle 64-bit only DMA devices */
1149 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1150 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1151 
1152 	/* We shouldn't already have a 32-bit DMA associated */
1153 	if (WARN_ON(pe->tce32_seg >= 0))
1154 		return;
1155 
1156 	/* Grab a 32-bit TCE table */
1157 	pe->tce32_seg = base;
1158 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1159 		(base << 28), ((base + segs) << 28) - 1);
1160 
1161 	/* XXX Currently, we allocate one big contiguous table for the
1162 	 * TCEs. We only really need one chunk per 256M of TCE space
1163 	 * (ie per segment) but that's an optimization for later, it
1164 	 * requires some added smarts with our get/put_tce implementation
1165 	 */
1166 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1167 				   get_order(TCE32_TABLE_SIZE * segs));
1168 	if (!tce_mem) {
1169 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1170 		goto fail;
1171 	}
1172 	addr = page_address(tce_mem);
1173 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
1174 
1175 	/* Configure HW */
1176 	for (i = 0; i < segs; i++) {
1177 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1178 					      pe->pe_number,
1179 					      base + i, 1,
1180 					      __pa(addr) + TCE32_TABLE_SIZE * i,
1181 					      TCE32_TABLE_SIZE, 0x1000);
1182 		if (rc) {
1183 			pe_err(pe, " Failed to configure 32-bit TCE table,"
1184 			       " err %ld\n", rc);
1185 			goto fail;
1186 		}
1187 	}
1188 
1189 	/* Setup linux iommu table */
1190 	tbl = &pe->tce32_table;
1191 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1192 				  base << 28, IOMMU_PAGE_SHIFT_4K);
1193 
1194 	/* OPAL variant of P7IOC SW invalidated TCEs */
1195 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1196 	if (swinvp) {
1197 		/* We need a couple more fields -- an address and a data
1198 		 * to or.  Since the bus is only printed out on table free
1199 		 * errors, and on the first pass the data will be a relative
1200 		 * bus number, print that out instead.
1201 		 */
1202 		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1203 		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1204 				8);
1205 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1206 				 TCE_PCI_SWINV_FREE   |
1207 				 TCE_PCI_SWINV_PAIR);
1208 	}
1209 	iommu_init_table(tbl, phb->hose->node);
1210 	iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1211 
1212 	if (pe->pdev)
1213 		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1214 	else
1215 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1216 
1217 	return;
1218  fail:
1219 	/* XXX Failure: Try to fallback to 64-bit only ? */
1220 	if (pe->tce32_seg >= 0)
1221 		pe->tce32_seg = -1;
1222 	if (tce_mem)
1223 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1224 }
1225 
1226 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
1227 {
1228 	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
1229 					      tce32_table);
1230 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
1231 	int64_t rc;
1232 
1233 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1234 	if (enable) {
1235 		phys_addr_t top = memblock_end_of_DRAM();
1236 
1237 		top = roundup_pow_of_two(top);
1238 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1239 						     pe->pe_number,
1240 						     window_id,
1241 						     pe->tce_bypass_base,
1242 						     top);
1243 	} else {
1244 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1245 						     pe->pe_number,
1246 						     window_id,
1247 						     pe->tce_bypass_base,
1248 						     0);
1249 
1250 		/*
1251 		 * EEH needs the mapping between IOMMU table and group
1252 		 * of those VFIO/KVM pass-through devices. We can postpone
1253 		 * resetting DMA ops until the DMA mask is configured in
1254 		 * host side.
