xref: /linux/arch/powerpc/platforms/powernv/eeh-powernv.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * The file intends to implement the platform dependent EEH operations on
3  * powernv platform. Actually, the powernv was created in order to fully
4  * hypervisor support.
5  *
6  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/atomic.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/msi.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/spinlock.h>
29 
30 #include <asm/eeh.h>
31 #include <asm/eeh_event.h>
32 #include <asm/firmware.h>
33 #include <asm/io.h>
34 #include <asm/iommu.h>
35 #include <asm/machdep.h>
36 #include <asm/msi_bitmap.h>
37 #include <asm/opal.h>
38 #include <asm/ppc-pci.h>
39 #include <asm/pnv-pci.h>
40 
41 #include "powernv.h"
42 #include "pci.h"
43 
44 static bool pnv_eeh_nb_init = false;
45 static int eeh_event_irq = -EINVAL;
46 
47 static int pnv_eeh_init(void)
48 {
49 	struct pci_controller *hose;
50 	struct pnv_phb *phb;
51 
52 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
53 		pr_warn("%s: OPAL is required !\n",
54 			__func__);
55 		return -EINVAL;
56 	}
57 
58 	/* Set probe mode */
59 	eeh_add_flag(EEH_PROBE_MODE_DEV);
60 
61 	/*
62 	 * P7IOC blocks PCI config access to frozen PE, but PHB3
63 	 * doesn't do that. So we have to selectively enable I/O
64 	 * prior to collecting error log.
65 	 */
66 	list_for_each_entry(hose, &hose_list, list_node) {
67 		phb = hose->private_data;
68 
69 		if (phb->model == PNV_PHB_MODEL_P7IOC)
70 			eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
71 
72 		/*
73 		 * PE#0 should be regarded as valid by EEH core
74 		 * if it's not the reserved one. Currently, we
75 		 * have the reserved PE#255 and PE#127 for PHB3
76 		 * and P7IOC separately. So we should regard
77 		 * PE#0 as valid for PHB3 and P7IOC.
78 		 */
79 		if (phb->ioda.reserved_pe_idx != 0)
80 			eeh_add_flag(EEH_VALID_PE_ZERO);
81 
82 		break;
83 	}
84 
85 	return 0;
86 }
87 
88 static irqreturn_t pnv_eeh_event(int irq, void *data)
89 {
90 	/*
91 	 * We simply send a special EEH event if EEH has been
92 	 * enabled. We don't care about EEH events until we've
93 	 * finished processing the outstanding ones. Event processing
94 	 * gets unmasked in next_error() if EEH is enabled.
95 	 */
96 	disable_irq_nosync(irq);
97 
98 	if (eeh_enabled())
99 		eeh_send_failure_event(NULL);
100 
101 	return IRQ_HANDLED;
102 }
103 
104 #ifdef CONFIG_DEBUG_FS
105 static ssize_t pnv_eeh_ei_write(struct file *filp,
106 				const char __user *user_buf,
107 				size_t count, loff_t *ppos)
108 {
109 	struct pci_controller *hose = filp->private_data;
110 	struct eeh_dev *edev;
111 	struct eeh_pe *pe;
112 	int pe_no, type, func;
113 	unsigned long addr, mask;
114 	char buf[50];
115 	int ret;
116 
117 	if (!eeh_ops || !eeh_ops->err_inject)
118 		return -ENXIO;
119 
120 	/* Copy over argument buffer */
121 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
122 	if (!ret)
123 		return -EFAULT;
124 
125 	/* Retrieve parameters */
126 	ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
127 		     &pe_no, &type, &func, &addr, &mask);
128 	if (ret != 5)
129 		return -EINVAL;
130 
131 	/* Retrieve PE */
132 	edev = kzalloc(sizeof(*edev), GFP_KERNEL);
133 	if (!edev)
134 		return -ENOMEM;
135 	edev->phb = hose;
136 	edev->pe_config_addr = pe_no;
137 	pe = eeh_pe_get(edev);
138 	kfree(edev);
139 	if (!pe)
140 		return -ENODEV;
141 
142 	/* Do error injection */
143 	ret = eeh_ops->err_inject(pe, type, func, addr, mask);
144 	return ret < 0 ? ret : count;
145 }
146 
147 static const struct file_operations pnv_eeh_ei_fops = {
148 	.open	= simple_open,
149 	.llseek	= no_llseek,
150 	.write	= pnv_eeh_ei_write,
151 };
152 
153 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
154 {
155 	struct pci_controller *hose = data;
156 	struct pnv_phb *phb = hose->private_data;
157 
158 	out_be64(phb->regs + offset, val);
159 	return 0;
160 }
161 
162 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
163 {
164 	struct pci_controller *hose = data;
165 	struct pnv_phb *phb = hose->private_data;
166 
167 	*val = in_be64(phb->regs + offset);
168 	return 0;
169 }
170 
171 #define PNV_EEH_DBGFS_ENTRY(name, reg)				\
172 static int pnv_eeh_dbgfs_set_##name(void *data, u64 val)	\
173 {								\
174 	return pnv_eeh_dbgfs_set(data, reg, val);		\
175 }								\
176 								\
177 static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val)	\
178 {								\
179 	return pnv_eeh_dbgfs_get(data, reg, val);		\
180 }								\
181 								\
182 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name,		\
183 			pnv_eeh_dbgfs_get_##name,		\
184                         pnv_eeh_dbgfs_set_##name,		\
185 			"0x%llx\n")
186 
187 PNV_EEH_DBGFS_ENTRY(outb, 0xD10);
188 PNV_EEH_DBGFS_ENTRY(inbA, 0xD90);
189 PNV_EEH_DBGFS_ENTRY(inbB, 0xE10);
190 
191 #endif /* CONFIG_DEBUG_FS */
192 
193 /**
194  * pnv_eeh_post_init - EEH platform dependent post initialization
195  *
196  * EEH platform dependent post initialization on powernv. When
197  * the function is called, the EEH PEs and devices should have
198  * been built. If the I/O cache staff has been built, EEH is
199  * ready to supply service.
200  */
201 static int pnv_eeh_post_init(void)
202 {
203 	struct pci_controller *hose;
204 	struct pnv_phb *phb;
205 	int ret = 0;
206 
207 	/* Register OPAL event notifier */
208 	if (!pnv_eeh_nb_init) {
209 		eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
210 		if (eeh_event_irq < 0) {
211 			pr_err("%s: Can't register OPAL event interrupt (%d)\n",
212 			       __func__, eeh_event_irq);
213 			return eeh_event_irq;
214 		}
215 
216 		ret = request_irq(eeh_event_irq, pnv_eeh_event,
217 				IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
218 		if (ret < 0) {
219 			irq_dispose_mapping(eeh_event_irq);
220 			pr_err("%s: Can't request OPAL event interrupt (%d)\n",
221 			       __func__, eeh_event_irq);
222 			return ret;
223 		}
224 
225 		pnv_eeh_nb_init = true;
226 	}
227 
228 	if (!eeh_enabled())
229 		disable_irq(eeh_event_irq);
230 
231 	list_for_each_entry(hose, &hose_list, list_node) {
232 		phb = hose->private_data;
233 
234 		/*
235 		 * If EEH is enabled, we're going to rely on that.
236 		 * Otherwise, we restore to conventional mechanism
237 		 * to clear frozen PE during PCI config access.
