xref: /linux/arch/powerpc/platforms/cell/spufs/switch.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/smp.h>
42 #include <linux/smp_lock.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
45 
46 #include <asm/io.h>
47 #include <asm/spu.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51 
52 #include "spu_save_dump.h"
53 #include "spu_restore_dump.h"
54 
55 #if 0
56 #define POLL_WHILE_TRUE(_c) {				\
57     do {						\
58     } while (_c);					\
59   }
60 #else
61 #define RELAX_SPIN_COUNT				1000
62 #define POLL_WHILE_TRUE(_c) {				\
63     do {						\
64 	int _i;						\
65 	for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
66 	    cpu_relax();				\
67 	}						\
68 	if (unlikely(_c)) yield();			\
69 	else break;					\
70     } while (_c);					\
71   }
72 #endif				/* debug */
73 
74 #define POLL_WHILE_FALSE(_c) 	POLL_WHILE_TRUE(!(_c))
75 
76 static inline void acquire_spu_lock(struct spu *spu)
77 {
78 	/* Save, Step 1:
79 	 * Restore, Step 1:
80 	 *    Acquire SPU-specific mutual exclusion lock.
81 	 *    TBD.
82 	 */
83 }
84 
85 static inline void release_spu_lock(struct spu *spu)
86 {
87 	/* Restore, Step 76:
88 	 *    Release SPU-specific mutual exclusion lock.
89 	 *    TBD.
90 	 */
91 }
92 
93 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
94 {
95 	struct spu_problem __iomem *prob = spu->problem;
96 	u32 isolate_state;
97 
98 	/* Save, Step 2:
99 	 * Save, Step 6:
100 	 *     If SPU_Status[E,L,IS] any field is '1', this
101 	 *     SPU is in isolate state and cannot be context
102 	 *     saved at this time.
103 	 */
104 	isolate_state = SPU_STATUS_ISOLATED_STATE |
105 	    SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
106 	return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
107 }
108 
109 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
110 {
111 	/* Save, Step 3:
112 	 * Restore, Step 2:
113 	 *     Save INT_Mask_class0 in CSA.
114 	 *     Write INT_MASK_class0 with value of 0.
115 	 *     Save INT_Mask_class1 in CSA.
116 	 *     Write INT_MASK_class1 with value of 0.
117 	 *     Save INT_Mask_class2 in CSA.
118 	 *     Write INT_MASK_class2 with value of 0.
119 	 */
120 	spin_lock_irq(&spu->register_lock);
121 	if (csa) {
122 		csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
123 		csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
124 		csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
125 	}
126 	spu_int_mask_set(spu, 0, 0ul);
127 	spu_int_mask_set(spu, 1, 0ul);
128 	spu_int_mask_set(spu, 2, 0ul);
129 	eieio();
130 	spin_unlock_irq(&spu->register_lock);
131 }
132 
133 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
134 {
135 	/* Save, Step 4:
136 	 * Restore, Step 25.
137 	 *    Set a software watchdog timer, which specifies the
138 	 *    maximum allowable time for a context save sequence.
139 	 *
140 	 *    For present, this implementation will not set a global
141 	 *    watchdog timer, as virtualization & variable system load
142 	 *    may cause unpredictable execution times.
143 	 */
144 }
145 
146 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
147 {
148 	/* Save, Step 5:
149 	 * Restore, Step 3:
150 	 *     Inhibit user-space access (if provided) to this
151 	 *     SPU by unmapping the virtual pages assigned to
152 	 *     the SPU memory-mapped I/O (MMIO) for problem
153 	 *     state. TBD.
154 	 */
155 }
156 
157 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
158 {
159 	/* Save, Step 7:
160 	 * Restore, Step 5:
161 	 *     Set a software context switch pending flag.
162 	 */
163 	set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
164 	mb();
165 }
166 
167 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
168 {
169 	struct spu_priv2 __iomem *priv2 = spu->priv2;
170 
171 	/* Save, Step 8:
172 	 *     Suspend DMA and save MFC_CNTL.
173 	 */
174 	switch (in_be64(&priv2->mfc_control_RW) &
175 	       MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
176 	case MFC_CNTL_SUSPEND_IN_PROGRESS:
177 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
178 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
179 				 MFC_CNTL_SUSPEND_COMPLETE);
180 		/* fall through */
181 	case MFC_CNTL_SUSPEND_COMPLETE:
182 		if (csa) {
183 			csa->priv2.mfc_control_RW =
184 				in_be64(&priv2->mfc_control_RW) |
185 				MFC_CNTL_SUSPEND_DMA_QUEUE;
186 		}
187 		break;
188 	case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
189 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
190 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
191 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
192 				 MFC_CNTL_SUSPEND_COMPLETE);
193 		if (csa) {
194 			csa->priv2.mfc_control_RW =
195 				in_be64(&priv2->mfc_control_RW) &
196 				~MFC_CNTL_SUSPEND_DMA_QUEUE;
197 		}
198 		break;
199 	}
200 }
201 
202 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
203 {
204 	struct spu_problem __iomem *prob = spu->problem;
205 
206 	/* Save, Step 9:
207 	 *     Save SPU_Runcntl in the CSA.  This value contains
208 	 *     the "Application Desired State".
209 	 */
210 	csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
211 }
212 
213 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
214 {
215 	/* Save, Step 10:
216 	 *     Save MFC_SR1 in the CSA.
217 	 */
218 	csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
219 }
220 
221 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
222 {
223 	struct spu_problem __iomem *prob = spu->problem;
224 
225 	/* Save, Step 11:
226 	 *     Read SPU_Status[R], and save to CSA.
227 	 */
228 	if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
229 		csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
230 	} else {
231 		u32 stopped;
232 
233 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
234 		eieio();
235 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
236 				SPU_STATUS_RUNNING);
237 		stopped =
238 		    SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
239 		    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
240 		if ((in_be32(&prob->spu_status_R) & stopped) == 0)
241 			csa->prob.spu_status_R = SPU_STATUS_RUNNING;
242 		else
243 			csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
244 	}
245 }
246 
247 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
248 {
249 	struct spu_priv2 __iomem *priv2 = spu->priv2;
250 
251 	/* Save, Step 12:
252 	 *     Read MFC_CNTL[Ds].  Update saved copy of
253 	 *     CSA.MFC_CNTL[Ds].
