xref: /linux/arch/powerpc/platforms/powermac/smp.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * SMP support for power macintosh.
3  *
4  * We support both the old "powersurge" SMP architecture
5  * and the current Core99 (G4 PowerMac) machines.
6  *
7  * Note that we don't support the very first rev. of
8  * Apple/DayStar 2 CPUs board, the one with the funky
9  * watchdog. Hopefully, none of these should be there except
10  * maybe internally to Apple. I should probably still add some
11  * code to detect this card though and disable SMP. --BenH.
12  *
13  * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net)
14  * and Ben Herrenschmidt <benh@kernel.crashing.org>.
15  *
16  * Support for DayStar quad CPU cards
17  * Copyright (C) XLR8, Inc. 1994-2000
18  *
19  *  This program is free software; you can redistribute it and/or
20  *  modify it under the terms of the GNU General Public License
21  *  as published by the Free Software Foundation; either version
22  *  2 of the License, or (at your option) any later version.
23  */
24 #include <linux/config.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/errno.h>
35 #include <linux/hardirq.h>
36 #include <linux/cpu.h>
37 #include <linux/compiler.h>
38 
39 #include <asm/ptrace.h>
40 #include <asm/atomic.h>
41 #include <asm/irq.h>
42 #include <asm/page.h>
43 #include <asm/pgtable.h>
44 #include <asm/sections.h>
45 #include <asm/io.h>
46 #include <asm/prom.h>
47 #include <asm/smp.h>
48 #include <asm/machdep.h>
49 #include <asm/pmac_feature.h>
50 #include <asm/time.h>
51 #include <asm/mpic.h>
52 #include <asm/cacheflush.h>
53 #include <asm/keylargo.h>
54 #include <asm/pmac_low_i2c.h>
55 #include <asm/pmac_pfunc.h>
56 
57 #define DEBUG
58 
59 #ifdef DEBUG
60 #define DBG(fmt...) udbg_printf(fmt)
61 #else
62 #define DBG(fmt...)
63 #endif
64 
65 extern void __secondary_start_pmac_0(void);
66 extern int pmac_pfunc_base_install(void);
67 
68 #ifdef CONFIG_PPC32
69 
70 /* Sync flag for HW tb sync */
71 static volatile int sec_tb_reset = 0;
72 
73 /*
74  * Powersurge (old powermac SMP) support.
75  */
76 
77 /* Addresses for powersurge registers */
78 #define HAMMERHEAD_BASE		0xf8000000
79 #define HHEAD_CONFIG		0x90
80 #define HHEAD_SEC_INTR		0xc0
81 
82 /* register for interrupting the primary processor on the powersurge */
83 /* N.B. this is actually the ethernet ROM! */
84 #define PSURGE_PRI_INTR		0xf3019000
85 
86 /* register for storing the start address for the secondary processor */
87 /* N.B. this is the PCI config space address register for the 1st bridge */
88 #define PSURGE_START		0xf2800000
89 
90 /* Daystar/XLR8 4-CPU card */
91 #define PSURGE_QUAD_REG_ADDR	0xf8800000
92 
93 #define PSURGE_QUAD_IRQ_SET	0
94 #define PSURGE_QUAD_IRQ_CLR	1
95 #define PSURGE_QUAD_IRQ_PRIMARY	2
96 #define PSURGE_QUAD_CKSTOP_CTL	3
97 #define PSURGE_QUAD_PRIMARY_ARB	4
98 #define PSURGE_QUAD_BOARD_ID	6
99 #define PSURGE_QUAD_WHICH_CPU	7
100 #define PSURGE_QUAD_CKSTOP_RDBK	8
101 #define PSURGE_QUAD_RESET_CTL	11
102 
103 #define PSURGE_QUAD_OUT(r, v)	(out_8(quad_base + ((r) << 4) + 4, (v)))
104 #define PSURGE_QUAD_IN(r)	(in_8(quad_base + ((r) << 4) + 4) & 0x0f)
105 #define PSURGE_QUAD_BIS(r, v)	(PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v)))
106 #define PSURGE_QUAD_BIC(r, v)	(PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v)))
107 
108 /* virtual addresses for the above */
109 static volatile u8 __iomem *hhead_base;
110 static volatile u8 __iomem *quad_base;
111 static volatile u32 __iomem *psurge_pri_intr;
112 static volatile u8 __iomem *psurge_sec_intr;
113 static volatile u32 __iomem *psurge_start;
114 
115 /* values for psurge_type */
116 #define PSURGE_NONE		-1
117 #define PSURGE_DUAL		0
118 #define PSURGE_QUAD_OKEE	1
119 #define PSURGE_QUAD_COTTON	2
120 #define PSURGE_QUAD_ICEGRASS	3
121 
122 /* what sort of powersurge board we have */
123 static int psurge_type = PSURGE_NONE;
124 
125 /*
126  * Set and clear IPIs for powersurge.