238 		 */
239 		if (eeh_enabled())
240 			phb->flags |= PNV_PHB_FLAG_EEH;
241 		else
242 			phb->flags &= ~PNV_PHB_FLAG_EEH;
243 
244 		/* Create debugfs entries */
245 #ifdef CONFIG_DEBUG_FS
246 		if (phb->has_dbgfs || !phb->dbgfs)
247 			continue;
248 
249 		phb->has_dbgfs = 1;
250 		debugfs_create_file("err_injct", 0200,
251 				    phb->dbgfs, hose,
252 				    &pnv_eeh_ei_fops);
253 
254 		debugfs_create_file("err_injct_outbound", 0600,
255 				    phb->dbgfs, hose,
256 				    &pnv_eeh_dbgfs_ops_outb);
257 		debugfs_create_file("err_injct_inboundA", 0600,
258 				    phb->dbgfs, hose,
259 				    &pnv_eeh_dbgfs_ops_inbA);
260 		debugfs_create_file("err_injct_inboundB", 0600,
261 				    phb->dbgfs, hose,
262 				    &pnv_eeh_dbgfs_ops_inbB);
263 #endif /* CONFIG_DEBUG_FS */
264 	}
265 
266 	return ret;
267 }
268 
269 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
270 {
271 	int pos = PCI_CAPABILITY_LIST;
272 	int cnt = 48;   /* Maximal number of capabilities */
273 	u32 status, id;
274 
275 	if (!pdn)
276 		return 0;
277 
278 	/* Check if the device supports capabilities */
279 	pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
280 	if (!(status & PCI_STATUS_CAP_LIST))
281 		return 0;
282 
283 	while (cnt--) {
284 		pnv_pci_cfg_read(pdn, pos, 1, &pos);
285 		if (pos < 0x40)
286 			break;
287 
288 		pos &= ~3;
289 		pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
290 		if (id == 0xff)
291 			break;
292 
293 		/* Found */
294 		if (id == cap)
295 			return pos;
296 
297 		/* Next one */
298 		pos += PCI_CAP_LIST_NEXT;
299 	}
300 
301 	return 0;
302 }
303 
304 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
305 {
306 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
307 	u32 header;
308 	int pos = 256, ttl = (4096 - 256) / 8;
309 
310 	if (!edev || !edev->pcie_cap)
311 		return 0;
312 	if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
313 		return 0;
314 	else if (!header)
315 		return 0;
316 
317 	while (ttl-- > 0) {
318 		if (PCI_EXT_CAP_ID(header) == cap && pos)
319 			return pos;
320 
321 		pos = PCI_EXT_CAP_NEXT(header);
322 		if (pos < 256)
323 			break;
324 
325 		if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
326 			break;
327 	}
328 
329 	return 0;
330 }
331 
332 /**
333  * pnv_eeh_probe - Do probe on PCI device
334  * @pdn: PCI device node
335  * @data: unused
336  *
337  * When EEH module is installed during system boot, all PCI devices
338  * are checked one by one to see if it supports EEH. The function
339  * is introduced for the purpose. By default, EEH has been enabled
340  * on all PCI devices. That's to say, we only need do necessary
341  * initialization on the corresponding eeh device and create PE
342  * accordingly.
343  *
344  * It's notable that's unsafe to retrieve the EEH device through
345  * the corresponding PCI device. During the PCI device hotplug, which
346  * was possiblly triggered by EEH core, the binding between EEH device
347  * and the PCI device isn't built yet.
348  */
349 static void *pnv_eeh_probe(struct pci_dn *pdn, void *data)
350 {
351 	struct pci_controller *hose = pdn->phb;
352 	struct pnv_phb *phb = hose->private_data;
353 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
354 	uint32_t pcie_flags;
355 	int ret;
356 
357 	/*
358 	 * When probing the root bridge, which doesn't have any
359 	 * subordinate PCI devices. We don't have OF node for
360 	 * the root bridge. So it's not reasonable to continue
361 	 * the probing.
362 	 */
363 	if (!edev || edev->pe)
364 		return NULL;
365 
366 	/* Skip for PCI-ISA bridge */
367 	if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
368 		return NULL;
369 
370 	/* Initialize eeh device */
371 	edev->class_code = pdn->class_code;
372 	edev->mode	&= 0xFFFFFF00;
373 	edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
374 	edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
375 	edev->af_cap   = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF);
376 	edev->aer_cap  = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
377 	if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
378 		edev->mode |= EEH_DEV_BRIDGE;
379 		if (edev->pcie_cap) {
380 			pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
381 					 2, &pcie_flags);
382 			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
383 			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
384 				edev->mode |= EEH_DEV_ROOT_PORT;
385 			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
386 				edev->mode |= EEH_DEV_DS_PORT;
387 		}
388 	}
389 
390 	edev->config_addr    = (pdn->busno << 8) | (pdn->devfn);
391 	edev->pe_config_addr = phb->ioda.pe_rmap[edev->config_addr];
392 
393 	/* Create PE */
394 	ret = eeh_add_to_parent_pe(edev);
395 	if (ret) {
396 		pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%d)\n",
397 			__func__, hose->global_number, pdn->busno,
398 			PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret);
399 		return NULL;
400 	}
401 
402 	/*
403 	 * If the PE contains any one of following adapters, the
404 	 * PCI config space can't be accessed when dumping EEH log.
405 	 * Otherwise, we will run into fenced PHB caused by shortage
406 	 * of outbound credits in the adapter. The PCI config access
407 	 * should be blocked until PE reset. MMIO access is dropped
408 	 * by hardware certainly. In order to drop PCI config requests,
409 	 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
410 	 * will be checked in the backend for PE state retrival. If
411 	 * the PE becomes frozen for the first time and the flag has
412 	 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for
413 	 * that PE to block its config space.
414 	 *
415 	 * Broadcom Austin 4-ports NICs (14e4:1657)
416 	 * Broadcom Shiner 4-ports 1G NICs (14e4:168a)
417 	 * Broadcom Shiner 2-ports 10G NICs (14e4:168e)
418 	 */
419 	if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
420 	     pdn->device_id == 0x1657) ||
421 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
422 	     pdn->device_id == 0x168a) ||
423 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
424 	     pdn->device_id == 0x168e))
425 		edev->pe->state |= EEH_PE_CFG_RESTRICTED;
426 
427 	/*
428 	 * Cache the PE primary bus, which can't be fetched when
429 	 * full hotplug is in progress. In that case, all child
430 	 * PCI devices of the PE are expected to be removed prior
431 	 * to PE reset.
432 	 */
433 	if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
434 		edev->pe->bus = pci_find_bus(hose->global_number,
435 					     pdn->busno);
436 		if (edev->pe->bus)
437 			edev->pe->state |= EEH_PE_PRI_BUS;
438 	}
439 
440 	/*
441 	 * Enable EEH explicitly so that we will do EEH check
442 	 * while accessing I/O stuff
443 	 */
444 	eeh_add_flag(EEH_ENABLED);
445 
446 	/* Save memory bars */
447 	eeh_save_bars(edev);
448 
449 	return NULL;
450 }
451 
452 /**
453  * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
454  * @pe: EEH PE
455  * @option: operation to be issued
456  *
457  * The function is used to control the EEH functionality globally.