254 	 */
255 	if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
256 		csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
257 		csa->suspend_time = get_cycles();
258 		out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
259 		eieio();
260 		csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
261 		eieio();
262 	} else {
263 		csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
264 	}
265 }
266 
267 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
268 {
269 	struct spu_priv2 __iomem *priv2 = spu->priv2;
270 
271 	/* Save, Step 13:
272 	 *     Write MFC_CNTL[Dh] set to a '1' to halt
273 	 *     the decrementer.
274 	 */
275 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
276 	eieio();
277 }
278 
279 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
280 {
281 	/* Save, Step 14:
282 	 *    Read PPE Timebase High and Timebase low registers
283 	 *    and save in CSA.  TBD.
284 	 */
285 	csa->suspend_time = get_cycles();
286 }
287 
288 static inline void remove_other_spu_access(struct spu_state *csa,
289 					   struct spu *spu)
290 {
291 	/* Save, Step 15:
292 	 *     Remove other SPU access to this SPU by unmapping
293 	 *     this SPU's pages from their address space.  TBD.
294 	 */
295 }
296 
297 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
298 {
299 	struct spu_problem __iomem *prob = spu->problem;
300 
301 	/* Save, Step 16:
302 	 * Restore, Step 11.
303 	 *     Write SPU_MSSync register. Poll SPU_MSSync[P]
304 	 *     for a value of 0.
305 	 */
306 	out_be64(&prob->spc_mssync_RW, 1UL);
307 	POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
308 }
309 
310 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
311 {
312 	/* Save, Step 17:
313 	 * Restore, Step 12.
314 	 * Restore, Step 48.
315 	 *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
316 	 *     Then issue a PPE sync instruction.
317 	 */
318 	spu_tlb_invalidate(spu);
319 	mb();
320 }
321 
322 static inline void handle_pending_interrupts(struct spu_state *csa,
323 					     struct spu *spu)
324 {
325 	/* Save, Step 18:
326 	 *     Handle any pending interrupts from this SPU
327 	 *     here.  This is OS or hypervisor specific.  One
328 	 *     option is to re-enable interrupts to handle any
329 	 *     pending interrupts, with the interrupt handlers
330 	 *     recognizing the software Context Switch Pending
331 	 *     flag, to ensure the SPU execution or MFC command
332 	 *     queue is not restarted.  TBD.
333 	 */
334 }
335 
336 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
337 {
338 	struct spu_priv2 __iomem *priv2 = spu->priv2;
339 	int i;
340 
341 	/* Save, Step 19:
342 	 *     If MFC_Cntl[Se]=0 then save
343 	 *     MFC command queues.
344 	 */
345 	if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
346 		for (i = 0; i < 8; i++) {
347 			csa->priv2.puq[i].mfc_cq_data0_RW =
348 			    in_be64(&priv2->puq[i].mfc_cq_data0_RW);
349 			csa->priv2.puq[i].mfc_cq_data1_RW =
350 			    in_be64(&priv2->puq[i].mfc_cq_data1_RW);
351 			csa->priv2.puq[i].mfc_cq_data2_RW =
352 			    in_be64(&priv2->puq[i].mfc_cq_data2_RW);
353 			csa->priv2.puq[i].mfc_cq_data3_RW =
354 			    in_be64(&priv2->puq[i].mfc_cq_data3_RW);
355 		}
356 		for (i = 0; i < 16; i++) {
357 			csa->priv2.spuq[i].mfc_cq_data0_RW =
358 			    in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
359 			csa->priv2.spuq[i].mfc_cq_data1_RW =
360 			    in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
361 			csa->priv2.spuq[i].mfc_cq_data2_RW =
362 			    in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
363 			csa->priv2.spuq[i].mfc_cq_data3_RW =
364 			    in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
365 		}
366 	}
367 }
368 
369 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
370 {
371 	struct spu_problem __iomem *prob = spu->problem;
372 
373 	/* Save, Step 20:
374 	 *     Save the PPU_QueryMask register
375 	 *     in the CSA.
376 	 */
377 	csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
378 }
379 
380 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
381 {
382 	struct spu_problem __iomem *prob = spu->problem;
383 
384 	/* Save, Step 21:
385 	 *     Save the PPU_QueryType register
386 	 *     in the CSA.
387 	 */
388 	csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
389 }
390 
391 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
392 {
393 	struct spu_priv2 __iomem *priv2 = spu->priv2;
394 
395 	/* Save, Step 22:
396 	 *     Save the MFC_CSR_TSQ register
397 	 *     in the LSCSA.
398 	 */
399 	csa->priv2.spu_tag_status_query_RW =
400 	    in_be64(&priv2->spu_tag_status_query_RW);
401 }
402 
403 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
404 {
405 	struct spu_priv2 __iomem *priv2 = spu->priv2;
406 
407 	/* Save, Step 23:
408 	 *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
409 	 *     registers in the CSA.
410 	 */
411 	csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
412 	csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
413 }
414 
415 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
416 {
417 	struct spu_priv2 __iomem *priv2 = spu->priv2;
418 
419 	/* Save, Step 24:
420 	 *     Save the MFC_CSR_ATO register in
421 	 *     the CSA.
422 	 */
423 	csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
424 }
425 
426 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
427 {
428 	/* Save, Step 25:
429 	 *     Save the MFC_TCLASS_ID register in
430 	 *     the CSA.
431 	 */
432 	csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
433 }
434 
435 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
436 {
437 	/* Save, Step 26:
438 	 * Restore, Step 23.
439 	 *     Write the MFC_TCLASS_ID register with
440 	 *     the value 0x10000000.
441 	 */
442 	spu_mfc_tclass_id_set(spu, 0x10000000);
443 	eieio();
444 }
445 
446 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
447 {
448 	struct spu_priv2 __iomem *priv2 = spu->priv2;
449 
450 	/* Save, Step 27:
451 	 * Restore, Step 14.
452 	 *     Write MFC_CNTL[Pc]=1 (purge queue).
453 	 */
454 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
455 	eieio();
456 }
457 
458 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
459 {
460 	struct spu_priv2 __iomem *priv2 = spu->priv2;
461 
462 	/* Save, Step 28:
463 	 *     Poll MFC_CNTL[Ps] until value '11' is read
464 	 *     (purge complete).