127  */
128 static inline void psurge_set_ipi(int cpu)
129 {
130 	if (psurge_type == PSURGE_NONE)
131 		return;
132 	if (cpu == 0)
133 		in_be32(psurge_pri_intr);
134 	else if (psurge_type == PSURGE_DUAL)
135 		out_8(psurge_sec_intr, 0);
136 	else
137 		PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu);
138 }
139 
140 static inline void psurge_clr_ipi(int cpu)
141 {
142 	if (cpu > 0) {
143 		switch(psurge_type) {
144 		case PSURGE_DUAL:
145 			out_8(psurge_sec_intr, ~0);
146 		case PSURGE_NONE:
147 			break;
148 		default:
149 			PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu);
150 		}
151 	}
152 }
153 
154 /*
155  * On powersurge (old SMP powermac architecture) we don't have
156  * separate IPIs for separate messages like openpic does.  Instead
157  * we have a bitmap for each processor, where a 1 bit means that
158  * the corresponding message is pending for that processor.
159  * Ideally each cpu's entry would be in a different cache line.
160  *  -- paulus.
161  */
162 static unsigned long psurge_smp_message[NR_CPUS];
163 
164 void psurge_smp_message_recv(struct pt_regs *regs)
165 {
166 	int cpu = smp_processor_id();
167 	int msg;
168 
169 	/* clear interrupt */
170 	psurge_clr_ipi(cpu);
171 
172 	if (num_online_cpus() < 2)
173 		return;
174 
175 	/* make sure there is a message there */
176 	for (msg = 0; msg < 4; msg++)
177 		if (test_and_clear_bit(msg, &psurge_smp_message[cpu]))
178 			smp_message_recv(msg, regs);
179 }
180 
181 irqreturn_t psurge_primary_intr(int irq, void *d, struct pt_regs *regs)
182 {
183 	psurge_smp_message_recv(regs);
184 	return IRQ_HANDLED;
185 }
186 
187 static void smp_psurge_message_pass(int target, int msg)
188 {
189 	int i;
190 
191 	if (num_online_cpus() < 2)
192 		return;
193 
194 	for_each_online_cpu(i) {
195 		if (target == MSG_ALL
196 		    || (target == MSG_ALL_BUT_SELF && i != smp_processor_id())
197 		    || target == i) {
198 			set_bit(msg, &psurge_smp_message[i]);
199 			psurge_set_ipi(i);
200 		}
201 	}
202 }
203 
204 /*
205  * Determine a quad card presence. We read the board ID register, we
206  * force the data bus to change to something else, and we read it again.
207  * It it's stable, then the register probably exist (ugh !)