458  * Currently, following options are support according to PAPR:
459  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
460  */
461 static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
462 {
463 	struct pci_controller *hose = pe->phb;
464 	struct pnv_phb *phb = hose->private_data;
465 	bool freeze_pe = false;
466 	int opt;
467 	s64 rc;
468 
469 	switch (option) {
470 	case EEH_OPT_DISABLE:
471 		return -EPERM;
472 	case EEH_OPT_ENABLE:
473 		return 0;
474 	case EEH_OPT_THAW_MMIO:
475 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
476 		break;
477 	case EEH_OPT_THAW_DMA:
478 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
479 		break;
480 	case EEH_OPT_FREEZE_PE:
481 		freeze_pe = true;
482 		opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
483 		break;
484 	default:
485 		pr_warn("%s: Invalid option %d\n", __func__, option);
486 		return -EINVAL;
487 	}
488 
489 	/* Freeze master and slave PEs if PHB supports compound PEs */
490 	if (freeze_pe) {
491 		if (phb->freeze_pe) {
492 			phb->freeze_pe(phb, pe->addr);
493 			return 0;
494 		}
495 
496 		rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
497 		if (rc != OPAL_SUCCESS) {
498 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
499 				__func__, rc, phb->hose->global_number,
500 				pe->addr);
501 			return -EIO;
502 		}
503 
504 		return 0;
505 	}
506 
507 	/* Unfreeze master and slave PEs if PHB supports */
508 	if (phb->unfreeze_pe)
509 		return phb->unfreeze_pe(phb, pe->addr, opt);
510 
511 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
512 	if (rc != OPAL_SUCCESS) {
513 		pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
514 			__func__, rc, option, phb->hose->global_number,
515 			pe->addr);
516 		return -EIO;
517 	}
518 
519 	return 0;
520 }
521 
522 /**
523  * pnv_eeh_get_pe_addr - Retrieve PE address
524  * @pe: EEH PE
525  *
526  * Retrieve the PE address according to the given tranditional
527  * PCI BDF (Bus/Device/Function) address.
528  */
529 static int pnv_eeh_get_pe_addr(struct eeh_pe *pe)
530 {
531 	return pe->addr;
532 }
533 
534 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
535 {
536 	struct pnv_phb *phb = pe->phb->private_data;
537 	s64 rc;
538 
539 	rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
540 					 PNV_PCI_DIAG_BUF_SIZE);
541 	if (rc != OPAL_SUCCESS)
542 		pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
543 			__func__, rc, pe->phb->global_number);
544 }
545 
546 static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
547 {
548 	struct pnv_phb *phb = pe->phb->private_data;
549 	u8 fstate;
550 	__be16 pcierr;
551 	s64 rc;
552 	int result = 0;
553 
554 	rc = opal_pci_eeh_freeze_status(phb->opal_id,
555 					pe->addr,
556 					&fstate,
557 					&pcierr,
558 					NULL);
559 	if (rc != OPAL_SUCCESS) {
560 		pr_warn("%s: Failure %lld getting PHB#%x state\n",
561 			__func__, rc, phb->hose->global_number);
562 		return EEH_STATE_NOT_SUPPORT;
563 	}
564 
565 	/*
566 	 * Check PHB state. If the PHB is frozen for the
567 	 * first time, to dump the PHB diag-data.
568 	 */
569 	if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
570 		result = (EEH_STATE_MMIO_ACTIVE  |
571 			  EEH_STATE_DMA_ACTIVE   |
572 			  EEH_STATE_MMIO_ENABLED |
573 			  EEH_STATE_DMA_ENABLED);
574 	} else if (!(pe->state & EEH_PE_ISOLATED)) {
575 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
576 		pnv_eeh_get_phb_diag(pe);
577 
578 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
579 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
580 	}
581 
582 	return result;
583 }
584 
585 static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
586 {
587 	struct pnv_phb *phb = pe->phb->private_data;
588 	u8 fstate;
589 	__be16 pcierr;
590 	s64 rc;
591 	int result;
592 
593 	/*
594 	 * We don't clobber hardware frozen state until PE
595 	 * reset is completed. In order to keep EEH core
596 	 * moving forward, we have to return operational
597 	 * state during PE reset.
598 	 */
599 	if (pe->state & EEH_PE_RESET) {
600 		result = (EEH_STATE_MMIO_ACTIVE  |
601 			  EEH_STATE_DMA_ACTIVE   |
602 			  EEH_STATE_MMIO_ENABLED |
603 			  EEH_STATE_DMA_ENABLED);
604 		return result;
605 	}
606 
607 	/*
608 	 * Fetch PE state from hardware. If the PHB
609 	 * supports compound PE, let it handle that.
610 	 */
611 	if (phb->get_pe_state) {
612 		fstate = phb->get_pe_state(phb, pe->addr);
613 	} else {
614 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
615 						pe->addr,
616 						&fstate,
617 						&pcierr,
618 						NULL);
619 		if (rc != OPAL_SUCCESS) {
620 			pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
621 				__func__, rc, phb->hose->global_number,
622 				pe->addr);
623 			return EEH_STATE_NOT_SUPPORT;
624 		}
625 	}
626 
627 	/* Figure out state */
628 	switch (fstate) {
629 	case OPAL_EEH_STOPPED_NOT_FROZEN:
630 		result = (EEH_STATE_MMIO_ACTIVE  |
631 			  EEH_STATE_DMA_ACTIVE   |
632 			  EEH_STATE_MMIO_ENABLED |
633 			  EEH_STATE_DMA_ENABLED);
634 		break;
635 	case OPAL_EEH_STOPPED_MMIO_FREEZE:
636 		result = (EEH_STATE_DMA_ACTIVE |
637 			  EEH_STATE_DMA_ENABLED);
638 		break;
639 	case OPAL_EEH_STOPPED_DMA_FREEZE:
640 		result = (EEH_STATE_MMIO_ACTIVE |
641 			  EEH_STATE_MMIO_ENABLED);
642 		break;
643 	case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
644 		result = 0;
645 		break;
646 	case OPAL_EEH_STOPPED_RESET:
647 		result = EEH_STATE_RESET_ACTIVE;
648 		break;
649 	case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
650 		result = EEH_STATE_UNAVAILABLE;
651 		break;
652 	case OPAL_EEH_STOPPED_PERM_UNAVAIL:
653 		result = EEH_STATE_NOT_SUPPORT;
654 		break;
655 	default:
656 		result = EEH_STATE_NOT_SUPPORT;
657 		pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
658 			__func__, phb->hose->global_number,
659 			pe->addr, fstate);
660 	}
661 
662 	/*
663 	 * If PHB supports compound PE, to freeze all
664 	 * slave PEs for consistency.
665 	 *
666 	 * If the PE is switching to frozen state for the
667 	 * first time, to dump the PHB diag-data.
668 	 */
669 	if (!(result & EEH_STATE_NOT_SUPPORT) &&
670 	    !(result & EEH_STATE_UNAVAILABLE) &&
671 	    !(result & EEH_STATE_MMIO_ACTIVE) &&
672 	    !(result & EEH_STATE_DMA_ACTIVE)  &&
673 	    !(pe->state & EEH_PE_ISOLATED)) {
674 		if (phb->freeze_pe)
675 			phb->freeze_pe(phb, pe->addr);
676 
677 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
678 		pnv_eeh_get_phb_diag(pe);
679 
680 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
681 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
682 	}
683 
684 	return result;
685 }
686 
687 /**
688  * pnv_eeh_get_state - Retrieve PE state
689  * @pe: EEH PE
690  * @delay: delay while PE state is temporarily unavailable
691  *
692  * Retrieve the state of the specified PE. For IODA-compitable
693  * platform, it should be retrieved from IODA table. Therefore,
694  * we prefer passing down to hardware implementation to handle
695  * it.