465 	 */
466 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
467 			 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
468 			 MFC_CNTL_PURGE_DMA_COMPLETE);
469 }
470 
471 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
472 {
473 	/* Save, Step 30:
474 	 * Restore, Step 18:
475 	 *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
476 	 *     MFC_SR1[TL,R,Pr,T] set correctly for the
477 	 *     OS specific environment.
478 	 *
479 	 *     Implementation note: The SPU-side code
480 	 *     for save/restore is privileged, so the
481 	 *     MFC_SR1[Pr] bit is not set.
482 	 *
483 	 */
484 	spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
485 			      MFC_STATE1_RELOCATE_MASK |
486 			      MFC_STATE1_BUS_TLBIE_MASK));
487 }
488 
489 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
490 {
491 	struct spu_problem __iomem *prob = spu->problem;
492 
493 	/* Save, Step 31:
494 	 *     Save SPU_NPC in the CSA.
495 	 */
496 	csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
497 }
498 
499 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
500 {
501 	struct spu_priv2 __iomem *priv2 = spu->priv2;
502 
503 	/* Save, Step 32:
504 	 *     Save SPU_PrivCntl in the CSA.
505 	 */
506 	csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
507 }
508 
509 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
510 {
511 	struct spu_priv2 __iomem *priv2 = spu->priv2;
512 
513 	/* Save, Step 33:
514 	 * Restore, Step 16:
515 	 *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
516 	 */
517 	out_be64(&priv2->spu_privcntl_RW, 0UL);
518 	eieio();
519 }
520 
521 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
522 {
523 	struct spu_priv2 __iomem *priv2 = spu->priv2;
524 
525 	/* Save, Step 34:
526 	 *     Save SPU_LSLR in the CSA.
527 	 */
528 	csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
529 }
530 
531 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
532 {
533 	struct spu_priv2 __iomem *priv2 = spu->priv2;
534 
535 	/* Save, Step 35:
536 	 * Restore, Step 17.
537 	 *     Reset SPU_LSLR.
538 	 */
539 	out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
540 	eieio();
541 }
542 
543 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
544 {
545 	struct spu_priv2 __iomem *priv2 = spu->priv2;
546 
547 	/* Save, Step 36:
548 	 *     Save SPU_Cfg in the CSA.
549 	 */
550 	csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
551 }
552 
553 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
554 {
555 	/* Save, Step 37:
556 	 *     Save PM_Trace_Tag_Wait_Mask in the CSA.
557 	 *     Not performed by this implementation.
558 	 */
559 }
560 
561 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
562 {
563 	/* Save, Step 38:
564 	 *     Save RA_GROUP_ID register and the
565 	 *     RA_ENABLE reigster in the CSA.
566 	 */
567 	csa->priv1.resource_allocation_groupID_RW =
568 		spu_resource_allocation_groupID_get(spu);
569 	csa->priv1.resource_allocation_enable_RW =
570 		spu_resource_allocation_enable_get(spu);
571 }
572 
573 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
574 {
575 	struct spu_problem __iomem *prob = spu->problem;
576 
577 	/* Save, Step 39:
578 	 *     Save MB_Stat register in the CSA.
579 	 */
580 	csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
581 }
582 
583 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
584 {
585 	struct spu_problem __iomem *prob = spu->problem;
586 
587 	/* Save, Step 40:
588 	 *     Save the PPU_MB register in the CSA.
589 	 */
590 	csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
591 }
592 
593 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
594 {
595 	struct spu_priv2 __iomem *priv2 = spu->priv2;
596 
597 	/* Save, Step 41:
598 	 *     Save the PPUINT_MB register in the CSA.
599 	 */
600 	csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
601 }
602 
603 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
604 {
605 	struct spu_priv2 __iomem *priv2 = spu->priv2;
606 	u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
607 	int i;
608 
609 	/* Save, Step 42:
610 	 */
611 
612 	/* Save CH 1, without channel count */
613 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
614 	csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
615 
616 	/* Save the following CH: [0,3,4,24,25,27] */
617 	for (i = 0; i < 7; i++) {
618 		idx = ch_indices[i];
619 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
620 		eieio();
621 		csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
622 		csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
623 		out_be64(&priv2->spu_chnldata_RW, 0UL);
624 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
625 		eieio();
626 	}
627 }
628 
629 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
630 {
631 	struct spu_priv2 __iomem *priv2 = spu->priv2;
632 	int i;
633 
634 	/* Save, Step 43:
635 	 *     Save SPU Read Mailbox Channel.
636 	 */
637 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
638 	eieio();
639 	csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
640 	for (i = 0; i < 4; i++) {
641 		csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
642 	}
643 	out_be64(&priv2->spu_chnlcnt_RW, 0UL);
644 	eieio();
645 }
646 
647 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
648 {
649 	struct spu_priv2 __iomem *priv2 = spu->priv2;
650 
651 	/* Save, Step 44:
652 	 *     Save MFC_CMD Channel.
653 	 */
654 	out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
655 	eieio();
656 	csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
657 	eieio();
658 }
659 
660 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
661 {
662 	struct spu_priv2 __iomem *priv2 = spu->priv2;
663 	u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
664 	u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
665 	u64 idx;
666 	int i;
667 
668 	/* Save, Step 45:
669 	 *     Reset the following CH: [21, 23, 28, 30]
670 	 */
671 	for (i = 0; i < 4; i++) {
672 		idx = ch_indices[i];
673 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
674 		eieio();
675 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
676 		eieio();
677 	}
678 }
679 
680 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
681 {
682 	struct spu_priv2 __iomem *priv2 = spu->priv2;
683 
684 	/* Save, Step 46:
685 	 * Restore, Step 25.
686 	 *     Write MFC_CNTL[Sc]=0 (resume queue processing).
687 	 */
688 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
689 }
690 
691 static inline void get_kernel_slb(u64 ea, u64 slb[2])
692 {
693 	u64 llp;
694 
695 	if (REGION_ID(ea) == KERNEL_REGION_ID)
696 		llp = mmu_psize_defs[mmu_linear_psize].sllp;
697 	else
698 		llp = mmu_psize_defs[mmu_virtual_psize].sllp;
699 	slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
700 		SLB_VSID_KERNEL | llp;
701 	slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
702 }
703 
704 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
705 {
706 	struct spu_priv2 __iomem *priv2 = spu->priv2;
707 
708 	out_be64(&priv2->slb_index_W, slbe);
709 	eieio();
710 	out_be64(&priv2->slb_vsid_RW, slb[0]);
711 	out_be64(&priv2->slb_esid_RW, slb[1]);
712 	eieio();
713 }
714 
715 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
716 {
717 	u64 code_slb[2];
718 	u64 lscsa_slb[2];
719 
720 	/* Save, Step 47:
721 	 * Restore, Step 30.