208  */
209 static int __init psurge_quad_probe(void)
210 {
211 	int type;
212 	unsigned int i;
213 
214 	type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID);
215 	if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS
216 	    || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
217 		return PSURGE_DUAL;
218 
219 	/* looks OK, try a slightly more rigorous test */
220 	/* bogus is not necessarily cacheline-aligned,
221 	   though I don't suppose that really matters.  -- paulus */
222 	for (i = 0; i < 100; i++) {
223 		volatile u32 bogus[8];
224 		bogus[(0+i)%8] = 0x00000000;
225 		bogus[(1+i)%8] = 0x55555555;
226 		bogus[(2+i)%8] = 0xFFFFFFFF;
227 		bogus[(3+i)%8] = 0xAAAAAAAA;
228 		bogus[(4+i)%8] = 0x33333333;
229 		bogus[(5+i)%8] = 0xCCCCCCCC;
230 		bogus[(6+i)%8] = 0xCCCCCCCC;
231 		bogus[(7+i)%8] = 0x33333333;
232 		wmb();
233 		asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory");
234 		mb();
235 		if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
236 			return PSURGE_DUAL;
237 	}
238 	return type;
239 }
240 
241 static void __init psurge_quad_init(void)
242 {
243 	int procbits;
244 
245 	if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351);
246 	procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU);
247 	if (psurge_type == PSURGE_QUAD_ICEGRASS)
248 		PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
249 	else
250 		PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits);
251 	mdelay(33);
252 	out_8(psurge_sec_intr, ~0);
253 	PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits);
254 	PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
255 	if (psurge_type != PSURGE_QUAD_ICEGRASS)
256 		PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits);
257 	PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits);
258 	mdelay(33);
259 	PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits);
260 	mdelay(33);
261 	PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits);
262 	mdelay(33);
263 }
264 
265 static int __init smp_psurge_probe(void)
266 {
267 	int i, ncpus;
268 
269 	/* We don't do SMP on the PPC601 -- paulus */
270 	if (PVR_VER(mfspr(SPRN_PVR)) == 1)
271 		return 1;
272 
273 	/*
274 	 * The powersurge cpu board can be used in the generation
275 	 * of powermacs that have a socket for an upgradeable cpu card,
276 	 * including the 7500, 8500, 9500, 9600.
277 	 * The device tree doesn't tell you if you have 2 cpus because
278 	 * OF doesn't know anything about the 2nd processor.
279 	 * Instead we look for magic bits in magic registers,
280 	 * in the hammerhead memory controller in the case of the
281 	 * dual-cpu powersurge board.  -- paulus.
282 	 */
283 	if (find_devices("hammerhead") == NULL)
284 		return 1;
285 
286 	hhead_base = ioremap(HAMMERHEAD_BASE, 0x800);
287 	quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024);
288 	psurge_sec_intr = hhead_base + HHEAD_SEC_INTR;
289 
290 	psurge_type = psurge_quad_probe();
291 	if (psurge_type != PSURGE_DUAL) {
292 		psurge_quad_init();
293 		/* All released cards using this HW design have 4 CPUs */
294 		ncpus = 4;
295 	} else {
296 		iounmap(quad_base);
297 		if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) {
298 			/* not a dual-cpu card */
299 			iounmap(hhead_base);
300 			psurge_type = PSURGE_NONE;
301 			return 1;
302 		}
303 		ncpus = 2;
304 	}
305 
306 	psurge_start = ioremap(PSURGE_START, 4);
307 	psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4);
308 
309 	/*
310 	 * This is necessary because OF doesn't know about the
311 	 * secondary cpu(s), and thus there aren't nodes in the
312 	 * device tree for them, and smp_setup_cpu_maps hasn't
313 	 * set their bits in cpu_possible_map and cpu_present_map.
314 	 */
315 	if (ncpus > NR_CPUS)
316 		ncpus = NR_CPUS;
317 	for (i = 1; i < ncpus ; ++i) {
318 		cpu_set(i, cpu_present_map);
319 		cpu_set(i, cpu_possible_map);
320 		set_hard_smp_processor_id(i, i);
321 	}
322 
323 	if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352);
324 
325 	return ncpus;
326 }
327 
328 static void __init smp_psurge_kick_cpu(int nr)
329 {
330 	unsigned long start = __pa(__secondary_start_pmac_0) + nr * 8;
331 	unsigned long a;
332 
333 	/* may need to flush here if secondary bats aren't setup */
334 	for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32)
335 		asm volatile("dcbf 0,%0" : : "r" (a) : "memory");
336 	asm volatile("sync");
337 
338 	if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353);
339 
340 	out_be32(psurge_start, start);
341 	mb();
342 
343 	psurge_set_ipi(nr);
344 	udelay(10);
345 	psurge_clr_ipi(nr);
346 
347 	if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354);
348 }
349 
350 /*
351  * With the dual-cpu powersurge board, the decrementers and timebases
352  * of both cpus are frozen after the secondary cpu is started up,
353  * until we give the secondary cpu another interrupt.  This routine
354  * uses this to get the timebases synchronized.