696  */
697 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
698 {
699 	int ret;
700 
701 	if (pe->type & EEH_PE_PHB)
702 		ret = pnv_eeh_get_phb_state(pe);
703 	else
704 		ret = pnv_eeh_get_pe_state(pe);
705 
706 	if (!delay)
707 		return ret;
708 
709 	/*
710 	 * If the PE state is temporarily unavailable,
711 	 * to inform the EEH core delay for default
712 	 * period (1 second)
713 	 */
714 	*delay = 0;
715 	if (ret & EEH_STATE_UNAVAILABLE)
716 		*delay = 1000;
717 
718 	return ret;
719 }
720 
721 static s64 pnv_eeh_poll(unsigned long id)
722 {
723 	s64 rc = OPAL_HARDWARE;
724 
725 	while (1) {
726 		rc = opal_pci_poll(id);
727 		if (rc <= 0)
728 			break;
729 
730 		if (system_state < SYSTEM_RUNNING)
731 			udelay(1000 * rc);
732 		else
733 			msleep(rc);
734 	}
735 
736 	return rc;
737 }
738 
739 int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
740 {
741 	struct pnv_phb *phb = hose->private_data;
742 	s64 rc = OPAL_HARDWARE;
743 
744 	pr_debug("%s: Reset PHB#%x, option=%d\n",
745 		 __func__, hose->global_number, option);
746 
747 	/* Issue PHB complete reset request */
748 	if (option == EEH_RESET_FUNDAMENTAL ||
749 	    option == EEH_RESET_HOT)
750 		rc = opal_pci_reset(phb->opal_id,
751 				    OPAL_RESET_PHB_COMPLETE,
752 				    OPAL_ASSERT_RESET);
753 	else if (option == EEH_RESET_DEACTIVATE)
754 		rc = opal_pci_reset(phb->opal_id,
755 				    OPAL_RESET_PHB_COMPLETE,
756 				    OPAL_DEASSERT_RESET);
757 	if (rc < 0)
758 		goto out;
759 
760 	/*
761 	 * Poll state of the PHB until the request is done
762 	 * successfully. The PHB reset is usually PHB complete
763 	 * reset followed by hot reset on root bus. So we also
764 	 * need the PCI bus settlement delay.
765 	 */
766 	rc = pnv_eeh_poll(phb->opal_id);
767 	if (option == EEH_RESET_DEACTIVATE) {
768 		if (system_state < SYSTEM_RUNNING)
769 			udelay(1000 * EEH_PE_RST_SETTLE_TIME);
770 		else
771 			msleep(EEH_PE_RST_SETTLE_TIME);
772 	}
773 out:
774 	if (rc != OPAL_SUCCESS)
775 		return -EIO;
776 
777 	return 0;
778 }
779 
780 static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
781 {
782 	struct pnv_phb *phb = hose->private_data;
783 	s64 rc = OPAL_HARDWARE;
784 
785 	pr_debug("%s: Reset PHB#%x, option=%d\n",
786 		 __func__, hose->global_number, option);
787 
788 	/*
789 	 * During the reset deassert time, we needn't care
790 	 * the reset scope because the firmware does nothing
791 	 * for fundamental or hot reset during deassert phase.
792 	 */
793 	if (option == EEH_RESET_FUNDAMENTAL)
794 		rc = opal_pci_reset(phb->opal_id,
795 				    OPAL_RESET_PCI_FUNDAMENTAL,
796 				    OPAL_ASSERT_RESET);
797 	else if (option == EEH_RESET_HOT)
798 		rc = opal_pci_reset(phb->opal_id,
799 				    OPAL_RESET_PCI_HOT,
800 				    OPAL_ASSERT_RESET);
801 	else if (option == EEH_RESET_DEACTIVATE)
802 		rc = opal_pci_reset(phb->opal_id,
803 				    OPAL_RESET_PCI_HOT,
804 				    OPAL_DEASSERT_RESET);
805 	if (rc < 0)
806 		goto out;
807 
808 	/* Poll state of the PHB until the request is done */
809 	rc = pnv_eeh_poll(phb->opal_id);
810 	if (option == EEH_RESET_DEACTIVATE)
811 		msleep(EEH_PE_RST_SETTLE_TIME);
812 out:
813 	if (rc != OPAL_SUCCESS)
814 		return -EIO;
815 
816 	return 0;
817 }
818 
819 static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
820 {
821 	struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
822 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
823 	int aer = edev ? edev->aer_cap : 0;
824 	u32 ctrl;
825 
826 	pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
827 		 __func__, pci_domain_nr(dev->bus),
828 		 dev->bus->number, option);
829 
830 	switch (option) {
831 	case EEH_RESET_FUNDAMENTAL:
832 	case EEH_RESET_HOT:
833 		/* Don't report linkDown event */
834 		if (aer) {
835 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
836 					     4, &ctrl);
837 			ctrl |= PCI_ERR_UNC_SURPDN;
838 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
839 					      4, ctrl);
840 		}
841 
842 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
843 		ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
844 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
845 
846 		msleep(EEH_PE_RST_HOLD_TIME);
847 		break;
848 	case EEH_RESET_DEACTIVATE:
849 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
850 		ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
851 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
852 
853 		msleep(EEH_PE_RST_SETTLE_TIME);
854 
855 		/* Continue reporting linkDown event */
856 		if (aer) {
857 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
858 					     4, &ctrl);
859 			ctrl &= ~PCI_ERR_UNC_SURPDN;
860 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
861 					      4, ctrl);
862 		}
863 
864 		break;
865 	}
866 
867 	return 0;
868 }
869 
870 static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option)
871 {
872 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
873 	struct pnv_phb *phb = hose->private_data;
874 	struct device_node *dn = pci_device_to_OF_node(pdev);
875 	uint64_t id = PCI_SLOT_ID(phb->opal_id,
876 				  (pdev->bus->number << 8) | pdev->devfn);
877 	uint8_t scope;
878 	int64_t rc;
879 
880 	/* Hot reset to the bus if firmware cannot handle */
881 	if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL))
882 		return __pnv_eeh_bridge_reset(pdev, option);
883 
884 	switch (option) {
885 	case EEH_RESET_FUNDAMENTAL:
886 		scope = OPAL_RESET_PCI_FUNDAMENTAL;
887 		break;
888 	case EEH_RESET_HOT:
889 		scope = OPAL_RESET_PCI_HOT;
890 		break;
891 	case EEH_RESET_DEACTIVATE:
892 		return 0;
893 	default:
894 		dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n",
895 			__func__, option);
896 		return -EINVAL;
897 	}
898 
899 	rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET);
900 	if (rc <= OPAL_SUCCESS)
901 		goto out;
902 
903 	rc = pnv_eeh_poll(id);
904 out:
905 	return (rc == OPAL_SUCCESS) ? 0 : -EIO;
906 }
907 
908 void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
909 {
910 	struct pci_controller *hose;
911 
912 	if (pci_is_root_bus(dev->bus)) {
913 		hose = pci_bus_to_host(dev->bus);
914 		pnv_eeh_root_reset(hose, EEH_RESET_HOT);
915 		pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
916 	} else {
917 		pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
918 		pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
919 	}
920 }
921 
922 static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type,
923 				     int pos, u16 mask)
924 {
925 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
926 	int i, status = 0;
927 
928 	/* Wait for Transaction Pending bit to be cleared */
929 	for (i = 0; i < 4; i++) {
930 		eeh_ops->read_config(pdn, pos, 2, &status);
931 		if (!(status & mask))
932 			return;
933 
934 		msleep((1 << i) * 100);
935 	}
936 
937 	pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n",
938 		__func__, type,
939 		edev->phb->global_number, pdn->busno,
940 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
941 }
942 
943 static int pnv_eeh_do_flr(struct pci_dn *pdn, int option)
944 {
945 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
946 	u32 reg = 0;
947 
948 	if (WARN_ON(!edev->pcie_cap))
949 		return -ENOTTY;
950 
951 	eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP, 4, &reg);
952 	if (!(reg & PCI_EXP_DEVCAP_FLR))
953 		return -ENOTTY;
954 
955 	switch (option) {
956 	case EEH_RESET_HOT:
957 	case EEH_RESET_FUNDAMENTAL:
958 		pnv_eeh_wait_for_pending(pdn, "",
959 					 edev->pcie_cap + PCI_EXP_DEVSTA,
960 					 PCI_EXP_DEVSTA_TRPND);
961 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
962 				     4, &reg);
963 		reg |= PCI_EXP_DEVCTL_BCR_FLR;
964 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
965 				      4, reg);
966 		msleep(EEH_PE_RST_HOLD_TIME);
967 		break;
968 	case EEH_RESET_DEACTIVATE:
969 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
970 				     4, &reg);
971 		reg &= ~PCI_EXP_DEVCTL_BCR_FLR;
972 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
973 				      4, reg);
974 		msleep(EEH_PE_RST_SETTLE_TIME);
975 		break;
976 	}
977 
978 	return 0;
979 }
980 
981 static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option)
982 {
983 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
984 	u32 cap = 0;
985 
986 	if (WARN_ON(!edev->af_cap))
987 		return -ENOTTY;
988 
989 	eeh_ops->read_config(pdn, edev->af_cap + PCI_AF_CAP, 1, &cap);
990 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
991 		return -ENOTTY;
992 
993 	switch (option) {
994 	case EEH_RESET_HOT:
995 	case EEH_RESET_FUNDAMENTAL:
996 		/*
997 		 * Wait for Transaction Pending bit to clear. A word-aligned
998 		 * test is used, so we use the conrol offset rather than status
999 		 * and shift the test bit to match.