1255 		 */
1256 		if (pe->pdev)
1257 			set_iommu_table_base(&pe->pdev->dev, tbl);
1258 		else
1259 			pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
1260 	}
1261 	if (rc)
1262 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1263 	else
1264 		pe->tce_bypass_enabled = enable;
1265 }
1266 
1267 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
1268 					  struct pnv_ioda_pe *pe)
1269 {
1270 	/* TVE #1 is selected by PCI address bit 59 */
1271 	pe->tce_bypass_base = 1ull << 59;
1272 
1273 	/* Install set_bypass callback for VFIO */
1274 	pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;
1275 
1276 	/* Enable bypass by default */
1277 	pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
1278 }
1279 
1280 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1281 				       struct pnv_ioda_pe *pe)
1282 {
1283 	struct page *tce_mem = NULL;
1284 	void *addr;
1285 	const __be64 *swinvp;
1286 	struct iommu_table *tbl;
1287 	unsigned int tce_table_size, end;
1288 	int64_t rc;
1289 
1290 	/* We shouldn't already have a 32-bit DMA associated */
1291 	if (WARN_ON(pe->tce32_seg >= 0))
1292 		return;
1293 
1294 	/* The PE will reserve all possible 32-bits space */
1295 	pe->tce32_seg = 0;
1296 	end = (1 << ilog2(phb->ioda.m32_pci_base));
1297 	tce_table_size = (end / 0x1000) * 8;
1298 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1299 		end);
1300 
1301 	/* Allocate TCE table */
1302 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1303 				   get_order(tce_table_size));
1304 	if (!tce_mem) {
1305 		pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
1306 		goto fail;
1307 	}
1308 	addr = page_address(tce_mem);
1309 	memset(addr, 0, tce_table_size);
1310 
1311 	/*
1312 	 * Map TCE table through TVT. The TVE index is the PE number
1313 	 * shifted by 1 bit for 32-bits DMA space.
1314 	 */
1315 	rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1316 					pe->pe_number << 1, 1, __pa(addr),
1317 					tce_table_size, 0x1000);
1318 	if (rc) {
1319 		pe_err(pe, "Failed to configure 32-bit TCE table,"
1320 		       " err %ld\n", rc);
1321 		goto fail;
1322 	}
1323 
1324 	/* Setup linux iommu table */
1325 	tbl = &pe->tce32_table;
1326 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
1327 			IOMMU_PAGE_SHIFT_4K);
1328 
1329 	/* OPAL variant of PHB3 invalidated TCEs */
1330 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1331 	if (swinvp) {
1332 		/* We need a couple more fields -- an address and a data
1333 		 * to or.  Since the bus is only printed out on table free
1334 		 * errors, and on the first pass the data will be a relative
1335 		 * bus number, print that out instead.
1336 		 */
1337 		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1338 		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1339 				8);
1340 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
1341 	}
1342 	iommu_init_table(tbl, phb->hose->node);
1343 	iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1344 
1345 	if (pe->pdev)
1346 		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1347 	else
1348 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1349 
1350 	/* Also create a bypass window */
1351 	pnv_pci_ioda2_setup_bypass_pe(phb, pe);
1352 	return;
1353 fail:
1354 	if (pe->tce32_seg >= 0)
1355 		pe->tce32_seg = -1;
1356 	if (tce_mem)
1357 		__free_pages(tce_mem, get_order(tce_table_size));
1358 }
1359 
1360 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
1361 {
1362 	struct pci_controller *hose = phb->hose;
1363 	unsigned int residual, remaining, segs, tw, base;
1364 	struct pnv_ioda_pe *pe;
1365 
1366 	/* If we have more PE# than segments available, hand out one
1367 	 * per PE until we run out and let the rest fail. If not,
1368 	 * then we assign at least one segment per PE, plus more based
1369 	 * on the amount of devices under that PE
1370 	 */
1371 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
1372 		residual = 0;
1373 	else
1374 		residual = phb->ioda.tce32_count -
1375 			phb->ioda.dma_pe_count;
1376 
1377 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
1378 		hose->global_number, phb->ioda.tce32_count);
1379 	pr_info("PCI: %d PE# for a total weight of %d\n",
1380 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
1381 
1382 	/* Walk our PE list and configure their DMA segments, hand them
1383 	 * out one base segment plus any residual segments based on
1384 	 * weight
1385 	 */
1386 	remaining = phb->ioda.tce32_count;
1387 	tw = phb->ioda.dma_weight;
1388 	base = 0;
1389 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
1390 		if (!pe->dma_weight)
1391 			continue;
1392 		if (!remaining) {
1393 			pe_warn(pe, "No DMA32 resources available\n");
1394 			continue;
1395 		}
1396 		segs = 1;
1397 		if (residual) {
1398 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
1399 			if (segs > remaining)
1400 				segs = remaining;
1401 		}
1402 
1403 		/*
1404 		 * For IODA2 compliant PHB3, we needn't care about the weight.