722 	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
723 	 *     register, then initialize SLB_VSID and SLB_ESID
724 	 *     to provide access to SPU context save code and
725 	 *     LSCSA.
726 	 *
727 	 *     This implementation places both the context
728 	 *     switch code and LSCSA in kernel address space.
729 	 *
730 	 *     Further this implementation assumes that the
731 	 *     MFC_SR1[R]=1 (in other words, assume that
732 	 *     translation is desired by OS environment).
733 	 */
734 	spu_invalidate_slbs(spu);
735 	get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
736 	get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
737 	load_mfc_slb(spu, code_slb, 0);
738 	if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
739 		load_mfc_slb(spu, lscsa_slb, 1);
740 }
741 
742 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
743 {
744 	/* Save, Step 48:
745 	 * Restore, Step 23.
746 	 *     Change the software context switch pending flag
747 	 *     to context switch active.
748 	 */
749 	set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
750 	clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
751 	mb();
752 }
753 
754 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
755 {
756 	unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
757 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
758 
759 	/* Save, Step 49:
760 	 * Restore, Step 22:
761 	 *     Reset and then enable interrupts, as
762 	 *     needed by OS.
763 	 *
764 	 *     This implementation enables only class1
765 	 *     (translation) interrupts.
766 	 */
767 	spin_lock_irq(&spu->register_lock);
768 	spu_int_stat_clear(spu, 0, ~0ul);
769 	spu_int_stat_clear(spu, 1, ~0ul);
770 	spu_int_stat_clear(spu, 2, ~0ul);
771 	spu_int_mask_set(spu, 0, 0ul);
772 	spu_int_mask_set(spu, 1, class1_mask);
773 	spu_int_mask_set(spu, 2, 0ul);
774 	spin_unlock_irq(&spu->register_lock);
775 }
776 
777 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
778 			       unsigned int ls_offset, unsigned int size,
779 			       unsigned int tag, unsigned int rclass,
780 			       unsigned int cmd)
781 {
782 	struct spu_problem __iomem *prob = spu->problem;
783 	union mfc_tag_size_class_cmd command;
784 	unsigned int transfer_size;
785 	volatile unsigned int status = 0x0;
786 
787 	while (size > 0) {
788 		transfer_size =
789 		    (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
790 		command.u.mfc_size = transfer_size;
791 		command.u.mfc_tag = tag;
792 		command.u.mfc_rclassid = rclass;
793 		command.u.mfc_cmd = cmd;
794 		do {
795 			out_be32(&prob->mfc_lsa_W, ls_offset);
796 			out_be64(&prob->mfc_ea_W, ea);
797 			out_be64(&prob->mfc_union_W.all64, command.all64);
798 			status =
799 			    in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
800 			if (unlikely(status & 0x2)) {
801 				cpu_relax();
802 			}
803 		} while (status & 0x3);
804 		size -= transfer_size;
805 		ea += transfer_size;
806 		ls_offset += transfer_size;
807 	}
808 	return 0;
809 }
810 
811 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
812 {
813 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
814 	unsigned int ls_offset = 0x0;
815 	unsigned int size = 16384;
816 	unsigned int tag = 0;
817 	unsigned int rclass = 0;
818 	unsigned int cmd = MFC_PUT_CMD;
819 
820 	/* Save, Step 50:
821 	 *     Issue a DMA command to copy the first 16K bytes
822 	 *     of local storage to the CSA.
823 	 */
824 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
825 }
826 
827 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
828 {
829 	struct spu_problem __iomem *prob = spu->problem;
830 
831 	/* Save, Step 51:
832 	 * Restore, Step 31.
833 	 *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
834 	 *     point address of context save code in local
835 	 *     storage.
836 	 *
837 	 *     This implementation uses SPU-side save/restore
838 	 *     programs with entry points at LSA of 0.
839 	 */
840 	out_be32(&prob->spu_npc_RW, 0);
841 	eieio();
842 }
843 
844 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
845 {
846 	struct spu_problem __iomem *prob = spu->problem;
847 	union {
848 		u64 ull;
849 		u32 ui[2];
850 	} addr64;
851 
852 	/* Save, Step 52:
853 	 * Restore, Step 32:
854 	 *    Write SPU_Sig_Notify_1 register with upper 32-bits
855 	 *    of the CSA.LSCSA effective address.
856 	 */
857 	addr64.ull = (u64) csa->lscsa;
858 	out_be32(&prob->signal_notify1, addr64.ui[0]);
859 	eieio();
860 }
861 
862 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
863 {
864 	struct spu_problem __iomem *prob = spu->problem;
865 	union {
866 		u64 ull;
867 		u32 ui[2];
868 	} addr64;
869 
870 	/* Save, Step 53:
871 	 * Restore, Step 33:
872 	 *    Write SPU_Sig_Notify_2 register with lower 32-bits
873 	 *    of the CSA.LSCSA effective address.
874 	 */
875 	addr64.ull = (u64) csa->lscsa;
876 	out_be32(&prob->signal_notify2, addr64.ui[1]);
877 	eieio();
878 }
879 
880 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
881 {
882 	unsigned long addr = (unsigned long)&spu_save_code[0];
883 	unsigned int ls_offset = 0x0;
884 	unsigned int size = sizeof(spu_save_code);
885 	unsigned int tag = 0;
886 	unsigned int rclass = 0;
887 	unsigned int cmd = MFC_GETFS_CMD;
888 
889 	/* Save, Step 54:
890 	 *     Issue a DMA command to copy context save code
891 	 *     to local storage and start SPU.
892 	 */
893 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
894 }
895 
896 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
897 {
898 	struct spu_problem __iomem *prob = spu->problem;
899 
900 	/* Save, Step 55:
901 	 * Restore, Step 38.
902 	 *     Write PPU_QueryMask=1 (enable Tag Group 0)
903 	 *     and issue eieio instruction.
904 	 */
905 	out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
906 	eieio();
907 }
908 
909 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
910 {
911 	struct spu_problem __iomem *prob = spu->problem;
912 	u32 mask = MFC_TAGID_TO_TAGMASK(0);
913 	unsigned long flags;
914 
915 	/* Save, Step 56:
916 	 * Restore, Step 39.