1000 		 */
1001 		pnv_eeh_wait_for_pending(pdn, "AF",
1002 					 edev->af_cap + PCI_AF_CTRL,
1003 					 PCI_AF_STATUS_TP << 8);
1004 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL,
1005 				      1, PCI_AF_CTRL_FLR);
1006 		msleep(EEH_PE_RST_HOLD_TIME);
1007 		break;
1008 	case EEH_RESET_DEACTIVATE:
1009 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, 1, 0);
1010 		msleep(EEH_PE_RST_SETTLE_TIME);
1011 		break;
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option)
1018 {
1019 	struct eeh_dev *edev;
1020 	struct pci_dn *pdn;
1021 	int ret;
1022 
1023 	/* The VF PE should have only one child device */
1024 	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
1025 	pdn = eeh_dev_to_pdn(edev);
1026 	if (!pdn)
1027 		return -ENXIO;
1028 
1029 	ret = pnv_eeh_do_flr(pdn, option);
1030 	if (!ret)
1031 		return ret;
1032 
1033 	return pnv_eeh_do_af_flr(pdn, option);
1034 }
1035 
1036 /**
1037  * pnv_eeh_reset - Reset the specified PE
1038  * @pe: EEH PE
1039  * @option: reset option
1040  *
1041  * Do reset on the indicated PE. For PCI bus sensitive PE,
1042  * we need to reset the parent p2p bridge. The PHB has to
1043  * be reinitialized if the p2p bridge is root bridge. For
1044  * PCI device sensitive PE, we will try to reset the device
1045  * through FLR. For now, we don't have OPAL APIs to do HARD
1046  * reset yet, so all reset would be SOFT (HOT) reset.
1047  */
1048 static int pnv_eeh_reset(struct eeh_pe *pe, int option)
1049 {
1050 	struct pci_controller *hose = pe->phb;
1051 	struct pnv_phb *phb;
1052 	struct pci_bus *bus;
1053 	int64_t rc;
1054 
1055 	/*
1056 	 * For PHB reset, we always have complete reset. For those PEs whose
1057 	 * primary bus derived from root complex (root bus) or root port
1058 	 * (usually bus#1), we apply hot or fundamental reset on the root port.
1059 	 * For other PEs, we always have hot reset on the PE primary bus.
1060 	 *
1061 	 * Here, we have different design to pHyp, which always clear the
1062 	 * frozen state during PE reset. However, the good idea here from
1063 	 * benh is to keep frozen state before we get PE reset done completely
1064 	 * (until BAR restore). With the frozen state, HW drops illegal IO
1065 	 * or MMIO access, which can incur recrusive frozen PE during PE
1066 	 * reset. The side effect is that EEH core has to clear the frozen
1067 	 * state explicitly after BAR restore.
1068 	 */
1069 	if (pe->type & EEH_PE_PHB)
1070 		return pnv_eeh_phb_reset(hose, option);
1071 
1072 	/*
1073 	 * The frozen PE might be caused by PAPR error injection
1074 	 * registers, which are expected to be cleared after hitting
1075 	 * frozen PE as stated in the hardware spec. Unfortunately,
1076 	 * that's not true on P7IOC. So we have to clear it manually
1077 	 * to avoid recursive EEH errors during recovery.
1078 	 */
1079 	phb = hose->private_data;
1080 	if (phb->model == PNV_PHB_MODEL_P7IOC &&
1081 	    (option == EEH_RESET_HOT ||
1082 	     option == EEH_RESET_FUNDAMENTAL)) {
1083 		rc = opal_pci_reset(phb->opal_id,
1084 				    OPAL_RESET_PHB_ERROR,
1085 				    OPAL_ASSERT_RESET);
1086 		if (rc != OPAL_SUCCESS) {
1087 			pr_warn("%s: Failure %lld clearing error injection registers\n",
1088 				__func__, rc);
1089 			return -EIO;
1090 		}
1091 	}
1092 
1093 	bus = eeh_pe_bus_get(pe);
1094 	if (pe->type & EEH_PE_VF)
1095 		return pnv_eeh_reset_vf_pe(pe, option);
1096 
1097 	if (pci_is_root_bus(bus) ||
1098 	    pci_is_root_bus(bus->parent))
1099 		return pnv_eeh_root_reset(hose, option);
1100 
1101 	return pnv_eeh_bridge_reset(bus->self, option);
1102 }
1103 
1104 /**
1105  * pnv_eeh_wait_state - Wait for PE state
1106  * @pe: EEH PE
1107  * @max_wait: maximal period in millisecond
1108  *
1109  * Wait for the state of associated PE. It might take some time
1110  * to retrieve the PE's state.
1111  */
1112 static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait)
1113 {
1114 	int ret;
1115 	int mwait;
1116 
1117 	while (1) {
1118 		ret = pnv_eeh_get_state(pe, &mwait);
1119 
1120 		/*
1121 		 * If the PE's state is temporarily unavailable,
1122 		 * we have to wait for the specified time. Otherwise,
1123 		 * the PE's state will be returned immediately.
1124 		 */
1125 		if (ret != EEH_STATE_UNAVAILABLE)
1126 			return ret;
1127 
1128 		if (max_wait <= 0) {
1129 			pr_warn("%s: Timeout getting PE#%x's state (%d)\n",
1130 				__func__, pe->addr, max_wait);
1131 			return EEH_STATE_NOT_SUPPORT;
1132 		}
1133 
1134 		max_wait -= mwait;
1135 		msleep(mwait);
1136 	}
1137 
1138 	return EEH_STATE_NOT_SUPPORT;
1139 }
1140 
1141 /**
1142  * pnv_eeh_get_log - Retrieve error log
1143  * @pe: EEH PE
1144  * @severity: temporary or permanent error log
1145  * @drv_log: driver log to be combined with retrieved error log
1146  * @len: length of driver log
1147  *
1148  * Retrieve the temporary or permanent error from the PE.
1149  */
1150 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
1151 			   char *drv_log, unsigned long len)
1152 {
1153 	if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
1154 		pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
1155 
1156 	return 0;
1157 }
1158 
1159 /**
1160  * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1161  * @pe: EEH PE
1162  *
1163  * The function will be called to reconfigure the bridges included
1164  * in the specified PE so that the mulfunctional PE would be recovered
1165  * again.
1166  */
1167 static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
1168 {
1169 	return 0;
1170 }
1171 
1172 /**
1173  * pnv_pe_err_inject - Inject specified error to the indicated PE
1174  * @pe: the indicated PE
1175  * @type: error type
1176  * @func: specific error type
1177  * @addr: address
1178  * @mask: address mask
1179  *
1180  * The routine is called to inject specified error, which is
1181  * determined by @type and @func, to the indicated PE for
1182  * testing purpose.