1405 		 * The all available 32-bits DMA space will be assigned to
1406 		 * the specific PE.
1407 		 */
1408 		if (phb->type == PNV_PHB_IODA1) {
1409 			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
1410 				pe->dma_weight, segs);
1411 			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
1412 		} else {
1413 			pe_info(pe, "Assign DMA32 space\n");
1414 			segs = 0;
1415 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
1416 		}
1417 
1418 		remaining -= segs;
1419 		base += segs;
1420 	}
1421 }
1422 
1423 #ifdef CONFIG_PCI_MSI
1424 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1425 {
1426 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1427 	struct irq_chip *chip = irq_data_get_irq_chip(d);
1428 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
1429 					   ioda.irq_chip);
1430 	int64_t rc;
1431 
1432 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1433 	WARN_ON_ONCE(rc);
1434 
1435 	icp_native_eoi(d);
1436 }
1437 
1438 
1439 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1440 {
1441 	struct irq_data *idata;
1442 	struct irq_chip *ichip;
1443 
1444 	if (phb->type != PNV_PHB_IODA2)
1445 		return;
1446 
1447 	if (!phb->ioda.irq_chip_init) {
1448 		/*
1449 		 * First time we setup an MSI IRQ, we need to setup the
1450 		 * corresponding IRQ chip to route correctly.
1451 		 */
1452 		idata = irq_get_irq_data(virq);
1453 		ichip = irq_data_get_irq_chip(idata);
1454 		phb->ioda.irq_chip_init = 1;
1455 		phb->ioda.irq_chip = *ichip;
1456 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
1457 	}
1458 	irq_set_chip(virq, &phb->ioda.irq_chip);
1459 }
1460 
1461 #ifdef CONFIG_CXL_BASE
1462 
1463 struct device_node *pnv_pci_to_phb_node(struct pci_dev *dev)
1464 {
1465 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1466 
1467 	return hose->dn;
1468 }
1469 EXPORT_SYMBOL(pnv_pci_to_phb_node);
1470 
1471 int pnv_phb_to_cxl(struct pci_dev *dev)
1472 {
1473 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1474 	struct pnv_phb *phb = hose->private_data;
1475 	struct pnv_ioda_pe *pe;
1476 	int rc;
1477 
1478 	pe = pnv_ioda_get_pe(dev);
1479 	if (!pe)
1480 		return -ENODEV;
1481 
1482 	pe_info(pe, "Switching PHB to CXL\n");
1483 
1484 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, 1, pe->pe_number);
1485 	if (rc)
1486 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
1487 
1488 	return rc;
1489 }
1490 EXPORT_SYMBOL(pnv_phb_to_cxl);
1491 
1492 /* Find PHB for cxl dev and allocate MSI hwirqs?
