1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerNV OPAL high level interfaces 4 * 5 * Copyright 2011 IBM Corp. 6 */ 7 8 #define pr_fmt(fmt) "opal: " fmt 9 10 #include <linux/printk.h> 11 #include <linux/types.h> 12 #include <linux/of.h> 13 #include <linux/of_fdt.h> 14 #include <linux/of_platform.h> 15 #include <linux/of_address.h> 16 #include <linux/interrupt.h> 17 #include <linux/notifier.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/kobject.h> 21 #include <linux/delay.h> 22 #include <linux/memblock.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/kmsg_dump.h> 26 #include <linux/console.h> 27 #include <linux/sched/debug.h> 28 29 #include <asm/machdep.h> 30 #include <asm/opal.h> 31 #include <asm/firmware.h> 32 #include <asm/mce.h> 33 #include <asm/imc-pmu.h> 34 #include <asm/bug.h> 35 36 #include "powernv.h" 37 38 #define OPAL_MSG_QUEUE_MAX 16 39 40 struct opal_msg_node { 41 struct list_head list; 42 struct opal_msg msg; 43 }; 44 45 static DEFINE_SPINLOCK(msg_list_lock); 46 static LIST_HEAD(msg_list); 47 48 /* /sys/firmware/opal */ 49 struct kobject *opal_kobj; 50 51 struct opal { 52 u64 base; 53 u64 entry; 54 u64 size; 55 } opal; 56 57 struct mcheck_recoverable_range { 58 u64 start_addr; 59 u64 end_addr; 60 u64 recover_addr; 61 }; 62 63 static int msg_list_size; 64 65 static struct mcheck_recoverable_range *mc_recoverable_range; 66 static int mc_recoverable_range_len; 67 68 struct device_node *opal_node; 69 static DEFINE_SPINLOCK(opal_write_lock); 70 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX]; 71 static uint32_t opal_heartbeat; 72 static struct task_struct *kopald_tsk; 73 static struct opal_msg *opal_msg; 74 static u32 opal_msg_size __ro_after_init; 75 76 void __init opal_configure_cores(void) 77 { 78 u64 reinit_flags = 0; 79 80 /* Do the actual re-init, This will clobber all FPRs, VRs, etc... 81 * 82 * It will preserve non volatile GPRs and HSPRG0/1. It will 83 * also restore HIDs and other SPRs to their original value 84 * but it might clobber a bunch. 85 */ 86 #ifdef __BIG_ENDIAN__ 87 reinit_flags |= OPAL_REINIT_CPUS_HILE_BE; 88 #else 89 reinit_flags |= OPAL_REINIT_CPUS_HILE_LE; 90 #endif 91 92 /* 93 * POWER9 always support running hash: 94 * ie. Host hash supports hash guests 95 * Host radix supports hash/radix guests 96 */ 97 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) { 98 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH; 99 if (early_radix_enabled()) 100 reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX; 101 } 102 103 opal_reinit_cpus(reinit_flags); 104 105 /* Restore some bits */ 106 if (cur_cpu_spec->cpu_restore) 107 cur_cpu_spec->cpu_restore(); 108 } 109 110 int __init early_init_dt_scan_opal(unsigned long node, 111 const char *uname, int depth, void *data) 112 { 113 const void *basep, *entryp, *sizep; 114 int basesz, entrysz, runtimesz; 115 116 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 117 return 0; 118 119 basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz); 120 entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz); 121 sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz); 122 123 if (!basep || !entryp || !sizep) 124 return 1; 125 126 opal.base = of_read_number(basep, basesz/4); 127 opal.entry = of_read_number(entryp, entrysz/4); 128 opal.size = of_read_number(sizep, runtimesz/4); 129 130 pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n", 131 opal.base, basep, basesz); 132 pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n", 133 opal.entry, entryp, entrysz); 134 pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n", 135 opal.size, sizep, runtimesz); 136 137 if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) { 138 powerpc_firmware_features |= FW_FEATURE_OPAL; 139 pr_debug("OPAL detected !\n"); 140 } else { 141 panic("OPAL != V3 detected, no longer supported.\n"); 142 } 143 144 return 1; 145 } 146 147 int __init early_init_dt_scan_recoverable_ranges(unsigned long node, 148 const char *uname, int depth, void *data) 149 { 150 int i, psize, size; 151 const __be32 *prop; 152 153 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 154 return 0; 155 156 prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize); 157 158 if (!prop) 159 return 1; 160 161 pr_debug("Found machine check recoverable ranges.