1183  */
1184 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
1185 			      unsigned long addr, unsigned long mask)
1186 {
1187 	struct pci_controller *hose = pe->phb;
1188 	struct pnv_phb *phb = hose->private_data;
1189 	s64 rc;
1190 
1191 	if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
1192 	    type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
1193 		pr_warn("%s: Invalid error type %d\n",
1194 			__func__, type);
1195 		return -ERANGE;
1196 	}
1197 
1198 	if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
1199 	    func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
1200 		pr_warn("%s: Invalid error function %d\n",
1201 			__func__, func);
1202 		return -ERANGE;
1203 	}
1204 
1205 	/* Firmware supports error injection ? */
1206 	if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
1207 		pr_warn("%s: Firmware doesn't support error injection\n",
1208 			__func__);
1209 		return -ENXIO;
1210 	}
1211 
1212 	/* Do error injection */
1213 	rc = opal_pci_err_inject(phb->opal_id, pe->addr,
1214 				 type, func, addr, mask);
1215 	if (rc != OPAL_SUCCESS) {
1216 		pr_warn("%s: Failure %lld injecting error "
1217 			"%d-%d to PHB#%x-PE#%x\n",
1218 			__func__, rc, type, func,
1219 			hose->global_number, pe->addr);
1220 		return -EIO;
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
1227 {
1228 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1229 
1230 	if (!edev || !edev->pe)
1231 		return false;
1232 
1233 	/*
1234 	 * We will issue FLR or AF FLR to all VFs, which are contained
1235 	 * in VF PE. It relies on the EEH PCI config accessors. So we
1236 	 * can't block them during the window.
1237 	 */
1238 	if (edev->physfn && (edev->pe->state & EEH_PE_RESET))
1239 		return false;
1240 
1241 	if (edev->pe->state & EEH_PE_CFG_BLOCKED)
1242 		return true;
1243 
1244 	return false;
1245 }
1246 
1247 static int pnv_eeh_read_config(struct pci_dn *pdn,
1248 			       int where, int size, u32 *val)
1249 {
1250 	if (!pdn)
1251 		return PCIBIOS_DEVICE_NOT_FOUND;
1252 
1253 	if (pnv_eeh_cfg_blocked(pdn)) {
1254 		*val = 0xFFFFFFFF;
1255 		return PCIBIOS_SET_FAILED;
1256 	}
1257 
1258 	return pnv_pci_cfg_read(pdn, where, size, val);
1259 }
1260 
1261 static int pnv_eeh_write_config(struct pci_dn *pdn,
1262 				int where, int size, u32 val)
1263 {
1264 	if (!pdn)
1265 		return PCIBIOS_DEVICE_NOT_FOUND;
1266 
1267 	if (pnv_eeh_cfg_blocked(pdn))
1268 		return PCIBIOS_SET_FAILED;
1269 
1270 	return pnv_pci_cfg_write(pdn, where, size, val);
1271 }
1272 
1273 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
1274 {
1275 	/* GEM */
1276 	if (data->gemXfir || data->gemRfir ||
1277 	    data->gemRirqfir || data->gemMask || data->gemRwof)
1278 		pr_info("  GEM: %016llx %016llx %016llx %016llx %016llx\n",
1279 			be64_to_cpu(data->gemXfir),
1280 			be64_to_cpu(data->gemRfir),
1281 			be64_to_cpu(data->gemRirqfir),
1282 			be64_to_cpu(data->gemMask),
1283 			be64_to_cpu(data->gemRwof));
1284 
1285 	/* LEM */
1286 	if (data->lemFir || data->lemErrMask ||
1287 	    data->lemAction0 || data->lemAction1 || data->lemWof)
1288 		pr_info("  LEM: %016llx %016llx %016llx %016llx %016llx\n",
1289 			be64_to_cpu(data->lemFir),
1290 			be64_to_cpu(data->lemErrMask),
1291 			be64_to_cpu(data->lemAction0),
1292 			be64_to_cpu(data->lemAction1),
1293 			be64_to_cpu(data->lemWof));
1294 }
1295 
1296 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
1297 {
1298 	struct pnv_phb *phb = hose->private_data;
1299 	struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
1300 	long rc;
1301 
1302 	rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
1303 	if (rc != OPAL_SUCCESS) {
1304 		pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1305 			__func__, phb->hub_id, rc);
1306 		return;
1307 	}
1308 
1309 	switch (data->type) {
1310 	case OPAL_P7IOC_DIAG_TYPE_RGC:
1311 		pr_info("P7IOC diag-data for RGC\n\n");
1312 		pnv_eeh_dump_hub_diag_common(data);
1313 		if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
1314 			pr_info("  RGC: %016llx %016llx\n",
1315 				be64_to_cpu(data->rgc.rgcStatus),
1316 				be64_to_cpu(data->rgc.rgcLdcp));
1317 		break;
1318 	case OPAL_P7IOC_DIAG_TYPE_BI:
1319 		pr_info("P7IOC diag-data for BI %s\n\n",
1320 			data->bi.biDownbound ? "Downbound" : "Upbound");
1321 		pnv_eeh_dump_hub_diag_common(data);
1322 		if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
1323 		    data->bi.biLdcp2 || data->bi.biFenceStatus)
1324 			pr_info("  BI:  %016llx %016llx %016llx %016llx\n",
1325 				be64_to_cpu(data->bi.biLdcp0),
1326 				be64_to_cpu(data->bi.biLdcp1),
1327 				be64_to_cpu(data->bi.biLdcp2),
1328 				be64_to_cpu(data->bi.biFenceStatus));
1329 		break;
1330 	case OPAL_P7IOC_DIAG_TYPE_CI:
1331 		pr_info("P7IOC diag-data for CI Port %d\n\n",
1332 			data->ci.ciPort);
1333 		pnv_eeh_dump_hub_diag_common(data);
1334 		if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
1335 			pr_info("  CI:  %016llx %016llx\n",
1336 				be64_to_cpu(data->ci.ciPortStatus),
1337 				be64_to_cpu(data->ci.ciPortLdcp));
1338 		break;
1339 	case OPAL_P7IOC_DIAG_TYPE_MISC:
1340 		pr_info("P7IOC diag-data for MISC\n\n");
1341 		pnv_eeh_dump_hub_diag_common(data);
1342 		break;
1343 	case OPAL_P7IOC_DIAG_TYPE_I2C:
1344 		pr_info("P7IOC diag-data for I2C\n\n");
1345 		pnv_eeh_dump_hub_diag_common(data);
1346 		break;
1347 	default:
1348 		pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1349 			__func__, phb->hub_id, data->type);
1350 	}
1351 }
1352 
1353 static int pnv_eeh_get_pe(struct pci_controller *hose,
1354 			  u16 pe_no, struct eeh_pe **pe)
1355 {
1356 	struct pnv_phb *phb = hose->private_data;
1357 	struct pnv_ioda_pe *pnv_pe;
1358 	struct eeh_pe *dev_pe;
1359 	struct eeh_dev edev;
1360 
1361 	/*
1362 	 * If PHB supports compound PE, to fetch
1363 	 * the master PE because slave PE is invisible
1364 	 * to EEH core.
1365 	 */
1366 	pnv_pe = &phb->ioda.pe_array[pe_no];
1367 	if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
1368 		pnv_pe = pnv_pe->master;
1369 		WARN_ON(!pnv_pe ||
1370 			!(pnv_pe->flags & PNV_IODA_PE_MASTER));
1371 		pe_no = pnv_pe->pe_number;
1372 	}
1373 
1374 	/* Find the PE according to PE# */
1375 	memset(&edev, 0, sizeof(struct eeh_dev));
1376 	edev.phb = hose;
1377 	edev.pe_config_addr = pe_no;
1378 	dev_pe = eeh_pe_get(&edev);
1379 	if (!dev_pe)
1380 		return -EEXIST;
1381 
1382 	/* Freeze the (compound) PE */
1383 	*pe = dev_pe;
1384 	if (!(dev_pe->state & EEH_PE_ISOLATED))
1385 		phb->freeze_pe(phb, pe_no);
1386 
1387 	/*
1388 	 * At this point, we're sure the (compound) PE should
1389 	 * have been frozen. However, we still need poke until
1390 	 * hitting the frozen PE on top level.