1493  * Returns the absolute hardware IRQ number
1494  */
1495 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
1496 {
1497 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1498 	struct pnv_phb *phb = hose->private_data;
1499 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
1500 
1501 	if (hwirq < 0) {
1502 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
1503 		return -ENOSPC;
1504 	}
1505 
1506 	return phb->msi_base + hwirq;
1507 }
1508 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
1509 
1510 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
1511 {
1512 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1513 	struct pnv_phb *phb = hose->private_data;
1514 
1515 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
1516 }
1517 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
1518 
1519 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
1520 				  struct pci_dev *dev)
1521 {
1522 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1523 	struct pnv_phb *phb = hose->private_data;
1524 	int i, hwirq;
1525 
1526 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
1527 		if (!irqs->range[i])
1528 			continue;
1529 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
1530 			 i, irqs->offset[i],
1531 			 irqs->range[i]);
1532 		hwirq = irqs->offset[i] - phb->msi_base;
1533 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
1534 				       irqs->range[i]);
1535 	}
1536 }
1537 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
1538 
1539 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
1540 			       struct pci_dev *dev, int num)
1541 {
1542 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1543 	struct pnv_phb *phb = hose->private_data;
1544 	int i, hwirq, try;
1545 
1546 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
1547 
1548 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
1549 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
1550 		try = num;
1551 		while (try) {
1552 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
1553 			if (hwirq >= 0)
1554 				break;
1555 			try /= 2;
1556 		}
1557 		if (!try)
1558 			goto fail;
1559 
1560 		irqs->offset[i] = phb->msi_base + hwirq;
1561 		irqs->range[i] = try;
1562 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
1563 			 i, irqs->offset[i], irqs->range[i]);
1564 		num -= try;
1565 	}
1566 	if (num)
1567 		goto fail;
1568 
1569 	return 0;
1570 fail:
1571 	pnv_cxl_release_hwirq_ranges(irqs, dev);
1572 	return -ENOSPC;
1573 }
1574 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
1575 
1576 int pnv_cxl_get_irq_count(struct pci_dev *dev)
1577 {
1578 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1579 	struct pnv_phb *phb = hose->private_data;
1580 
1581 	return phb->msi_bmp.irq_count;
1582 }
1583 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
1584 
1585 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
1586 			   unsigned int virq)
1587 {
1588 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1589 	struct pnv_phb *phb = hose->private_data;
1590 	unsigned int xive_num = hwirq - phb->msi_base;
1591 	struct pnv_ioda_pe *pe;
1592 	int rc;
1593 
1594 	if (!(pe = pnv_ioda_get_pe(dev)))
1595 		return -ENODEV;
1596 
1597 	/* Assign XIVE to PE */
1598 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1599 	if (rc) {
1600 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
1601 			"hwirq 0x%x XIVE 0x%x PE\n",
1602 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
1603 		return -EIO;
1604 	}
1605 	set_msi_irq_chip(phb, virq);
1606 
1607 	return 0;
1608 }
1609 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
1610 #endif
1611 
1612 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1613 				  unsigned int hwirq, unsigned int virq,
1614 				  unsigned int is_64, struct msi_msg *msg)
1615 {
1616 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1617 	unsigned int xive_num = hwirq - phb->msi_base;
1618 	__be32 data;
1619 	int rc;
1620 
1621 	/* No PE assigned ? bail out ... no MSI for you ! */
1622 	if (pe == NULL)
1623 		return -ENXIO;
1624 
1625 	/* Check if we have an MVE */
1626 	if (pe->mve_number < 0)
1627 		return -ENXIO;
1628 