\n"); 162 163 /* 164 * Calculate number of available entries. 165 * 166 * Each recoverable address range entry is (start address, len, 167 * recovery address), 2 cells each for start and recovery address, 168 * 1 cell for len, totalling 5 cells per entry. 169 */ 170 mc_recoverable_range_len = psize / (sizeof(*prop) * 5); 171 172 /* Sanity check */ 173 if (!mc_recoverable_range_len) 174 return 1; 175 176 /* Size required to hold all the entries. */ 177 size = mc_recoverable_range_len * 178 sizeof(struct mcheck_recoverable_range); 179 180 /* 181 * Allocate a buffer to hold the MC recoverable ranges. 182 */ 183 mc_recoverable_range = memblock_alloc_or_panic(size, __alignof__(u64)); 184 185 for (i = 0; i < mc_recoverable_range_len; i++) { 186 mc_recoverable_range[i].start_addr = 187 of_read_number(prop + (i * 5) + 0, 2); 188 mc_recoverable_range[i].end_addr = 189 mc_recoverable_range[i].start_addr + 190 of_read_number(prop + (i * 5) + 2, 1); 191 mc_recoverable_range[i].recover_addr = 192 of_read_number(prop + (i * 5) + 3, 2); 193 194 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n", 195 mc_recoverable_range[i].start_addr, 196 mc_recoverable_range[i].end_addr, 197 mc_recoverable_range[i].recover_addr); 198 } 199 return 1; 200 } 201 202 static int __init opal_register_exception_handlers(void) 203 { 204 #ifdef __BIG_ENDIAN__ 205 u64 glue; 206 207 if (!(powerpc_firmware_features & FW_FEATURE_OPAL)) 208 return -ENODEV; 209 210 /* Hookup some exception handlers except machine check. We use the 211 * fwnmi area at 0x7000 to provide the glue space to OPAL 212 */ 213 glue = 0x7000; 214 215 /* 216 * Only ancient OPAL firmware requires this. 217 * Specifically, firmware from FW810.00 (released June 2014) 218 * through FW810.20 (Released October 2014). 219 * 220 * Check if we are running on newer (post Oct 2014) firmware that 221 * exports the OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to 222 * patch the HMI interrupt and we catch it directly in Linux. 223 * 224 * For older firmware (i.e < FW810.20), we fallback to old behavior and 225 * let OPAL patch the HMI vector and handle it inside OPAL firmware. 226 * 227 * For newer firmware we catch/handle the HMI directly in Linux. 228 */ 229 if (!opal_check_token(OPAL_HANDLE_HMI)) { 230 pr_info("Old firmware detected, OPAL handles HMIs.\n"); 231 opal_register_exception_handler( 232 OPAL_HYPERVISOR_MAINTENANCE_HANDLER, 233 0, glue); 234 glue += 128; 235 } 236 237 /* 238 * Only applicable to ancient firmware, all modern 239 * (post March 2015/skiboot 5.0) firmware will just return 240 * OPAL_UNSUPPORTED. 241 */ 242 opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue); 243 #endif 244 245 return 0; 246 } 247 machine_early_initcall(powernv, opal_register_exception_handlers); 248 249 static void queue_replay_msg(void *msg) 250 { 251 struct opal_msg_node *msg_node; 252 253 if (msg_list_size < OPAL_MSG_QUEUE_MAX) { 254 msg_node = kzalloc(sizeof(*msg_node), GFP_ATOMIC); 255 if (msg_node) { 256 INIT_LIST_HEAD(&msg_node->list); 257 memcpy(&msg_node->msg, msg, sizeof(struct opal_msg)); 258 list_add_tail(&msg_node->list, &msg_list); 259 msg_list_size++; 260 } else 261 pr_warn_once("message queue no memory\n"); 262 263 if (msg_list_size >= OPAL_MSG_QUEUE_MAX) 264 pr_warn_once("message queue full\n"); 265 } 266 } 267 268 static void dequeue_replay_msg(enum opal_msg_type msg_type) 269 { 270 struct opal_msg_node *msg_node, *tmp; 271 272 list_for_each_entry_safe(msg_node, tmp, &msg_list, list) { 273 if (be32_to_cpu(msg_node->msg.msg_type) != msg_type) 274 continue; 275 276 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type], 277 msg_type, 278 &msg_node->msg); 279 280 list_del(&msg_node->list); 281 kfree(msg_node); 282 msg_list_size--; 283 } 284 } 285 286 /* 287 * Opal message notifier based on message type. Allow subscribers to get 288 * notified for specific messgae type. 289 */ 290 int opal_message_notifier_register(enum opal_msg_type msg_type, 291 struct notifier_block *nb) 292 { 293 int ret; 294 unsigned long flags; 295 296 if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) { 297 pr_warn("%s: Invalid arguments, msg_type:%d\n", 298 __func__, msg_type); 299 return -EINVAL; 300 } 301 302 spin_lock_irqsave(&msg_list_lock, flags); 303 ret = atomic_notifier_chain_register( 304 &opal_msg_notifier_head[msg_type], nb); 305 306 /* 307 * If the registration succeeded, replay any queued messages that came 308 * in prior to the notifier chain registration. msg_list_lock held here 309 * to ensure they're delivered prior to any subsequent messages. 