917 	 * Restore, Step 39.
918 	 * Restore, Step 46.
919 	 *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
920 	 *     or write PPU_QueryType[TS]=01 and wait for Tag Group
921 	 *     Complete Interrupt.  Write INT_Stat_Class0 or
922 	 *     INT_Stat_Class2 with value of 'handled'.
923 	 */
924 	POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
925 
926 	local_irq_save(flags);
927 	spu_int_stat_clear(spu, 0, ~(0ul));
928 	spu_int_stat_clear(spu, 2, ~(0ul));
929 	local_irq_restore(flags);
930 }
931 
932 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
933 {
934 	struct spu_problem __iomem *prob = spu->problem;
935 	unsigned long flags;
936 
937 	/* Save, Step 57:
938 	 * Restore, Step 40.
939 	 *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
940 	 *     or SPU Class 2 interrupt.  Write INT_Stat_class0
941 	 *     or INT_Stat_class2 with value of handled.
942 	 */
943 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
944 
945 	local_irq_save(flags);
946 	spu_int_stat_clear(spu, 0, ~(0ul));
947 	spu_int_stat_clear(spu, 2, ~(0ul));
948 	local_irq_restore(flags);
949 }
950 
951 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
952 {
953 	struct spu_problem __iomem *prob = spu->problem;
954 	u32 complete;
955 
956 	/* Save, Step 54:
957 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
958 	 *     context save succeeded, otherwise context save
959 	 *     failed.
960 	 */
961 	complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
962 		    SPU_STATUS_STOPPED_BY_STOP);
963 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
964 }
965 
966 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
967 {
968 	/* Restore, Step 4:
969 	 *    If required, notify the "using application" that
970 	 *    the SPU task has been terminated.  TBD.
971 	 */
972 }
973 
974 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
975 {
976 	struct spu_priv2 __iomem *priv2 = spu->priv2;
977 
978 	/* Restore, Step 7:
979 	 * Restore, Step 47.
980 	 *     Write MFC_Cntl[Dh,Sc]='1','1' to suspend
981 	 *     the queue and halt the decrementer.
982 	 */
983 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
984 		 MFC_CNTL_DECREMENTER_HALTED);
985 	eieio();
986 }
987 
988 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
989 					     struct spu *spu)
990 {
991 	struct spu_priv2 __iomem *priv2 = spu->priv2;
992 
993 	/* Restore, Step 8:
994 	 * Restore, Step 47.
995 	 *     Poll MFC_CNTL[Ss] until 11 is returned.
996 	 */
997 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
998 			 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
999 			 MFC_CNTL_SUSPEND_COMPLETE);
1000 }
1001 
1002 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1003 {
1004 	struct spu_problem __iomem *prob = spu->problem;
1005 
1006 	/* Restore, Step 9:
1007 	 *    If SPU_Status[R]=1, stop SPU execution
1008 	 *    and wait for stop to complete.
1009 	 *
1010 	 *    Returns       1 if SPU_Status[R]=1 on entry.
1011 	 *                  0 otherwise
1012 	 */
1013 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1014 		if (in_be32(&prob->spu_status_R) &
1015 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1016 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1017 					SPU_STATUS_RUNNING);
1018 		}
1019 		if ((in_be32(&prob->spu_status_R) &
1020 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1021 		    || (in_be32(&prob->spu_status_R) &
1022 			SPU_STATUS_ISOLATED_STATE)) {
1023 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1024 			eieio();
1025 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1026 					SPU_STATUS_RUNNING);
1027 			out_be32(&prob->spu_runcntl_RW, 0x2);
1028 			eieio();
1029 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1030 					SPU_STATUS_RUNNING);
1031 		}
1032 		if (in_be32(&prob->spu_status_R) &
1033 		    SPU_STATUS_WAITING_FOR_CHANNEL) {
1034 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1035 			eieio();
1036 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1037 					SPU_STATUS_RUNNING);
1038 		}
1039 		return 1;
1040 	}
1041 	return 0;
1042 }
1043 
1044 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1045 {
1046 	struct spu_problem __iomem *prob = spu->problem;
1047 
1048 	/* Restore, Step 10:
1049 	 *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1050 	 *    release SPU from isolate state.
1051 	 */
1052 	if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1053 		if (in_be32(&prob->spu_status_R) &
1054 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1055 			spu_mfc_sr1_set(spu,
1056 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1057 			eieio();
1058 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1059 			eieio();
1060 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1061 					SPU_STATUS_RUNNING);
1062 		}
1063 		if ((in_be32(&prob->spu_status_R) &
1064 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1065 		    || (in_be32(&prob->spu_status_R) &
1066 			SPU_STATUS_ISOLATED_STATE)) {
1067 			spu_mfc_sr1_set(spu,
1068 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1069 			eieio();
1070 			out_be32(&prob->spu_runcntl_RW, 0x2);
1071 			eieio();
1072 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1073 					SPU_STATUS_RUNNING);
1074 		}
1075 	}
1076 }
1077 
1078 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1079 {
1080 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1081 	u64 ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1082 	u64 idx;
1083 	int i;
1084 
1085 	/* Restore, Step 20:
1086 	 */
1087 
1088 	/* Reset CH 1 */
1089 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
1090 	out_be64(&priv2->spu_chnldata_RW, 0UL);
1091 
1092 	/* Reset the following CH: [0,3,4,24,25,27] */
1093 	for (i = 0; i < 7; i++) {
1094 		idx = ch_indices[i];
1095 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1096 		eieio();
1097 		out_be64(&priv2->spu_chnldata_RW, 0UL);
1098 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1099 		eieio();
1100 	}
1101 }
1102 
1103 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1104 {
1105 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1106 	u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1107 	u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1108 	u64 idx;
1109 	int i;
1110 
1111 	/* Restore, Step 21:
1112 	 *     Reset the following CH: [21, 23, 28, 29, 30]
1113 	 */
1114 	for (i = 0; i < 5; i++) {
1115 		idx = ch_indices[i];
1116 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1117 		eieio();
1118 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1119 		eieio();
1120 	}
1121 }
1122 
1123 static inline void setup_spu_status_part1(struct spu_state *csa,
1124 					  struct spu *spu)
1125 {
1126 	u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1127 	u32 status_I = SPU_STATUS_INVALID_INSTR;
1128 	u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1129 	u32 status_S = SPU_STATUS_SINGLE_STEP;
1130 	u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1131 	u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1132 	u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1133 	u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1134 	u32 status_code;
1135 
1136 	/* Restore, Step 27:
1137 	 *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1138 	 *     instruction sequence to the end of the SPU based restore
1139 	 *     code (after the "context restored" stop and signal) to
1140 	 *     restore the correct SPU status.