355  *  -- paulus.
356  */
357 static void __init psurge_dual_sync_tb(int cpu_nr)
358 {
359 	int t;
360 
361 	set_dec(tb_ticks_per_jiffy);
362 	/* XXX fixme */
363 	set_tb(0, 0);
364 
365 	if (cpu_nr > 0) {
366 		mb();
367 		sec_tb_reset = 1;
368 		return;
369 	}
370 
371 	/* wait for the secondary to have reset its TB before proceeding */
372 	for (t = 10000000; t > 0 && !sec_tb_reset; --t)
373 		;
374 
375 	/* now interrupt the secondary, starting both TBs */
376 	psurge_set_ipi(1);
377 }
378 
379 static struct irqaction psurge_irqaction = {
380 	.handler = psurge_primary_intr,
381 	.flags = SA_INTERRUPT,
382 	.mask = CPU_MASK_NONE,
383 	.name = "primary IPI",
384 };
385 
386 static void __init smp_psurge_setup_cpu(int cpu_nr)
387 {
388 
389 	if (cpu_nr == 0) {
390 		/* If we failed to start the second CPU, we should still
391 		 * send it an IPI to start the timebase & DEC or we might
392 		 * have them stuck.
393 		 */
394 		if (num_online_cpus() < 2) {
395 			if (psurge_type == PSURGE_DUAL)
396 				psurge_set_ipi(1);
397 			return;
398 		}
399 		/* reset the entry point so if we get another intr we won't
400 		 * try to startup again */
401 		out_be32(psurge_start, 0x100);
402 		if (setup_irq(30, &psurge_irqaction))
403 			printk(KERN_ERR "Couldn't get primary IPI interrupt");
404 	}
405 
406 	if (psurge_type == PSURGE_DUAL)
407 		psurge_dual_sync_tb(cpu_nr);
408 }
409 
410 void __init smp_psurge_take_timebase(void)
411 {
412 	/* Dummy implementation */
413 }
414 
415 void __init smp_psurge_give_timebase(void)
416 {
417 	/* Dummy implementation */
418 }
419 
420 /* PowerSurge-style Macs */
421 struct smp_ops_t psurge_smp_ops = {
422 	.message_pass	= smp_psurge_message_pass,
423 	.probe		= smp_psurge_probe,
424 	.kick_cpu	= smp_psurge_kick_cpu,
425 	.setup_cpu	= smp_psurge_setup_cpu,
426 	.give_timebase	= smp_psurge_give_timebase,
427 	.take_timebase	= smp_psurge_take_timebase,
428 };
429 #endif /* CONFIG_PPC32 - actually powersurge support */
430 
431 /*
432  * Core 99 and later support
433  */
434 
435 static void (*pmac_tb_freeze)(int freeze);
436 static u64 timebase;
437 static int tb_req;
438 
439 static void smp_core99_give_timebase(void)
440 {
441 	unsigned long flags;
442 
443 	local_irq_save(flags);
444 
445 	while(!tb_req)
446 		barrier();
447 	tb_req = 0;
448 	(*pmac_tb_freeze)(1);
449 	mb();
450 	timebase = get_tb();
451 	mb();
452 	while (timebase)
453 		barrier();
454 	mb();
455 	(*pmac_tb_freeze)(0);
456 	mb();
457 
458 	local_irq_restore(flags);
459 }
460 
461 
462 static void __devinit smp_core99_take_timebase(void)
463 {
464 	unsigned long flags;
465 
466 	local_irq_save(flags);
467 
468 	tb_req = 1;
469 	mb();
470 	while (!timebase)
471 		barrier();
472 	mb();
473 	set_tb(timebase >> 32, timebase & 0xffffffff);
474 	timebase = 0;
475 	mb();
476 	set_dec(tb_ticks_per_jiffy/2);
477 
478 	local_irq_restore(flags);
479 }
480 
481 #ifdef CONFIG_PPC64
482 /*
483  * G5s enable/disable the timebase via an i2c-connected clock chip.