310 */ 311 if (ret == 0) 312 dequeue_replay_msg(msg_type); 313 314 spin_unlock_irqrestore(&msg_list_lock, flags); 315 316 return ret; 317 } 318 EXPORT_SYMBOL_GPL(opal_message_notifier_register); 319 320 int opal_message_notifier_unregister(enum opal_msg_type msg_type, 321 struct notifier_block *nb) 322 { 323 return atomic_notifier_chain_unregister( 324 &opal_msg_notifier_head[msg_type], nb); 325 } 326 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister); 327 328 static void opal_message_do_notify(uint32_t msg_type, void *msg) 329 { 330 unsigned long flags; 331 bool queued = false; 332 333 spin_lock_irqsave(&msg_list_lock, flags); 334 if (opal_msg_notifier_head[msg_type].head == NULL) { 335 /* 336 * Queue up the msg since no notifiers have registered 337 * yet for this msg_type. 338 */ 339 queue_replay_msg(msg); 340 queued = true; 341 } 342 spin_unlock_irqrestore(&msg_list_lock, flags); 343 344 if (queued) 345 return; 346 347 /* notify subscribers */ 348 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type], 349 msg_type, msg); 350 } 351 352 static void opal_handle_message(void) 353 { 354 s64 ret; 355 u32 type; 356 357 ret = opal_get_msg(__pa(opal_msg), opal_msg_size); 358 /* No opal message pending. */ 359 if (ret == OPAL_RESOURCE) 360 return; 361 362 /* check for errors. */ 363 if (ret) { 364 pr_warn("%s: Failed to retrieve opal message, err=%lld\n", 365 __func__, ret); 366 return; 367 } 368 369 type = be32_to_cpu(opal_msg->msg_type); 370 371 /* Sanity check */ 372 if (type >= OPAL_MSG_TYPE_MAX) { 373 pr_warn_once("%s: Unknown message type: %u\n", __func__, type); 374 return; 375 } 376 opal_message_do_notify(type, (void *)opal_msg); 377 } 378 379 static irqreturn_t opal_message_notify(int irq, void *data) 380 { 381 opal_handle_message(); 382 return IRQ_HANDLED; 383 } 384 385 static int __init opal_message_init(struct device_node *opal_node) 386 { 387 int ret, i, irq; 388 389 ret = of_property_read_u32(opal_node, "opal-msg-size", &opal_msg_size); 390 if (ret) { 391 pr_notice("Failed to read opal-msg-size property\n"); 392 opal_msg_size = sizeof(struct opal_msg); 393 } 394 395 opal_msg = kmalloc(opal_msg_size, GFP_KERNEL); 396 if (!opal_msg) { 397 opal_msg_size = sizeof(struct opal_msg); 398 /* Try to allocate fixed message size */ 399 opal_msg = kmalloc(opal_msg_size, GFP_KERNEL); 400 BUG_ON(opal_msg == NULL); 401 } 402 403 for (i = 0; i < OPAL_MSG_TYPE_MAX; i++) 404 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]); 405 406 irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING)); 407 if (!irq) { 408 pr_err("%s: Can't register OPAL event irq (%d)\n", 409 __func__, irq); 410 return irq; 411 } 412 413 ret = request_irq(irq, opal_message_notify, 414 IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL); 415 if (ret) { 416 pr_err("%s: Can't request OPAL event irq (%d)\n", 417 __func__, ret); 418 return ret; 419 } 420 421 return 0; 422 } 423 424 ssize_t opal_get_chars(uint32_t vtermno, u8 *buf, size_t count) 425 { 426 s64 rc; 427 __be64 evt, len; 428 429 if (!opal.entry) 430 return -ENODEV; 431 opal_poll_events(&evt); 432 if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0) 433 return 0; 434 len = cpu_to_be64(count); 435 rc = opal_console_read(vtermno, &len, buf); 436 if (rc == OPAL_SUCCESS) 437 return be64_to_cpu(len); 438 return 0; 439 } 440 441 static ssize_t __opal_put_chars(uint32_t vtermno, const u8 *data, 442 size_t total_len, bool atomic) 443 { 444 unsigned long flags = 0 /* shut up gcc */; 445 ssize_t written; 446 __be64 olen; 447 s64 rc; 448 449 if (!opal.entry) 450 return -ENODEV; 451 452 if (atomic) 453 spin_lock_irqsave(&opal_write_lock, flags); 454 rc = opal_console_write_buffer_space(vtermno, &olen); 455 if (rc || be64_to_cpu(olen) < total_len) { 456 /* Closed -> drop characters */ 457 if (rc) 458 written = total_len; 459 else 460 written = -EAGAIN; 461 goto out; 462 } 463 464 /* Should not get a partial write here because space is available. */ 465 olen = cpu_to_be64(total_len); 466 rc = opal_console_write(vtermno, &olen, data); 467 if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 468 if (rc == OPAL_BUSY_EVENT) 469 opal_poll_events(NULL); 470 written = -EAGAIN; 471 goto out; 472 } 473 474 /* Closed or other error drop */ 475 if (rc != OPAL_SUCCESS) { 476 written = opal_error_code(rc); 477 goto out; 478 } 479 480 written = be64_to_cpu(olen); 481 if (written < total_len) { 482 if (atomic) { 483 /* Should not happen */ 484 pr_warn("atomic console write returned partial " 485 "len=%zu written=%zd\n", total_len, written); 486 } 487 if (!written) 488 written = -EAGAIN; 489 } 490 491 out: 492 if (atomic) 493 spin_unlock_irqrestore(&opal_write_lock, flags); 494 495 return written; 496 } 497 498 ssize_t opal_put_chars(uint32_t vtermno, const u8 *data, size_t total_len) 499 { 500 return __opal_put_chars(vtermno, data, total_len, false); 501 } 502 503 /* 504 * opal_put_chars_atomic will not perform partial-writes. Data will be 505 * atomically written to the terminal or not at all. This is not strictly 506 * true at the moment because console space can race with OPAL's console 507 * writes. 508 */ 509 ssize_t opal_put_chars_atomic(uint32_t vtermno, const u8 *data, 510 size_t total_len) 511 { 512 return __opal_put_chars(vtermno, data, total_len, true); 513 } 514 515 static s64 __opal_flush_console(uint32_t vtermno) 516 { 517 s64 rc; 518 519 if (!opal_check_token(OPAL_CONSOLE_FLUSH)) { 520 __be64 evt; 521 522 /* 523 * If OPAL_CONSOLE_FLUSH is not implemented in the firmware, 524 * the console can still be flushed by calling the polling 525 * function while it has OPAL_EVENT_CONSOLE_OUTPUT events. 526 */ 527 WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n"); 528 529 opal_poll_events(&evt); 530 if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT)) 531 return OPAL_SUCCESS; 532 return OPAL_BUSY; 533 534 } else { 535 rc = opal_console_flush(vtermno); 536 if (rc == OPAL_BUSY_EVENT) { 537 opal_poll_events(NULL); 538 rc = OPAL_BUSY; 539 } 540 return rc; 541 } 542 543 } 544 545 /* 546 * opal_flush_console spins until the console is flushed 547 */ 548 int opal_flush_console(uint32_t vtermno) 549 { 550 for (;;) { 551 s64 rc = __opal_flush_console(vtermno); 552 553 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) { 554 mdelay(1); 555 continue; 556 } 557 558 return opal_error_code(rc); 559 } 560 } 561 562 /* 563 * opal_flush_chars is an hvc interface that sleeps until the console is 564 * flushed if wait, otherwise it will return -EBUSY if the console has data, 565 * -EAGAIN if it has data and some of it was flushed. 566 */ 567 int opal_flush_chars(uint32_t vtermno, bool wait) 568 { 569 for (;;) { 570 s64 rc = __opal_flush_console(vtermno); 571 572 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) { 573 if (wait) { 574 msleep(OPAL_BUSY_DELAY_MS); 575 continue; 576 } 577 if (rc == OPAL_PARTIAL) 578 return -EAGAIN; 579 } 580 581 return opal_error_code(rc); 582 } 583 } 584 585 static int opal_recover_mce(struct pt_regs *regs, 586 struct machine_check_event *evt) 587 { 588 int recovered = 0; 589 590 if (regs_is_unrecoverable(regs)) { 591 /* If MSR_RI isn't set, we cannot recover */ 592 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n"); 593 recovered = 0; 594 } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) { 595 /* Platform corrected itself */ 596 recovered = 1; 597 } else if (evt->severity == MCE_SEV_FATAL) { 598 /* Fatal machine check */ 599 pr_err("Machine check interrupt is fatal\n"); 600 recovered = 0; 601 } 602 603 if (!recovered && evt->sync_error) { 604 /* 605 * Try to kill processes if we get a synchronous machine check 606 * (e.g., one caused by execution of this instruction). This 607 * will devolve into a panic if we try to kill init or are in 608 * an interrupt etc. 609 * 610 * TODO: Queue up this address for hwpoisioning later. 611 * TODO: This is not quite right for d-side machine 612 * checks ->nip is not necessarily the important 613 * address. 