1141 	 *
1142 	 *     NOTE: Rather than modifying the SPU executable, we
1143 	 *     instead add a new 'stopped_status' field to the
1144 	 *     LSCSA.  The SPU-side restore reads this field and
1145 	 *     takes the appropriate action when exiting.
1146 	 */
1147 
1148 	status_code =
1149 	    (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1150 	if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1151 
1152 		/* SPU_Status[P,I]=1 - Illegal Instruction followed
1153 		 * by Stop and Signal instruction, followed by 'br -4'.
1154 		 *
1155 		 */
1156 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1157 		csa->lscsa->stopped_status.slot[1] = status_code;
1158 
1159 	} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1160 
1161 		/* SPU_Status[P,H]=1 - Halt Conditional, followed
1162 		 * by Stop and Signal instruction, followed by
1163 		 * 'br -4'.
1164 		 */
1165 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1166 		csa->lscsa->stopped_status.slot[1] = status_code;
1167 
1168 	} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1169 
1170 		/* SPU_Status[S,P]=1 - Stop and Signal instruction
1171 		 * followed by 'br -4'.
1172 		 */
1173 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1174 		csa->lscsa->stopped_status.slot[1] = status_code;
1175 
1176 	} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1177 
1178 		/* SPU_Status[S,I]=1 - Illegal instruction followed
1179 		 * by 'br -4'.
1180 		 */
1181 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1182 		csa->lscsa->stopped_status.slot[1] = status_code;
1183 
1184 	} else if ((csa->prob.spu_status_R & status_P) == status_P) {
1185 
1186 		/* SPU_Status[P]=1 - Stop and Signal instruction
1187 		 * followed by 'br -4'.
1188 		 */
1189 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1190 		csa->lscsa->stopped_status.slot[1] = status_code;
1191 
1192 	} else if ((csa->prob.spu_status_R & status_H) == status_H) {
1193 
1194 		/* SPU_Status[H]=1 - Halt Conditional, followed
1195 		 * by 'br -4'.
1196 		 */
1197 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1198 
1199 	} else if ((csa->prob.spu_status_R & status_S) == status_S) {
1200 
1201 		/* SPU_Status[S]=1 - Two nop instructions.
1202 		 */
1203 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1204 
1205 	} else if ((csa->prob.spu_status_R & status_I) == status_I) {
1206 
1207 		/* SPU_Status[I]=1 - Illegal instruction followed
1208 		 * by 'br -4'.
1209 		 */
1210 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1211 
1212 	}
1213 }
1214 
1215 static inline void setup_spu_status_part2(struct spu_state *csa,
1216 					  struct spu *spu)
1217 {
1218 	u32 mask;
1219 
1220 	/* Restore, Step 28:
1221 	 *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1222 	 *     add a 'br *' instruction to the end of
1223 	 *     the SPU based restore code.
1224 	 *
1225 	 *     NOTE: Rather than modifying the SPU executable, we
1226 	 *     instead add a new 'stopped_status' field to the
1227 	 *     LSCSA.  The SPU-side restore reads this field and
1228 	 *     takes the appropriate action when exiting.
1229 	 */
1230 	mask = SPU_STATUS_INVALID_INSTR |
1231 	    SPU_STATUS_SINGLE_STEP |
1232 	    SPU_STATUS_STOPPED_BY_HALT |
1233 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1234 	if (!(csa->prob.spu_status_R & mask)) {
1235 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1236 	}
1237 }
1238 
1239 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1240 {
1241 	/* Restore, Step 29:
1242 	 *     Restore RA_GROUP_ID register and the
1243 	 *     RA_ENABLE reigster from the CSA.
1244 	 */
1245 	spu_resource_allocation_groupID_set(spu,
1246 			csa->priv1.resource_allocation_groupID_RW);
1247 	spu_resource_allocation_enable_set(spu,
1248 			csa->priv1.resource_allocation_enable_RW);
1249 }
1250 
1251 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1252 {
1253 	unsigned long addr = (unsigned long)&spu_restore_code[0];
1254 	unsigned int ls_offset = 0x0;
1255 	unsigned int size = sizeof(spu_restore_code);
1256 	unsigned int tag = 0;
1257 	unsigned int rclass = 0;
1258 	unsigned int cmd = MFC_GETFS_CMD;
1259 
1260 	/* Restore, Step 37:
1261 	 *     Issue MFC DMA command to copy context
1262 	 *     restore code to local storage.
1263 	 */
1264 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1265 }
1266 
1267 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1268 {
1269 	/* Restore, Step 34:
1270 	 *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1271 	 *     running) then adjust decrementer, set
1272 	 *     decrementer running status in LSCSA,
1273 	 *     and set decrementer "wrapped" status
1274 	 *     in LSCSA.
1275 	 */
1276 	if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1277 		cycles_t resume_time = get_cycles();
1278 		cycles_t delta_time = resume_time - csa->suspend_time;
1279 
1280 		csa->lscsa->decr.slot[0] -= delta_time;
1281 	}
1282 }
1283 
1284 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1285 {
1286 	/* Restore, Step 35:
1287 	 *     Copy the CSA.PU_MB data into the LSCSA.
1288 	 */
1289 	csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1290 }
1291 
1292 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1293 {
1294 	/* Restore, Step 36:
1295 	 *     Copy the CSA.PUINT_MB data into the LSCSA.
1296 	 */
1297 	csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1298 }
1299 
1300 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1301 {
1302 	struct spu_problem __iomem *prob = spu->problem;
1303 	u32 complete;
1304 
1305 	/* Restore, Step 40:
1306 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1307 	 *     context restore succeeded, otherwise context restore
1308 	 *     failed.
1309 	 */
1310 	complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1311 		    SPU_STATUS_STOPPED_BY_STOP);
1312 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1313 }
1314 
1315 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1316 {
1317 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1318 
1319 	/* Restore, Step 41:
1320 	 *     Restore SPU_PrivCntl from the CSA.