1391 	 */
1392 	dev_pe = dev_pe->parent;
1393 	while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
1394 		int ret;
1395 		int active_flags = (EEH_STATE_MMIO_ACTIVE |
1396 				    EEH_STATE_DMA_ACTIVE);
1397 
1398 		ret = eeh_ops->get_state(dev_pe, NULL);
1399 		if (ret <= 0 || (ret & active_flags) == active_flags) {
1400 			dev_pe = dev_pe->parent;
1401 			continue;
1402 		}
1403 
1404 		/* Frozen parent PE */
1405 		*pe = dev_pe;
1406 		if (!(dev_pe->state & EEH_PE_ISOLATED))
1407 			phb->freeze_pe(phb, dev_pe->addr);
1408 
1409 		/* Next one */
1410 		dev_pe = dev_pe->parent;
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 /**
1417  * pnv_eeh_next_error - Retrieve next EEH error to handle
1418  * @pe: Affected PE
1419  *
1420  * The function is expected to be called by EEH core while it gets
1421  * special EEH event (without binding PE). The function calls to
1422  * OPAL APIs for next error to handle. The informational error is
1423  * handled internally by platform. However, the dead IOC, dead PHB,
1424  * fenced PHB and frozen PE should be handled by EEH core eventually.
1425  */
1426 static int pnv_eeh_next_error(struct eeh_pe **pe)
1427 {
1428 	struct pci_controller *hose;
1429 	struct pnv_phb *phb;
1430 	struct eeh_pe *phb_pe, *parent_pe;
1431 	__be64 frozen_pe_no;
1432 	__be16 err_type, severity;
1433 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1434 	long rc;
1435 	int state, ret = EEH_NEXT_ERR_NONE;
1436 
1437 	/*
1438 	 * While running here, it's safe to purge the event queue. The
1439 	 * event should still be masked.
1440 	 */
1441 	eeh_remove_event(NULL, false);
1442 
1443 	list_for_each_entry(hose, &hose_list, list_node) {
1444 		/*
1445 		 * If the subordinate PCI buses of the PHB has been
1446 		 * removed or is exactly under error recovery, we
1447 		 * needn't take care of it any more.
1448 		 */
1449 		phb = hose->private_data;
1450 		phb_pe = eeh_phb_pe_get(hose);
1451 		if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
1452 			continue;
1453 
1454 		rc = opal_pci_next_error(phb->opal_id,
1455 					 &frozen_pe_no, &err_type, &severity);
1456 		if (rc != OPAL_SUCCESS) {
1457 			pr_devel("%s: Invalid return value on "
1458 				 "PHB#%x (0x%lx) from opal_pci_next_error",
1459 				 __func__, hose->global_number, rc);
1460 			continue;
1461 		}
1462 
1463 		/* If the PHB doesn't have error, stop processing */
1464 		if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
1465 		    be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
1466 			pr_devel("%s: No error found on PHB#%x\n",
1467 				 __func__, hose->global_number);
1468 			continue;
1469 		}
1470 
1471 		/*
1472 		 * Processing the error. We're expecting the error with
1473 		 * highest priority reported upon multiple errors on the
1474 		 * specific PHB.
1475 		 */
1476 		pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1477 			__func__, be16_to_cpu(err_type),
1478 			be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
1479 			hose->global_number);
1480 		switch (be16_to_cpu(err_type)) {
1481 		case OPAL_EEH_IOC_ERROR:
1482 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1483 				pr_err("EEH: dead IOC detected\n");
1484 				ret = EEH_NEXT_ERR_DEAD_IOC;
1485 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1486 				pr_info("EEH: IOC informative error "
1487 					"detected\n");
1488 				pnv_eeh_get_and_dump_hub_diag(hose);
1489 				ret = EEH_NEXT_ERR_NONE;
1490 			}
1491 
1492 			break;
1493 		case OPAL_EEH_PHB_ERROR:
1494 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1495 				*pe = phb_pe;
1496 				pr_err("EEH: dead PHB#%x detected, "
1497 				       "location: %s\n",
1498 					hose->global_number,
1499 					eeh_pe_loc_get(phb_pe));
1500 				ret = EEH_NEXT_ERR_DEAD_PHB;
1501 			} else if (be16_to_cpu(severity) ==
1502 				   OPAL_EEH_SEV_PHB_FENCED) {
1503 				*pe = phb_pe;
1504 				pr_err("EEH: Fenced PHB#%x detected, "
1505 				       "location: %s\n",
1506 					hose->global_number,
1507 					eeh_pe_loc_get(phb_pe));
1508 				ret = EEH_NEXT_ERR_FENCED_PHB;
1509 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1510 				pr_info("EEH: PHB#%x informative error "
1511 					"detected, location: %s\n",
1512 					hose->global_number,
1513 					eeh_pe_loc_get(phb_pe));
1514 				pnv_eeh_get_phb_diag(phb_pe);
1515 				pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1516 				ret = EEH_NEXT_ERR_NONE;
1517 			}
1518 
1519 			break;
1520 		case OPAL_EEH_PE_ERROR:
1521 			/*
1522 			 * If we can't find the corresponding PE, we
1523 			 * just try to unfreeze.
1524 			 */
1525 			if (pnv_eeh_get_pe(hose,
1526 				be64_to_cpu(frozen_pe_no), pe)) {
1527 				pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1528 					hose->global_number, be64_to_cpu(frozen_pe_no));
1529 				pr_info("EEH: PHB location: %s\n",
1530 					eeh_pe_loc_get(phb_pe));
1531 
1532 				/* Dump PHB diag-data */
1533 				rc = opal_pci_get_phb_diag_data2(phb->opal_id,
1534 					phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE);
1535 				if (rc == OPAL_SUCCESS)
1536 					pnv_pci_dump_phb_diag_data(hose,
1537 							phb->diag.blob);
1538 
1539 				/* Try best to clear it */
1540 				opal_pci_eeh_freeze_clear(phb->opal_id,
1541 					frozen_pe_no,
1542 					OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1543 				ret = EEH_NEXT_ERR_NONE;
1544 			} else if ((*pe)->state & EEH_PE_ISOLATED ||
1545 				   eeh_pe_passed(*pe)) {
1546 				ret = EEH_NEXT_ERR_NONE;
1547 			} else {
1548 				pr_err("EEH: Frozen PE#%x "
1549 				       "on PHB#%x detected\n",
1550 				       (*pe)->addr,
1551 					(*pe)->phb->global_number);
1552 				pr_err("EEH: PE location: %s, "
1553 				       "PHB location: %s\n",
1554 				       eeh_pe_loc_get(*pe),
1555 				       eeh_pe_loc_get(phb_pe));
1556 				ret = EEH_NEXT_ERR_FROZEN_PE;
1557 			}
1558 
1559 			break;
1560 		default:
1561 			pr_warn("%s: Unexpected error type %d\n",
1562 				__func__, be16_to_cpu(err_type));
1563 		}
1564 
1565 		/*
1566 		 * EEH core will try recover from fenced PHB or
1567 		 * frozen PE. In the time for frozen PE, EEH core
1568 		 * enable IO path for that before collecting logs,
1569 		 * but it ruins the site. So we have to dump the
1570 		 * log in advance here.