614 */ 615 if ((user_mode(regs))) { 616 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); 617 recovered = 1; 618 } else if (die_will_crash()) { 619 /* 620 * die() would kill the kernel, so better to go via 621 * the platform reboot code that will log the 622 * machine check. 623 */ 624 recovered = 0; 625 } else { 626 die_mce("Machine check", regs, SIGBUS); 627 recovered = 1; 628 } 629 } 630 631 return recovered; 632 } 633 634 void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg) 635 { 636 panic_flush_kmsg_start(); 637 638 pr_emerg("Hardware platform error: %s\n", msg); 639 if (regs) 640 show_regs(regs); 641 smp_send_stop(); 642 643 panic_flush_kmsg_end(); 644 645 /* 646 * Don't bother to shut things down because this will 647 * xstop the system. 648 */ 649 if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg) 650 == OPAL_UNSUPPORTED) { 651 pr_emerg("Reboot type %d not supported for %s\n", 652 OPAL_REBOOT_PLATFORM_ERROR, msg); 653 } 654 655 /* 656 * We reached here. There can be three possibilities: 657 * 1. We are running on a firmware level that do not support 658 * opal_cec_reboot2() 659 * 2. We are running on a firmware level that do not support 660 * OPAL_REBOOT_PLATFORM_ERROR reboot type. 661 * 3. We are running on FSP based system that does not need 662 * opal to trigger checkstop explicitly for error analysis. 663 * The FSP PRD component would have already got notified 664 * about this error through other channels. 665 * 4. We are running on a newer skiboot that by default does 666 * not cause a checkstop, drops us back to the kernel to 667 * extract context and state at the time of the error. 668 */ 669 670 panic(msg); 671 } 672 673 int opal_machine_check(struct pt_regs *regs) 674 { 675 struct machine_check_event evt; 676 677 if (!get_mce_event(&evt, MCE_EVENT_RELEASE)) 678 return 0; 679 680 /* Print things out */ 681 if (evt.version != MCE_V1) { 682 pr_err("Machine Check Exception, Unknown event version %d !\n", 683 evt.version); 684 return 0; 685 } 686 machine_check_print_event_info(&evt, user_mode(regs), false); 687 688 if (opal_recover_mce(regs, &evt)) 689 return 1; 690 691 pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception"); 692 } 693 694 /* Early hmi handler called in real mode. */ 695 int opal_hmi_exception_early(struct pt_regs *regs) 696 { 697 s64 rc; 698 699 /* 700 * call opal hmi handler. Pass paca address as token. 701 * The return value OPAL_SUCCESS is an indication that there is 702 * an HMI event generated waiting to pull by Linux. 703 */ 704 rc = opal_handle_hmi(); 705 if (rc == OPAL_SUCCESS) { 706 local_paca->hmi_event_available = 1; 707 return 1; 708 } 709 return 0; 710 } 711 712 int opal_hmi_exception_early2(struct pt_regs *regs) 713 { 714 s64 rc; 715 __be64 out_flags; 716 717 /* 718 * call opal hmi handler. 719 * Check 64-bit flag mask to find out if an event was generated, 720 * and whether TB is still valid or not etc. 721 */ 722 rc = opal_handle_hmi2(&out_flags); 723 if (rc != OPAL_SUCCESS) 724 return 0; 725 726 if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_NEW_EVENT) 727 local_paca->hmi_event_available = 1; 728 if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_TOD_TB_FAIL) 729 tb_invalid = true; 730 return 1; 731 } 732 733 /* HMI exception handler called in virtual mode when irqs are next enabled. */ 734 int opal_handle_hmi_exception(struct pt_regs *regs) 735 { 736 /* 737 * Check if HMI event is available. 738 * if Yes, then wake kopald to process them. 739 */ 740 if (!local_paca->hmi_event_available) 741 return 0; 742 743 local_paca->hmi_event_available = 0; 744 opal_wake_poller(); 745 746 return 1; 747 } 748 749 static uint64_t find_recovery_address(uint64_t nip) 750 { 751 int i; 752 753 for (i = 0; i < mc_recoverable_range_len; i++) 754 if ((nip >= mc_recoverable_range[i].start_addr) && 755 (nip < mc_recoverable_range[i].end_addr)) 756 return mc_recoverable_range[i].recover_addr; 757 return 0; 758 } 759 760 bool opal_mce_check_early_recovery(struct pt_regs *regs) 761 { 762 uint64_t recover_addr = 0; 763 764 if (!opal.base || !opal.size) 765 goto out; 766 767 if ((regs->nip >= opal.base) && 768 (regs->nip < (opal.base + opal.size))) 769 recover_addr = find_recovery_address(regs->nip); 770 771 /* 772 * Setup regs->nip to rfi into fixup address. 