1321 	 */
1322 	out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1323 	eieio();
1324 }
1325 
1326 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1327 {
1328 	struct spu_problem __iomem *prob = spu->problem;
1329 	u32 mask;
1330 
1331 	/* Restore, Step 42:
1332 	 *     If any CSA.SPU_Status[I,S,H,P]=1, then
1333 	 *     restore the error or single step state.
1334 	 */
1335 	mask = SPU_STATUS_INVALID_INSTR |
1336 	    SPU_STATUS_SINGLE_STEP |
1337 	    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1338 	if (csa->prob.spu_status_R & mask) {
1339 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1340 		eieio();
1341 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1342 				SPU_STATUS_RUNNING);
1343 	}
1344 }
1345 
1346 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1347 {
1348 	struct spu_problem __iomem *prob = spu->problem;
1349 	u32 mask;
1350 
1351 	/* Restore, Step 43:
1352 	 *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1353 	 *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1354 	 *     then write '00' to SPU_RunCntl[R0R1] and wait
1355 	 *     for SPU_Status[R]=0.
1356 	 */
1357 	mask = SPU_STATUS_INVALID_INSTR |
1358 	    SPU_STATUS_SINGLE_STEP |
1359 	    SPU_STATUS_STOPPED_BY_HALT |
1360 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1361 	if (!(csa->prob.spu_status_R & mask)) {
1362 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1363 		eieio();
1364 		POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1365 				 SPU_STATUS_RUNNING);
1366 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1367 		eieio();
1368 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1369 				SPU_STATUS_RUNNING);
1370 	}
1371 }
1372 
1373 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1374 {
1375 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1376 	unsigned int ls_offset = 0x0;
1377 	unsigned int size = 16384;
1378 	unsigned int tag = 0;
1379 	unsigned int rclass = 0;
1380 	unsigned int cmd = MFC_GET_CMD;
1381 
1382 	/* Restore, Step 44:
1383 	 *     Issue a DMA command to restore the first
1384 	 *     16kb of local storage from CSA.
1385 	 */
1386 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1387 }
1388 
1389 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1390 {
1391 	/* Restore, Step 49:
1392 	 *     Write INT_MASK_class0 with value of 0.
1393 	 *     Write INT_MASK_class1 with value of 0.
1394 	 *     Write INT_MASK_class2 with value of 0.
1395 	 *     Write INT_STAT_class0 with value of -1.
1396 	 *     Write INT_STAT_class1 with value of -1.
1397 	 *     Write INT_STAT_class2 with value of -1.
1398 	 */
1399 	spin_lock_irq(&spu->register_lock);
1400 	spu_int_mask_set(spu, 0, 0ul);
1401 	spu_int_mask_set(spu, 1, 0ul);
1402 	spu_int_mask_set(spu, 2, 0ul);
1403 	spu_int_stat_clear(spu, 0, ~0ul);
1404 	spu_int_stat_clear(spu, 1, ~0ul);
1405 	spu_int_stat_clear(spu, 2, ~0ul);
1406 	spin_unlock_irq(&spu->register_lock);
1407 }
1408 
1409 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1410 {
1411 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1412 	int i;
1413 
1414 	/* Restore, Step 50:
1415 	 *     If MFC_Cntl[Se]!=0 then restore
1416 	 *     MFC command queues.
1417 	 */
1418 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1419 		for (i = 0; i < 8; i++) {
1420 			out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1421 				 csa->priv2.puq[i].mfc_cq_data0_RW);
1422 			out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1423 				 csa->priv2.puq[i].mfc_cq_data1_RW);
1424 			out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1425 				 csa->priv2.puq[i].mfc_cq_data2_RW);
1426 			out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1427 				 csa->priv2.puq[i].mfc_cq_data3_RW);
1428 		}
1429 		for (i = 0; i < 16; i++) {
1430 			out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1431 				 csa->priv2.spuq[i].mfc_cq_data0_RW);
1432 			out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1433 				 csa->priv2.spuq[i].mfc_cq_data1_RW);
1434 			out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1435 				 csa->priv2.spuq[i].mfc_cq_data2_RW);
1436 			out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1437 				 csa->priv2.spuq[i].mfc_cq_data3_RW);
1438 		}
1439 	}
1440 	eieio();
1441 }
1442 
1443 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1444 {
1445 	struct spu_problem __iomem *prob = spu->problem;
1446 
1447 	/* Restore, Step 51:
1448 	 *     Restore the PPU_QueryMask register from CSA.
1449 	 */
1450 	out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1451 	eieio();
1452 }
1453 
1454 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1455 {
1456 	struct spu_problem __iomem *prob = spu->problem;
1457 
1458 	/* Restore, Step 52:
1459 	 *     Restore the PPU_QueryType register from CSA.
1460 	 */
1461 	out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1462 	eieio();
1463 }
1464 
1465 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1466 {
1467 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1468 
1469 	/* Restore, Step 53:
1470 	 *     Restore the MFC_CSR_TSQ register from CSA.
1471 	 */
1472 	out_be64(&priv2->spu_tag_status_query_RW,
1473 		 csa->priv2.spu_tag_status_query_RW);
1474 	eieio();
1475 }
1476 
1477 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1478 {
1479 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1480 
1481 	/* Restore, Step 54:
1482 	 *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1483 	 *     registers from CSA.
1484 	 */
1485 	out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1486 	out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1487 	eieio();
1488 }
1489 
1490 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1491 {
1492 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1493 
1494 	/* Restore, Step 55:
1495 	 *     Restore the MFC_CSR_ATO register from CSA.
1496 	 */
1497 	out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1498 }
1499 
1500 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1501 {
1502 	/* Restore, Step 56:
1503 	 *     Restore the MFC_TCLASS_ID register from CSA.
1504 	 */
1505 	spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1506 	eieio();
1507 }
1508 
1509 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1510 {
1511 	u64 ch0_cnt, ch0_data;
1512 	u64 ch1_data;
1513 
1514 	/* Restore, Step 57:
1515 	 *    Set the Lock Line Reservation Lost Event by:
1516 	 *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1517 	 *      2. If CSA.SPU_Channel_0_Count=0 and
1518 	 *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1519 	 *         CSA.SPU_Event_Status[Lr]=0 then set
1520 	 *         CSA.SPU_Event_Status_Count=1.