484  */
485 static struct pmac_i2c_bus *pmac_tb_clock_chip_host;
486 static u8 pmac_tb_pulsar_addr;
487 
488 static void smp_core99_cypress_tb_freeze(int freeze)
489 {
490 	u8 data;
491 	int rc;
492 
493 	/* Strangely, the device-tree says address is 0xd2, but darwin
494 	 * accesses 0xd0 ...
495 	 */
496 	pmac_i2c_setmode(pmac_tb_clock_chip_host,
497 			 pmac_i2c_mode_combined);
498 	rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
499 			   0xd0 | pmac_i2c_read,
500 			   1, 0x81, &data, 1);
501 	if (rc != 0)
502 		goto bail;
503 
504 	data = (data & 0xf3) | (freeze ? 0x00 : 0x0c);
505 
506        	pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_stdsub);
507 	rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
508 			   0xd0 | pmac_i2c_write,
509 			   1, 0x81, &data, 1);
510 
511  bail:
512 	if (rc != 0) {
513 		printk("Cypress Timebase %s rc: %d\n",
514 		       freeze ? "freeze" : "unfreeze", rc);
515 		panic("Timebase freeze failed !\n");
516 	}
517 }
518 
519 
520 static void smp_core99_pulsar_tb_freeze(int freeze)
521 {
522 	u8 data;
523 	int rc;
524 
525 	pmac_i2c_setmode(pmac_tb_clock_chip_host,
526 			 pmac_i2c_mode_combined);
527 	rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
528 			   pmac_tb_pulsar_addr | pmac_i2c_read,
529 			   1, 0x2e, &data, 1);
530 	if (rc != 0)
531 		goto bail;
532 
533 	data = (data & 0x88) | (freeze ? 0x11 : 0x22);
534 
535 	pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_stdsub);
536 	rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
537 			   pmac_tb_pulsar_addr | pmac_i2c_write,
538 			   1, 0x2e, &data, 1);
539  bail:
540 	if (rc != 0) {
541 		printk(KERN_ERR "Pulsar Timebase %s rc: %d\n",
542 		       freeze ? "freeze" : "unfreeze", rc);
543 		panic("Timebase freeze failed !\n");
544 	}
545 }
546 
547 static void __init smp_core99_setup_i2c_hwsync(int ncpus)
548 {
549 	struct device_node *cc = NULL;
550 	struct device_node *p;
551 	const char *name = NULL;
552 	u32 *reg;
553 	int ok;
554 
555 	/* Look for the clock chip */
556 	while ((cc = of_find_node_by_name(cc, "i2c-hwclock")) != NULL) {
557 		p = of_get_parent(cc);
558 		ok = p && device_is_compatible(p, "uni-n-i2c");
559 		of_node_put(p);
560 		if (!ok)
561 			continue;
562 
563 		pmac_tb_clock_chip_host = pmac_i2c_find_bus(cc);
564 		if (pmac_tb_clock_chip_host == NULL)
565 			continue;
566 		reg = (u32 *)get_property(cc, "reg", NULL);
567 		if (reg == NULL)
568 			continue;
569 		switch (*reg) {
570 		case 0xd2:
571 			if (device_is_compatible(cc,"pulsar-legacy-slewing")) {
572 				pmac_tb_freeze = smp_core99_pulsar_tb_freeze;
573 				pmac_tb_pulsar_addr = 0xd2;
574 				name = "Pulsar";
575 			} else if (device_is_compatible(cc, "cy28508")) {
576 				pmac_tb_freeze = smp_core99_cypress_tb_freeze;
577 				name = "Cypress";
578 			}
579 			break;
580 		case 0xd4:
581 			pmac_tb_freeze = smp_core99_pulsar_tb_freeze;
582 			pmac_tb_pulsar_addr = 0xd4;
583 			name = "Pulsar";
584 			break;
585 		}
586 		if (pmac_tb_freeze != NULL)
587 			break;
588 	}
589 	if (pmac_tb_freeze != NULL) {
590 		/* Open i2c bus for synchronous access */
591 		if (pmac_i2c_open(pmac_tb_clock_chip_host, 1)) {