773 */ 774 if (recover_addr) 775 regs_set_return_ip(regs, recover_addr); 776 777 out: 778 return !!recover_addr; 779 } 780 781 static int __init opal_sysfs_init(void) 782 { 783 opal_kobj = kobject_create_and_add("opal", firmware_kobj); 784 if (!opal_kobj) { 785 pr_warn("kobject_create_and_add opal failed\n"); 786 return -ENOMEM; 787 } 788 789 return 0; 790 } 791 792 static int opal_add_one_export(struct kobject *parent, const char *export_name, 793 struct device_node *np, const char *prop_name) 794 { 795 struct bin_attribute *attr = NULL; 796 const char *name = NULL; 797 u64 vals[2]; 798 int rc; 799 800 rc = of_property_read_u64_array(np, prop_name, &vals[0], 2); 801 if (rc) 802 goto out; 803 804 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 805 if (!attr) { 806 rc = -ENOMEM; 807 goto out; 808 } 809 name = kstrdup(export_name, GFP_KERNEL); 810 if (!name) { 811 rc = -ENOMEM; 812 goto out; 813 } 814 815 sysfs_bin_attr_init(attr); 816 attr->attr.name = name; 817 attr->attr.mode = 0400; 818 attr->read = sysfs_bin_attr_simple_read; 819 attr->private = __va(vals[0]); 820 attr->size = vals[1]; 821 822 rc = sysfs_create_bin_file(parent, attr); 823 out: 824 if (rc) { 825 kfree(name); 826 kfree(attr); 827 } 828 829 return rc; 830 } 831 832 static void opal_add_exported_attrs(struct device_node *np, 833 struct kobject *kobj) 834 { 835 struct device_node *child; 836 struct property *prop; 837 838 for_each_property_of_node(np, prop) { 839 int rc; 840 841 if (!strcmp(prop->name, "name") || 842 !strcmp(prop->name, "phandle")) 843 continue; 844 845 rc = opal_add_one_export(kobj, prop->name, np, prop->name); 846 if (rc) { 847 pr_warn("Unable to add export %pOF/%s, rc = %d!\n", 848 np, prop->name, rc); 849 } 850 } 851 852 for_each_child_of_node(np, child) { 853 struct kobject *child_kobj; 854 855 child_kobj = kobject_create_and_add(child->name, kobj); 856 if (!child_kobj) { 857 pr_err("Unable to create export dir for %pOF\n", child); 858 continue; 859 } 860 861 opal_add_exported_attrs(child, child_kobj); 862 } 863 } 864 865 /* 866 * opal_export_attrs: creates a sysfs node for each property listed in 867 * the device-tree under /ibm,opal/firmware/exports/ 868 * All new sysfs nodes are created under /opal/exports/. 869 * This allows for reserved memory regions (e.g. HDAT) to be read. 870 * The new sysfs nodes are only readable by root. 871 */ 872 static void opal_export_attrs(void) 873 { 874 struct device_node *np; 875 struct kobject *kobj; 876 int rc; 877 878 np = of_find_node_by_path("/ibm,opal/firmware/exports"); 879 if (!np) 880 return; 881 882 /* Create new 'exports' directory - /sys/firmware/opal/exports */ 883 kobj = kobject_create_and_add("exports", opal_kobj); 884 if (!kobj) { 885 pr_warn("kobject_create_and_add() of exports failed\n"); 886 of_node_put(np); 887 return; 888 } 889 890 opal_add_exported_attrs(np, kobj); 891 892 /* 893 * NB: symbol_map existed before the generic export interface so it 894 * lives under the top level opal_kobj. 895 */ 896 rc = opal_add_one_export(opal_kobj, "symbol_map", 897 np->parent, "symbol-map"); 898 if (rc) 899 pr_warn("Error %d creating OPAL symbols file\n", rc); 900 901 of_node_put(np); 902 } 903 904 static void __init opal_dump_region_init(void) 905 { 906 void *addr; 907 uint64_t size; 908 int rc; 909 910 if (!opal_check_token(OPAL_REGISTER_DUMP_REGION)) 911 return; 912 913 /* Register kernel log buffer */ 914 addr = log_buf_addr_get(); 915 if (addr == NULL) 916 return; 917 918 size = log_buf_len_get(); 919 if (size == 0) 920 return; 921 922 rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF, 923 __pa(addr), size); 924 /* Don't warn if this is just an older OPAL that doesn't 925 * know about that call 926 */ 927 if (rc && rc != OPAL_UNSUPPORTED) 928 pr_warn("DUMP: Failed to register kernel log buffer. " 929 "rc = %d\n", rc); 930 } 931 932 static void __init opal_pdev_init(const char *compatible) 933 { 934 struct device_node *np; 935 936 for_each_compatible_node(np, NULL, compatible) 937 of_platform_device_create(np, NULL, NULL); 938 } 939 940 