1571 		 */
1572 		if ((ret == EEH_NEXT_ERR_FROZEN_PE  ||
1573 		    ret == EEH_NEXT_ERR_FENCED_PHB) &&
1574 		    !((*pe)->state & EEH_PE_ISOLATED)) {
1575 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1576 			pnv_eeh_get_phb_diag(*pe);
1577 
1578 			if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1579 				pnv_pci_dump_phb_diag_data((*pe)->phb,
1580 							   (*pe)->data);
1581 		}
1582 
1583 		/*
1584 		 * We probably have the frozen parent PE out there and
1585 		 * we need have to handle frozen parent PE firstly.
1586 		 */
1587 		if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1588 			parent_pe = (*pe)->parent;
1589 			while (parent_pe) {
1590 				/* Hit the ceiling ? */
1591 				if (parent_pe->type & EEH_PE_PHB)
1592 					break;
1593 
1594 				/* Frozen parent PE ? */
1595 				state = eeh_ops->get_state(parent_pe, NULL);
1596 				if (state > 0 &&
1597 				    (state & active_flags) != active_flags)
1598 					*pe = parent_pe;
1599 
1600 				/* Next parent level */
1601 				parent_pe = parent_pe->parent;
1602 			}
1603 
1604 			/* We possibly migrate to another PE */
1605 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1606 		}
1607 
1608 		/*
1609 		 * If we have no errors on the specific PHB or only
1610 		 * informative error there, we continue poking it.
1611 		 * Otherwise, we need actions to be taken by upper
1612 		 * layer.
1613 		 */
1614 		if (ret > EEH_NEXT_ERR_INF)
1615 			break;
1616 	}
1617 
1618 	/* Unmask the event */
1619 	if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
1620 		enable_irq(eeh_event_irq);
1621 
1622 	return ret;
1623 }
1624 
1625 static int pnv_eeh_restore_vf_config(struct pci_dn *pdn)
1626 {
1627 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1628 	u32 devctl, cmd, cap2, aer_capctl;
1629 	int old_mps;
1630 
1631 	if (edev->pcie_cap) {
1632 		/* Restore MPS */
1633 		old_mps = (ffs(pdn->mps) - 8) << 5;
1634 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1635 				     2, &devctl);
1636 		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
1637 		devctl |= old_mps;
1638 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1639 				      2, devctl);
1640 
1641 		/* Disable Completion Timeout */
1642 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
1643 				     4, &cap2);
1644 		if (cap2 & 0x10) {
1645 			eeh_ops->read_config(pdn,
1646 					     edev->pcie_cap + PCI_EXP_DEVCTL2,
1647 					     4, &cap2);
1648 			cap2 |= 0x10;
1649 			eeh_ops->write_config(pdn,
1650 					      edev->pcie_cap + PCI_EXP_DEVCTL2,
1651 					      4, cap2);
1652 		}
1653 	}
1654 
1655 	/* Enable SERR and parity checking */
1656 	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
1657 	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
1658 	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
1659 
1660 	/* Enable report various errors */
1661 	if (edev->pcie_cap) {
1662 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1663 				     2, &devctl);
1664 		devctl &= ~PCI_EXP_DEVCTL_CERE;
1665 		devctl |= (PCI_EXP_DEVCTL_NFERE |
1666 			   PCI_EXP_DEVCTL_FERE |
1667 			   PCI_EXP_DEVCTL_URRE);
1668 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1669 				      2, devctl);
1670 	}
1671 
1672 	/* Enable ECRC generation and check */
1673 	if (edev->pcie_cap && edev->aer_cap) {
1674 		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
1675 				     4, &aer_capctl);
1676 		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
1677 		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
1678 				      4, aer_capctl);
1679 	}
1680 
1681 	return 0;
1682 }
1683 
1684 static int pnv_eeh_restore_config(struct pci_dn *pdn)
1685 {
1686 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1687 	struct pnv_phb *phb;
1688 	s64 ret;
1689 
1690 	if (!edev)
1691 		return -EEXIST;
1692 
1693 	/*
1694 	 * We have to restore the PCI config space after reset since the
1695 	 * firmware can't see SRIOV VFs.
1696 	 *
1697 	 * FIXME: The MPS, error routing rules, timeout setting are worthy
1698 	 * to be exported by firmware in extendible way.
1699 	 */
1700 	if (edev->physfn) {
1701 		ret = pnv_eeh_restore_vf_config(pdn);
1702 	} else {
1703 		phb = edev->phb->private_data;
1704 		ret = opal_pci_reinit(phb->opal_id,
1705 				      OPAL_REINIT_PCI_DEV, edev->config_addr);
1706 	}
1707 
1708 	if (ret) {
1709 		pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1710 			__func__, edev->config_addr, ret);
1711 		return -EIO;
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static struct eeh_ops pnv_eeh_ops = {
1718 	.name                   = "powernv",
1719 	.init                   = pnv_eeh_init,
1720 	.post_init              = pnv_eeh_post_init,
1721 	.probe			= pnv_eeh_probe,
1722 	.set_option             = pnv_eeh_set_option,
1723 	.get_pe_addr            = pnv_eeh_get_pe_addr,
1724 	.get_state              = pnv_eeh_get_state,
1725 	.reset                  = pnv_eeh_reset,
1726 	.wait_state             = pnv_eeh_wait_state,
1727 	.get_log                = pnv_eeh_get_log,
1728 	.configure_bridge       = pnv_eeh_configure_bridge,
1729 	.err_inject		= pnv_eeh_err_inject,
1730 	.read_config            = pnv_eeh_read_config,
1731 	.write_config           = pnv_eeh_write_config,
1732 	.next_error		= pnv_eeh_next_error,
1733 	.restore_config		= pnv_eeh_restore_config
1734 };
1735 
1736 void pcibios_bus_add_device(struct pci_dev *pdev)
1737 {
1738 	struct pci_dn *pdn = pci_get_pdn(pdev);
1739 
1740 	if (!pdev->is_virtfn)
1741 		return;
1742 
1743 	/*
1744 	 * The following operations will fail if VF's sysfs files
1745 	 * aren't created or its resources aren't finalized.
1746 	 */
1747 	eeh_add_device_early(pdn);
1748 	eeh_add_device_late(pdev);
1749 	eeh_sysfs_add_device(pdev);
1750 }
1751 
1752 #ifdef CONFIG_PCI_IOV
1753 static void pnv_pci_fixup_vf_mps(struct pci_dev *pdev)
1754 {
1755 	struct pci_dn *pdn = pci_get_pdn(pdev);
1756 	int parent_mps;
1757 
1758 	if (!pdev->is_virtfn)
1759 		return;
1760 
1761 	/* Synchronize MPS for VF and PF */
1762 	parent_mps = pcie_get_mps(pdev->physfn);
1763 	if ((128 << pdev->pcie_mpss) >= parent_mps)
1764 		pcie_set_mps(pdev, parent_mps);
1765 	pdn->mps = pcie_get_mps(pdev);
1766 }
1767 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_pci_fixup_vf_mps);
1768 #endif /* CONFIG_PCI_IOV */
1769 
1770 /**
1771  * eeh_powernv_init - Register platform dependent EEH operations
1772  *
1773  * EEH initialization on powernv platform. This function should be
1774  * called before any EEH related functions.
1775  */
1776 static int __init eeh_powernv_init(void)
1777 {
1778 	int ret = -EINVAL;
1779 
1780 	eeh_set_pe_aux_size(PNV_PCI_DIAG_BUF_SIZE);
1781 	ret = eeh_ops_register(&pnv_eeh_ops);
1782 	if (!ret)
1783 		pr_info("EEH: PowerNV platform initialized\n");
1784 	else
1785 		pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
1786 
1787 	return ret;
1788 }
1789 machine_early_initcall(powernv, eeh_powernv_init);
1790