592 			printk(KERN_ERR "Failed top open i2c bus for clock"
593 			       " sync, fallback to software sync !\n");
594 			goto no_i2c_sync;
595 		}
596 		printk(KERN_INFO "Processor timebase sync using %s i2c clock\n",
597 		       name);
598 		return;
599 	}
600  no_i2c_sync:
601 	pmac_tb_freeze = NULL;
602 	pmac_tb_clock_chip_host = NULL;
603 }
604 
605 
606 
607 /*
608  * Newer G5s uses a platform function
609  */
610 
611 static void smp_core99_pfunc_tb_freeze(int freeze)
612 {
613 	struct device_node *cpus;
614 	struct pmf_args args;
615 
616 	cpus = of_find_node_by_path("/cpus");
617 	BUG_ON(cpus == NULL);
618 	args.count = 1;
619 	args.u[0].v = !freeze;
620 	pmf_call_function(cpus, "cpu-timebase", &args);
621 	of_node_put(cpus);
622 }
623 
624 #else /* CONFIG_PPC64 */
625 
626 /*
627  * SMP G4 use a GPIO to enable/disable the timebase.
628  */
629 
630 static unsigned int core99_tb_gpio;	/* Timebase freeze GPIO */
631 
632 static void smp_core99_gpio_tb_freeze(int freeze)
633 {
634 	if (freeze)
635 		pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4);
636 	else
637 		pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0);
638 	pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
639 }
640 
641 
642 #endif /* !CONFIG_PPC64 */
643 
644 /* L2 and L3 cache settings to pass from CPU0 to CPU1 on G4 cpus */
645 volatile static long int core99_l2_cache;
646 volatile static long int core99_l3_cache;
647 
648 static void __devinit core99_init_caches(int cpu)
649 {
650 #ifndef CONFIG_PPC64
651 	if (!cpu_has_feature(CPU_FTR_L2CR))
652 		return;
653 
654 	if (cpu == 0) {
655 		core99_l2_cache = _get_L2CR();
656 		printk("CPU0: L2CR is %lx\n", core99_l2_cache);
657 	} else {
658 		printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR());
659 		_set_L2CR(0);
660 		_set_L2CR(core99_l2_cache);
661 		printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache);
662 	}
663 
664 	if (!cpu_has_feature(CPU_FTR_L3CR))
665 		return;
666 
667 	if (cpu == 0){
668 		core99_l3_cache = _get_L3CR();
669 		printk("CPU0: L3CR is %lx\n", core99_l3_cache);
670 	} else {
671 		printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR());
672 		_set_L3CR(0);
673 		_set_L3CR(core99_l3_cache);
674 		printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache);
675 	}
676 #endif /* !CONFIG_PPC64 */
677 }
678 
679 static void __init smp_core99_setup(int ncpus)
680 {
681 #ifdef CONFIG_PPC64
682 
683 	/* i2c based HW sync on some G5s */
684 	if (machine_is_compatible("PowerMac7,2") ||
685 	    machine_is_compatible("PowerMac7,3") ||
686 	    machine_is_compatible("RackMac3,1"))
687 		smp_core99_setup_i2c_hwsync(ncpus);
688 
689 	/* pfunc based HW sync on recent G5s */
690 	if (pmac_tb_freeze == NULL) {
691 		struct device_node *cpus =
692 			of_find_node_by_path("/cpus");
693 		if (cpus &&
694 		    get_property(cpus, "platform-cpu-timebase", NULL)) {
695 			pmac_tb_freeze = smp_core99_pfunc_tb_freeze;
696 			printk(KERN_INFO "Processor timebase sync using"
697 			       " platform function\n");
698 		}
699 	}
700 
701 #else /* CONFIG_PPC64 */
702 
703 	/* GPIO based HW sync on ppc32 Core99 */
704 	if (pmac_tb_freeze == NULL && !machine_is_compatible("MacRISC4")) {