static void __init opal_imc_init_dev(void) 941 { 942 struct device_node *np; 943 944 np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT); 945 if (np) 946 of_platform_device_create(np, NULL, NULL); 947 948 of_node_put(np); 949 } 950 951 static int kopald(void *unused) 952 { 953 unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1; 954 955 set_freezable(); 956 do { 957 try_to_freeze(); 958 959 opal_handle_events(); 960 961 set_current_state(TASK_INTERRUPTIBLE); 962 if (opal_have_pending_events()) 963 __set_current_state(TASK_RUNNING); 964 else 965 schedule_timeout(timeout); 966 967 } while (!kthread_should_stop()); 968 969 return 0; 970 } 971 972 void opal_wake_poller(void) 973 { 974 if (kopald_tsk) 975 wake_up_process(kopald_tsk); 976 } 977 978 static void __init opal_init_heartbeat(void) 979 { 980 /* Old firwmware, we assume the HVC heartbeat is sufficient */ 981 if (of_property_read_u32(opal_node, "ibm,heartbeat-ms", 982 &opal_heartbeat) != 0) 983 opal_heartbeat = 0; 984 985 if (opal_heartbeat) 986 kopald_tsk = kthread_run(kopald, NULL, "kopald"); 987 } 988 989 static int __init opal_init(void) 990 { 991 struct device_node *np, *consoles, *leds; 992 int rc; 993 994 opal_node = of_find_node_by_path("/ibm,opal"); 995 if (!opal_node) { 996 pr_warn("Device node not found\n"); 997 return -ENODEV; 998 } 999 1000 /* Register OPAL consoles if any ports */ 1001 consoles = of_find_node_by_path("/ibm,opal/consoles"); 1002 if (consoles) { 1003 for_each_child_of_node(consoles, np) { 1004 if (!of_node_name_eq(np, "serial")) 1005 continue; 1006 of_platform_device_create(np, NULL, NULL); 1007 } 1008 of_node_put(consoles); 1009 } 1010 1011 /* Initialise OPAL messaging system */ 1012 opal_message_init(opal_node); 1013 1014 /* Initialise OPAL asynchronous completion interface */ 1015 opal_async_comp_init(); 1016 1017 /* Initialise OPAL sensor interface */ 1018 opal_sensor_init(); 1019 1020 /* Initialise OPAL hypervisor maintainence interrupt handling */ 1021 opal_hmi_handler_init(); 1022 1023 /* Create i2c platform devices */ 1024 opal_pdev_init("ibm,opal-i2c"); 1025 1026 /* Handle non-volatile memory devices */ 1027 opal_pdev_init("pmem-region"); 1028 1029 /* Setup a heatbeat thread if requested by OPAL */ 1030 opal_init_heartbeat(); 1031 1032 /* Detect In-Memory Collection counters and create devices*/ 1033 opal_imc_init_dev(); 1034 1035 /* Create leds platform devices */ 1036 leds = of_find_node_by_path("/ibm,opal/leds"); 1037 if (leds) { 1038 of_platform_device_create(leds, "opal_leds", NULL); 1039 of_node_put(leds); 1040 } 1041 1042 /* Initialise OPAL message log interface */ 1043 opal_msglog_init(); 1044 1045 /* Create "opal" kobject under /sys/firmware */ 1046 rc = opal_sysfs_init(); 1047 if (rc == 0) { 1048 /* Setup dump region interface */ 1049 opal_dump_region_init(); 1050 /* Setup error log interface */ 1051 rc = opal_elog_init(); 1052 /* Setup code update interface */ 1053 opal_flash_update_init(); 1054 /* Setup platform dump extract interface */ 1055 opal_platform_dump_init(); 1056 /* Setup system parameters interface */ 1057 opal_sys_param_init(); 1058 /* Setup message log sysfs interface. */ 1059 opal_msglog_sysfs_init(); 1060 /* Add all export properties*/ 1061 opal_export_attrs(); 1062 } 1063 1064 /* Initialize platform devices: IPMI backend, PRD & flash interface */ 1065 opal_pdev_init("ibm,opal-ipmi"); 1066 opal_pdev_init("ibm,opal-flash"); 1067 opal_pdev_init("ibm,opal-prd"); 1068 1069 /* Initialise platform device: oppanel interface */ 1070 opal_pdev_init("ibm,opal-oppanel"); 1071 1072 /* Initialise OPAL kmsg dumper for flushing console on panic */ 1073 opal_kmsg_init(); 1074 1075 /* Initialise OPAL powercap interface */ 1076 opal_powercap_init(); 1077 1078 /* Initialise OPAL Power-Shifting-Ratio interface */ 1079 opal_psr_init(); 1080 1081 /* Initialise OPAL sensor groups */ 1082 opal_sensor_groups_init(); 1083 1084 /* Initialise OPAL Power control interface */ 1085 opal_power_control_init(); 1086 1087 /* Initialize OPAL secure variables */ 1088 opal_pdev_init("ibm,secvar-backend"); 1089 1090 return 0; 1091 } 1092 machine_subsys_initcall(powernv, opal_init); 1093 1094 void opal_shutdown(void) 1095 { 1096 