1629 	/* Force 32-bit MSI on some broken devices */
1630 	if (dev->no_64bit_msi)
1631 		is_64 = 0;
1632 
1633 	/* Assign XIVE to PE */
1634 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1635 	if (rc) {
1636 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1637 			pci_name(dev), rc, xive_num);
1638 		return -EIO;
1639 	}
1640 
1641 	if (is_64) {
1642 		__be64 addr64;
1643 
1644 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1645 				     &addr64, &data);
1646 		if (rc) {
1647 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1648 				pci_name(dev), rc);
1649 			return -EIO;
1650 		}
1651 		msg->address_hi = be64_to_cpu(addr64) >> 32;
1652 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
1653 	} else {
1654 		__be32 addr32;
1655 
1656 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1657 				     &addr32, &data);
1658 		if (rc) {
1659 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1660 				pci_name(dev), rc);
1661 			return -EIO;
1662 		}
1663 		msg->address_hi = 0;
1664 		msg->address_lo = be32_to_cpu(addr32);
1665 	}
1666 	msg->data = be32_to_cpu(data);
1667 
1668 	set_msi_irq_chip(phb, virq);
1669 
1670 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
1671 		 " address=%x_%08x data=%x PE# %d\n",
1672 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
1673 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
1674 
1675 	return 0;
1676 }
1677 
1678 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1679 {
1680 	unsigned int count;
1681 	const __be32 *prop = of_get_property(phb->hose->dn,
1682 					     "ibm,opal-msi-ranges", NULL);
1683 	if (!prop) {
1684 		/* BML Fallback */
1685 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1686 	}
1687 	if (!prop)
1688 		return;
1689 
1690 	phb->msi_base = be32_to_cpup(prop);
1691 	count = be32_to_cpup(prop + 1);
1692 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
1693 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1694 		       phb->hose->global_number);
1695 		return;
1696 	}
1697 
1698 	phb->msi_setup = pnv_pci_ioda_msi_setup;
1699 	phb->msi32_support = 1;
1700 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1701 		count, phb->msi_base);
1702 }
1703 #else
1704 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1705 #endif /* CONFIG_PCI_MSI */
1706 
1707 /*
1708  * This function is supposed to be called on basis of PE from top
1709  * to bottom style. So the the I/O or MMIO segment assigned to
1710  * parent PE could be overrided by its child PEs if necessary.
1711  */
1712 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1713 				  struct pnv_ioda_pe *pe)
1714 {
1715 	struct pnv_phb *phb = hose->private_data;
1716 	struct pci_bus_region region;
1717 	struct resource *res;
1718 	int i, index;
1719 	int rc;
1720 
1721 	/*
1722 	 * NOTE: We only care PCI bus based PE for now. For PCI
1723 	 * device based PE, for example SRIOV sensitive VF should
1724 	 * be figured out later.
1725 	 */
1726 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1727 
1728 	pci_bus_for_each_resource(pe->pbus, res, i) {
1729 		if (!res || !res->flags ||
1730 		    res->start > res->end)
1731 			continue;
1732 
1733 		if (res->flags & IORESOURCE_IO) {
1734 			region.start = res->start - phb->ioda.io_pci_base;
1735 			region.end   = res->end - phb->ioda.io_pci_base;
1736 			index = region.start / phb->ioda.io_segsize;
1737 
1738 			while (index < phb->ioda.total_pe &&
1739 			       region.start <= region.end) {
1740 				phb->ioda.io_segmap[index] = pe->pe_number;
1741 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1742 					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1743 				if (rc != OPAL_SUCCESS) {
1744 					pr_err("%s: OPAL error %d when mapping IO "
1745 					       "segment #%d to PE#%d\n",
1746 					       __func__, rc, index, pe->pe_number);
1747 					break;
1748 				}
1749 
1750 				region.start += phb->ioda.io_segsize;
1751 				index++;
1752 			}
1753 		} else if (res->flags & IORESOURCE_MEM) {
1754 			region.start = res->start -
1755 				       hose->mem_offset[0] -
1756 				       phb->ioda.m32_pci_base;
1757 			region.end   = res->end -
1758 				       hose->mem_offset[0] -