705 		struct device_node *cpu;
706 		u32 *tbprop = NULL;
707 
708 		core99_tb_gpio = KL_GPIO_TB_ENABLE;	/* default value */
709 		cpu = of_find_node_by_type(NULL, "cpu");
710 		if (cpu != NULL) {
711 			tbprop = (u32 *)get_property(cpu, "timebase-enable",
712 						     NULL);
713 			if (tbprop)
714 				core99_tb_gpio = *tbprop;
715 			of_node_put(cpu);
716 		}
717 		pmac_tb_freeze = smp_core99_gpio_tb_freeze;
718 		printk(KERN_INFO "Processor timebase sync using"
719 		       " GPIO 0x%02x\n", core99_tb_gpio);
720 	}
721 
722 #endif /* CONFIG_PPC64 */
723 
724 	/* No timebase sync, fallback to software */
725 	if (pmac_tb_freeze == NULL) {
726 		smp_ops->give_timebase = smp_generic_give_timebase;
727 		smp_ops->take_timebase = smp_generic_take_timebase;
728 		printk(KERN_INFO "Processor timebase sync using software\n");
729 	}
730 
731 #ifndef CONFIG_PPC64
732 	{
733 		int i;
734 
735 		/* XXX should get this from reg properties */
736 		for (i = 1; i < ncpus; ++i)
737 			smp_hw_index[i] = i;
738 	}
739 #endif
740 
741 	/* 32 bits SMP can't NAP */
742 	if (!machine_is_compatible("MacRISC4"))
743 		powersave_nap = 0;
744 }
745 
746 static int __init smp_core99_probe(void)
747 {
748 	struct device_node *cpus;
749 	int ncpus = 0;
750 
751 	if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345);
752 
753 	/* Count CPUs in the device-tree */
754        	for (cpus = NULL; (cpus = of_find_node_by_type(cpus, "cpu")) != NULL;)
755 	       	++ncpus;
756 
757 	printk(KERN_INFO "PowerMac SMP probe found %d cpus\n", ncpus);
758 
759 	/* Nothing more to do if less than 2 of them */
760 	if (ncpus <= 1)
761 		return 1;
762 
763 	/* We need to perform some early initialisations before we can start
764 	 * setting up SMP as we are running before initcalls
765 	 */
766 	pmac_pfunc_base_install();
767 	pmac_i2c_init();
768 
769 	/* Setup various bits like timebase sync method, ability to nap, ... */
770 	smp_core99_setup(ncpus);
771 
772 	/* Install IPIs */
773 	mpic_request_ipis();
774 
775 	/* Collect l2cr and l3cr values from CPU 0 */
776 	core99_init_caches(0);
777 
778 	return ncpus;
779 }
780 
781 static void __devinit smp_core99_kick_cpu(int nr)
782 {
783 	unsigned int save_vector;
784 	unsigned long target, flags;
785 	volatile unsigned int *vector
786 		 = ((volatile unsigned int *)(KERNELBASE+0x100));
787 
788 	if (nr < 0 || nr > 3)
789 		return;
790 
791 	if (ppc_md.progress)
792 		ppc_md.progress("smp_core99_kick_cpu", 0x346);
793 
794 	local_irq_save(flags);
795 	local_irq_disable();
796 
797 	/* Save reset vector */
798 	save_vector = *vector;
799 
800 	/* Setup fake reset vector that does
801 	 *   b __secondary_start_pmac_0 + nr*8 - KERNELBASE
802 	 */
803 	target = (unsigned long) __secondary_start_pmac_0 + nr * 8;
804 	create_branch((unsigned long)vector, target, BRANCH_SET_LINK);
805 
806 	/* Put some life in our friend */
807 	pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0);
808 
809 	/* FIXME: We wait a bit for the CPU to take the exception, I should
810 	 * instead wait for the entry code to set something for me. Well,
811 	 * ideally, all that crap will be done in prom.c and the CPU left
812 	 * in a RAM-based wait loop like CHRP.