long rc = OPAL_BUSY; 1097 1098 opal_event_shutdown(); 1099 1100 /* 1101 * Then sync with OPAL which ensure anything that can 1102 * potentially write to our memory has completed such 1103 * as an ongoing dump retrieval 1104 */ 1105 while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 1106 rc = opal_sync_host_reboot(); 1107 if (rc == OPAL_BUSY) 1108 opal_poll_events(NULL); 1109 else 1110 mdelay(10); 1111 } 1112 1113 /* Unregister memory dump region */ 1114 if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION)) 1115 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF); 1116 } 1117 1118 /* Export this so that test modules can use it */ 1119 EXPORT_SYMBOL_GPL(opal_invalid_call); 1120 EXPORT_SYMBOL_GPL(opal_xscom_read); 1121 EXPORT_SYMBOL_GPL(opal_xscom_write); 1122 EXPORT_SYMBOL_GPL(opal_ipmi_send); 1123 EXPORT_SYMBOL_GPL(opal_ipmi_recv); 1124 EXPORT_SYMBOL_GPL(opal_flash_read); 1125 EXPORT_SYMBOL_GPL(opal_flash_write); 1126 EXPORT_SYMBOL_GPL(opal_flash_erase); 1127 EXPORT_SYMBOL_GPL(opal_prd_msg); 1128 EXPORT_SYMBOL_GPL(opal_check_token); 1129 1130 /* Convert a region of vmalloc memory to an opal sg list */ 1131 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr, 1132 unsigned long vmalloc_size) 1133 { 1134 struct opal_sg_list *sg, *first = NULL; 1135 unsigned long i = 0; 1136 1137 sg = kzalloc(PAGE_SIZE, GFP_KERNEL); 1138 if (!sg) 1139 goto nomem; 1140 1141 first = sg; 1142 1143 while (vmalloc_size > 0) { 1144 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT; 1145 uint64_t length = min(vmalloc_size, PAGE_SIZE); 1146 1147 sg->entry[i].data = cpu_to_be64(data); 1148 sg->entry[i].length = cpu_to_be64(length); 1149 i++; 1150 1151 if (i >= SG_ENTRIES_PER_NODE) { 1152 struct opal_sg_list *next; 1153 1154 next = kzalloc(PAGE_SIZE, GFP_KERNEL); 1155 if (!next) 1156 goto nomem; 1157 1158 sg->length = cpu_to_be64( 1159 i * sizeof(struct opal_sg_entry) + 16); 1160 i = 0; 1161 sg->next = cpu_to_be64(__pa(next)); 1162 sg = next; 1163 } 1164 1165 vmalloc_addr += length; 1166 vmalloc_size -= length; 1167 } 1168 1169 sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16); 1170 1171 return first; 1172 1173 nomem: 1174 pr_err("%s : Failed to allocate memory\n", __func__); 1175 opal_free_sg_list(first); 1176 return NULL; 1177 } 1178 1179 void opal_free_sg_list(struct opal_sg_list *sg) 1180 { 1181 while (sg) { 1182 uint64_t next = be64_to_cpu(sg->next); 1183 1184 kfree(sg); 1185 1186 if (next) 1187 sg = __va(next); 1188 else 1189 sg = NULL; 1190 } 1191 } 1192 1193 int opal_error_code(int rc) 1194 { 1195 switch (rc) { 1196 case OPAL_SUCCESS: return 0; 1197 1198 case OPAL_PARAMETER: return -EINVAL; 1199 case OPAL_ASYNC_COMPLETION: return -EINPROGRESS; 1200 case OPAL_BUSY: 1201 case OPAL_BUSY_EVENT: return -EBUSY; 1202 case OPAL_NO_MEM: return -ENOMEM; 1203 case OPAL_PERMISSION: return -EPERM; 1204 1205 case OPAL_UNSUPPORTED: return -EIO; 1206 case OPAL_HARDWARE: return -EIO; 1207 case OPAL_INTERNAL_ERROR: return -EIO; 1208 case OPAL_TIMEOUT: return -ETIMEDOUT; 1209 default: 1210 pr_err("%s: unexpected OPAL error %d\n", __func__, rc); 1211 return -EIO; 1212 } 1213 } 1214 1215 void powernv_set_nmmu_ptcr(unsigned long ptcr) 1216 { 1217 int rc; 1218 1219 if (firmware_has_feature(FW_FEATURE_OPAL)) { 1220 rc = opal_nmmu_set_ptcr(-1UL, ptcr); 1221 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 1222 pr_warn("%s: Unable to set nest mmu ptcr\n", __func__); 1223 } 1224 } 1225 1226 EXPORT_SYMBOL_GPL(opal_poll_events); 1227 EXPORT_SYMBOL_GPL(opal_rtc_read); 1228 EXPORT_SYMBOL_GPL(opal_rtc_write); 1229 EXPORT_SYMBOL_GPL(opal_tpo_read); 1230 EXPORT_SYMBOL_GPL(opal_tpo_write); 1231 EXPORT_SYMBOL_GPL(opal_i2c_request); 1232 /* Export these symbols for PowerNV LED class driver */ 1233 EXPORT_SYMBOL_GPL(opal_leds_get_ind); 1234 EXPORT_SYMBOL_GPL(opal_leds_set_ind); 1235 /* Export this symbol for PowerNV Operator Panel class driver */ 1236 EXPORT_SYMBOL_GPL(opal_write_oppanel_async); 1237 /* Export this for KVM */ 1238 EXPORT_SYMBOL_GPL(opal_int_set_mfrr); 1239 EXPORT_SYMBOL_GPL(opal_int_eoi); 1240 EXPORT_SYMBOL_GPL(opal_error_code); 1241 /* Export the below symbol for NX compression */ 1242 EXPORT_SYMBOL(opal_nx_coproc_init); 1243