1759 				       phb->ioda.m32_pci_base;
1760 			index = region.start / phb->ioda.m32_segsize;
1761 
1762 			while (index < phb->ioda.total_pe &&
1763 			       region.start <= region.end) {
1764 				phb->ioda.m32_segmap[index] = pe->pe_number;
1765 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1766 					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1767 				if (rc != OPAL_SUCCESS) {
1768 					pr_err("%s: OPAL error %d when mapping M32 "
1769 					       "segment#%d to PE#%d",
1770 					       __func__, rc, index, pe->pe_number);
1771 					break;
1772 				}
1773 
1774 				region.start += phb->ioda.m32_segsize;
1775 				index++;
1776 			}
1777 		}
1778 	}
1779 }
1780 
1781 static void pnv_pci_ioda_setup_seg(void)
1782 {
1783 	struct pci_controller *tmp, *hose;
1784 	struct pnv_phb *phb;
1785 	struct pnv_ioda_pe *pe;
1786 
1787 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1788 		phb = hose->private_data;
1789 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1790 			pnv_ioda_setup_pe_seg(hose, pe);
1791 		}
1792 	}
1793 }
1794 
1795 static void pnv_pci_ioda_setup_DMA(void)
1796 {
1797 	struct pci_controller *hose, *tmp;
1798 	struct pnv_phb *phb;
1799 
1800 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1801 		pnv_ioda_setup_dma(hose->private_data);
1802 
1803 		/* Mark the PHB initialization done */
1804 		phb = hose->private_data;
1805 		phb->initialized = 1;
1806 	}
1807 }
1808 
1809 static void pnv_pci_ioda_create_dbgfs(void)
1810 {
1811 #ifdef CONFIG_DEBUG_FS
1812 	struct pci_controller *hose, *tmp;
1813 	struct pnv_phb *phb;
1814 	char name[16];
1815 
1816 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1817 		phb = hose->private_data;
1818 
1819 		sprintf(name, "PCI%04x", hose->global_number);
1820 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1821 		if (!phb->dbgfs)
1822 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1823 				__func__, hose->global_number);
1824 	}
1825 #endif /* CONFIG_DEBUG_FS */
1826 }
1827 
1828 static void pnv_pci_ioda_fixup(void)
1829 {
1830 	pnv_pci_ioda_setup_PEs();
1831 	pnv_pci_ioda_setup_seg();
1832 	pnv_pci_ioda_setup_DMA();
1833 
1834 	pnv_pci_ioda_create_dbgfs();
1835 
1836 #ifdef CONFIG_EEH
1837 	eeh_init();
1838 	eeh_addr_cache_build();
1839 #endif
1840 }
1841 
1842 /*
1843  * Returns the alignment for I/O or memory windows for P2P
1844  * bridges. That actually depends on how PEs are segmented.
1845  * For now, we return I/O or M32 segment size for PE sensitive
1846  * P2P bridges. Otherwise, the default values (4KiB for I/O,
1847  * 1MiB for memory) will be returned.
1848  *
1849  * The current PCI bus might be put into one PE, which was
1850  * create against the parent PCI bridge. For that case, we
1851  * needn't enlarge the alignment so that we can save some
1852  * resources.
1853  */
1854 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1855 						unsigned long type)
1856 {
1857 	struct pci_dev *bridge;
1858 	struct pci_controller *hose = pci_bus_to_host(bus);
1859 	struct pnv_phb *phb = hose->private_data;
1860 	int num_pci_bridges = 0;
1861 
1862 	bridge = bus->self;
1863 	while (bridge) {
1864 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1865 			num_pci_bridges++;
1866 			if (num_pci_bridges >= 2)
1867 				return 1;
1868 		}
1869 
1870 		bridge = bridge->bus->self;
1871 	}
1872 
1873 	/* We fail back to M32 if M64 isn't supported */
1874 	if (phb->ioda.m64_segsize &&
1875 	    pnv_pci_is_mem_pref_64(type))
1876 		return phb->ioda.m64_segsize;
1877 	if (type & IORESOURCE_MEM)
1878 		return phb->ioda.m32_segsize;
1879 
1880 	return phb->ioda.io_segsize;
1881 }
1882 
1883 /* Prevent enabling devices for which we couldn't properly
1884  * assign a PE
1885  */
1886 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1887 {
1888 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1889 	struct pnv_phb *phb = hose->private_data;
1890 	struct pci_dn *pdn;
1891 
1892 	/* The function is probably called while the PEs have
1893 	 * not be created yet. For example, resource reassignment
1894 	 * during PCI probe period. We just skip the check if
1895 	 * PEs isn't ready.