813 	 */
814 	mdelay(1);
815 
816 	/* Restore our exception vector */
817 	*vector = save_vector;
818 	flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
819 
820 	local_irq_restore(flags);
821 	if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347);
822 }
823 
824 static void __devinit smp_core99_setup_cpu(int cpu_nr)
825 {
826 	/* Setup L2/L3 */
827 	if (cpu_nr != 0)
828 		core99_init_caches(cpu_nr);
829 
830 	/* Setup openpic */
831 	mpic_setup_this_cpu();
832 
833 	if (cpu_nr == 0) {
834 #ifdef CONFIG_PPC64
835 		extern void g5_phy_disable_cpu1(void);
836 
837 		/* Close i2c bus if it was used for tb sync */
838 		if (pmac_tb_clock_chip_host) {
839 			pmac_i2c_close(pmac_tb_clock_chip_host);
840 			pmac_tb_clock_chip_host	= NULL;
841 		}
842 
843 		/* If we didn't start the second CPU, we must take
844 		 * it off the bus
845 		 */
846 		if (machine_is_compatible("MacRISC4") &&
847 		    num_online_cpus() < 2)
848 			g5_phy_disable_cpu1();
849 #endif /* CONFIG_PPC64 */
850 
851 		if (ppc_md.progress)
852 			ppc_md.progress("core99_setup_cpu 0 done", 0x349);
853 	}
854 }
855 
856 
857 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PPC32)
858 
859 int smp_core99_cpu_disable(void)
860 {
861 	cpu_clear(smp_processor_id(), cpu_online_map);
862 
863 	/* XXX reset cpu affinity here */
864 	mpic_cpu_set_priority(0xf);
865 	asm volatile("mtdec %0" : : "r" (0x7fffffff));
866 	mb();
867 	udelay(20);
868 	asm volatile("mtdec %0" : : "r" (0x7fffffff));
869 	return 0;
870 }
871 
872 extern void low_cpu_die(void) __attribute__((noreturn)); /* in sleep.S */
873 static int cpu_dead[NR_CPUS];
874 
875 void cpu_die(void)
876 {
877 	local_irq_disable();
878 	cpu_dead[smp_processor_id()] = 1;
879 	mb();
880 	low_cpu_die();
881 }
882 
883 void smp_core99_cpu_die(unsigned int cpu)
884 {
885 	int timeout;
886 
887 	timeout = 1000;
888 	while (!cpu_dead[cpu]) {
889 		if (--timeout == 0) {
890 			printk("CPU %u refused to die!\n", cpu);
891 			break;
892 		}
893 		msleep(1);
894 	}
895 	cpu_dead[cpu] = 0;
896 }
897 
898 #endif
899 
900 /* Core99 Macs (dual G4s and G5s) */
901 struct smp_ops_t core99_smp_ops = {
902 	.message_pass	= smp_mpic_message_pass,
903 	.probe		= smp_core99_probe,
904 	.kick_cpu	= smp_core99_kick_cpu,
905 	.setup_cpu	= smp_core99_setup_cpu,
906 	.give_timebase	= smp_core99_give_timebase,
907 	.take_timebase	= smp_core99_take_timebase,
908 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PPC32)
909 	.cpu_disable	= smp_core99_cpu_disable,
910 	.cpu_die	= smp_core99_cpu_die,
911 #endif
912 };
913