1896 	 */
1897 	if (!phb->initialized)
1898 		return 0;
1899 
1900 	pdn = pci_get_pdn(dev);
1901 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1902 		return -EINVAL;
1903 
1904 	return 0;
1905 }
1906 
1907 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1908 			       u32 devfn)
1909 {
1910 	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1911 }
1912 
1913 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1914 {
1915 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
1916 		       OPAL_ASSERT_RESET);
1917 }
1918 
1919 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
1920 					 u64 hub_id, int ioda_type)
1921 {
1922 	struct pci_controller *hose;
1923 	struct pnv_phb *phb;
1924 	unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1925 	const __be64 *prop64;
1926 	const __be32 *prop32;
1927 	int len;
1928 	u64 phb_id;
1929 	void *aux;
1930 	long rc;
1931 
1932 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1933 
1934 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1935 	if (!prop64) {
1936 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
1937 		return;
1938 	}
1939 	phb_id = be64_to_cpup(prop64);
1940 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
1941 
1942 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
1943 
1944 	/* Allocate PCI controller */
1945 	phb->hose = hose = pcibios_alloc_controller(np);
1946 	if (!phb->hose) {
1947 		pr_err("  Can't allocate PCI controller for %s\n",
1948 		       np->full_name);
1949 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
1950 		return;
1951 	}
1952 
1953 	spin_lock_init(&phb->lock);
1954 	prop32 = of_get_property(np, "bus-range", &len);
1955 	if (prop32 && len == 8) {
1956 		hose->first_busno = be32_to_cpu(prop32[0]);
1957 		hose->last_busno = be32_to_cpu(prop32[1]);
1958 	} else {
1959 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
1960 		hose->first_busno = 0;
1961 		hose->last_busno = 0xff;
1962 	}
1963 	hose->private_data = phb;
1964 	phb->hub_id = hub_id;
1965 	phb->opal_id = phb_id;
1966 	phb->type = ioda_type;
1967 
1968 	/* Detect specific models for error handling */
1969 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1970 		phb->model = PNV_PHB_MODEL_P7IOC;
1971 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1972 		phb->model = PNV_PHB_MODEL_PHB3;
1973 	else
1974 		phb->model = PNV_PHB_MODEL_UNKNOWN;
1975 
1976 	/* Parse 32-bit and IO ranges (if any) */
1977 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
1978 
1979 	/* Get registers */
1980 	phb->regs = of_iomap(np, 0);
1981 	if (phb->regs == NULL)
1982 		pr_err("  Failed to map registers !\n");
1983 
1984 	/* Initialize more IODA stuff */
1985 	phb->ioda.total_pe = 1;
1986 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1987 	if (prop32)
1988 		phb->ioda.total_pe = be32_to_cpup(prop32);
1989 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
1990 	if (prop32)
1991 		phb->ioda.reserved_pe = be32_to_cpup(prop32);
1992 
1993 	/* Parse 64-bit MMIO range */
1994 	pnv_ioda_parse_m64_window(phb);
1995 
1996 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1997 	/* FW Has already off top 64k of M32 space (MSI space) */
1998 	phb->ioda.m32_size += 0x10000;
1999 
2000 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
2001 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2002 	phb->ioda.io_size = hose->pci_io_size;
2003 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
2004 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2005 
2006 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2007 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
2008 	m32map_off = size;
2009 	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
2010 	if (phb->type == PNV_PHB_IODA1) {
2011 		iomap_off = size;
2012 		size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
2013 	}
2014 	pemap_off = size;
2015 	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
2016 	aux = memblock_virt_alloc(size, 0);
2017 	phb->ioda.pe_alloc = aux;
2018 	phb->ioda.m32_segmap = aux + m32map_off;
2019 	if (phb->type == PNV_PHB_IODA1)
2020 		phb->ioda.io_segmap = aux + iomap_off;
2021 	phb->ioda.pe_array = aux + pemap_off;
2022 	set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
2023 
2024 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
2025 	INIT_LIST_HEAD(&phb->ioda.pe_list);
2026 
2027 	/* Calculate how many 32-bit TCE segments we have */
2028 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
2029 
2030 #if 0 /* We should really do that ... */
2031 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
2032 					 window_type,
2033 					 window_num,
2034 					 starting_real_address,
2035 					 starting_pci_address,
2036 					 segment_size);
2037 #endif
2038 
2039 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2040 		phb->ioda.total_pe, phb->ioda.reserved_pe,
2041 		phb->ioda.m32_size, phb->ioda.m32_segsize);
2042 	if (phb->ioda.m64_size)
2043 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2044 			phb->ioda.m64_size, phb->ioda.m64_segsize);
2045 	if (phb->ioda.io_size)
2046 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
2047 			phb->ioda.io_size, phb->ioda.io_segsize);
2048 
2049 
2050 	phb->hose->ops = &pnv_pci_ops;
2051 	phb->get_pe_state = pnv_ioda_get_pe_state;
2052 	phb->freeze_pe = pnv_ioda_freeze_pe;
2053 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2054 #ifdef CONFIG_EEH
2055 	phb->eeh_ops = &ioda_eeh_ops;
2056 #endif
2057 
2058 	/* Setup RID -> PE mapping function */
2059 	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
2060 
2061 	/* Setup TCEs */
2062 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
2063 	phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
2064 	phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
2065 
2066 	/* Setup shutdown function for kexec */
2067 	phb->shutdown = pnv_pci_ioda_shutdown;
2068 
2069 	/* Setup MSI support */
2070 	pnv_pci_init_ioda_msis(phb);
2071 
2072 	/*
2073 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2074 	 * to let the PCI core do resource assignment. It's supposed
2075 	 * that the PCI core will do correct I/O and MMIO alignment
2076 	 * for the P2P bridge bars so that each PCI bus (excluding
2077 	 * the child P2P bridges) can form individual PE.
2078 	 */
2079 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2080 	ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
2081 	ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
2082 	ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
2083 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2084 
2085 	/* Reset IODA tables to a clean state */
2086 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2087 	if (rc)
2088 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
2089 
2090 	/* If we're running in kdump kerenl, the previous kerenl never
2091 	 * shutdown PCI devices correctly. We already got IODA table
2092 	 * cleaned out. So we have to issue PHB reset to stop all PCI
2093 	 * transactions from previous kerenl.
2094 	 */
2095 	if (is_kdump_kernel()) {
2096 		pr_info("  Issue PHB reset ...\n");
2097 		ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2098 		ioda_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2099 	}
2100 
2101 	/* Remove M64 resource if we can't configure it successfully */
2102 	if (!phb->init_m64 || phb->init_m64(phb))
2103 		hose->mem_resources[1].flags = 0;
2104 }
2105 
2106 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2107 {
2108 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2109 }
2110 
2111 void __init pnv_pci_init_ioda_hub(struct device_node *np)
2112 {
2113 	struct device_node *phbn;
2114 	const __be64 *prop64;
2115 	u64 hub_id;
2116 
2117 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2118 
2119 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2120 	if (!prop64) {
2121 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2122 		return;
2123 	}
2124 	hub_id = be64_to_cpup(prop64);
2125 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2126 
2127 	/* Count child PHBs */
2128 	for_each_child_of_node(np, phbn) {
2129 		/* Look for IODA1 PHBs */
2130 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
2131 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
2132 	}
2133 }
2134