1521 	 */
1522 	ch0_cnt = csa->spu_chnlcnt_RW[0];
1523 	ch0_data = csa->spu_chnldata_RW[0];
1524 	ch1_data = csa->spu_chnldata_RW[1];
1525 	csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1526 	if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1527 	    (ch1_data & MFC_LLR_LOST_EVENT)) {
1528 		csa->spu_chnlcnt_RW[0] = 1;
1529 	}
1530 }
1531 
1532 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1533 {
1534 	/* Restore, Step 58:
1535 	 *     If the status of the CSA software decrementer
1536 	 *     "wrapped" flag is set, OR in a '1' to
1537 	 *     CSA.SPU_Event_Status[Tm].
1538 	 */
1539 	if (csa->lscsa->decr_status.slot[0] == 1) {
1540 		csa->spu_chnldata_RW[0] |= 0x20;
1541 	}
1542 	if ((csa->lscsa->decr_status.slot[0] == 1) &&
1543 	    (csa->spu_chnlcnt_RW[0] == 0 &&
1544 	     ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1545 	     ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1546 		csa->spu_chnlcnt_RW[0] = 1;
1547 	}
1548 }
1549 
1550 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1551 {
1552 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1553 	u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1554 	int i;
1555 
1556 	/* Restore, Step 59:
1557 	 */
1558 
1559 	/* Restore CH 1 without count */
1560 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
1561 	out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[1]);
1562 
1563 	/* Restore the following CH: [0,3,4,24,25,27] */
1564 	for (i = 0; i < 7; i++) {
1565 		idx = ch_indices[i];
1566 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1567 		eieio();
1568 		out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1569 		out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1570 		eieio();
1571 	}
1572 }
1573 
1574 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1575 {
1576 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1577 	u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1578 	u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1579 	u64 idx;
1580 	int i;
1581 
1582 	/* Restore, Step 60:
1583 	 *     Restore the following CH: [9,21,23].
1584 	 */
1585 	ch_counts[0] = 1UL;
1586 	ch_counts[1] = csa->spu_chnlcnt_RW[21];
1587 	ch_counts[2] = 1UL;
1588 	for (i = 0; i < 3; i++) {
1589 		idx = ch_indices[i];
1590 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1591 		eieio();
1592 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1593 		eieio();
1594 	}
1595 }
1596 
1597 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1598 {
1599 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1600 
1601 	/* Restore, Step 61:
1602 	 *     Restore the SPU_LSLR register from CSA.
1603 	 */
1604 	out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1605 	eieio();
1606 }
1607 
1608 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1609 {
1610 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1611 
1612 	/* Restore, Step 62:
1613 	 *     Restore the SPU_Cfg register from CSA.
1614 	 */
1615 	out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1616 	eieio();
1617 }
1618 
1619 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1620 {
1621 	/* Restore, Step 63:
1622 	 *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1623 	 *     Not performed by this implementation.
1624 	 */
1625 }
1626 
1627 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1628 {
1629 	struct spu_problem __iomem *prob = spu->problem;
1630 
1631 	/* Restore, Step 64:
1632 	 *     Restore SPU_NPC from CSA.
1633 	 */
1634 	out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1635 	eieio();
1636 }
1637 
1638 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1639 {
1640 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1641 	int i;
1642 
1643 	/* Restore, Step 65:
1644 	 *     Restore MFC_RdSPU_MB from CSA.
1645 	 */
1646 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1647 	eieio();
1648 	out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1649 	for (i = 0; i < 4; i++) {
1650 		out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1651 	}
1652 	eieio();
1653 }
1654 
1655 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1656 {
1657 	struct spu_problem __iomem *prob = spu->problem;
1658 	u32 dummy = 0;
1659 
1660 	/* Restore, Step 66:
1661 	 *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1662 	 *     read from the PPU_MB register.
1663 	 */
1664 	if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1665 		dummy = in_be32(&prob->pu_mb_R);
1666 		eieio();
1667 	}
1668 }
1669 
1670 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1671 {
1672 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1673 	u64 dummy = 0UL;
1674 
1675 	/* Restore, Step 66:
1676 	 *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1677 	 *     read from the PPUINT_MB register.
1678 	 */
1679 	if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1680 		dummy = in_be64(&priv2->puint_mb_R);
1681 		eieio();
1682 		spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1683 		eieio();
1684 	}
1685 }
1686 
1687 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1688 {
1689 	/* Restore, Step 69:
1690 	 *     Restore the MFC_SR1 register from CSA.
1691 	 */
1692 	spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1693 	eieio();
1694 }
1695 
1696 static inline void restore_other_spu_access(struct spu_state *csa,
1697 					    struct spu *spu)
1698 {
1699 	/* Restore, Step 70:
1700 	 *     Restore other SPU mappings to this SPU. TBD.
1701 	 */
1702 }
1703 
1704 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1705 {
1706 	struct spu_problem __iomem *prob = spu->problem;
1707 
1708 	/* Restore, Step 71:
1709 	 *     If CSA.SPU_Status[R]=1 then write
1710 	 *     SPU_RunCntl[R0R1]='01'.
1711 	 */
1712 	if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1713 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1714 		eieio();
1715 	}
1716 }
1717 
1718 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1719 {
1720 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1721 
1722 	/* Restore, Step 72:
1723 	 *    Restore the MFC_CNTL register for the CSA.
1724 	 */
1725 	out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1726 	eieio();
1727 	/*
1728 	 * FIXME: this is to restart a DMA that we were processing
1729 	 *        before the save. better remember the fault information
1730 	 *        in the csa instead.
1731 	 */
1732 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1733 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1734 		eieio();
1735 	}
1736 }
1737 
1738 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1739 {
1740 	/* Restore, Step 73:
1741 	 *     Enable user-space access (if provided) to this
1742 	 *     SPU by mapping the virtual pages assigned to
1743 	 *     the SPU memory-mapped I/O (MMIO) for problem
1744 	 *     state. TBD.
1745 	 */
1746 }
1747 
1748 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1749 {
1750 	/* Restore, Step 74:
1751 	 *     Reset the "context switch active" flag.
1752 	 */
1753 	clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1754 	mb();
1755 }
1756 
1757 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1758 {
1759 	/* Restore, Step 75:
1760 	 *     Re-enable SPU interrupts.
1761 	 */
1762 	spin_lock_irq(&spu->register_lock);
1763 	spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1764 	spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1765 	spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1766 	spin_unlock_irq(&spu->register_lock);
1767 }
1768 
1769 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1770 {
1771 	/*
1772 	 * Combined steps 2-18 of SPU context save sequence, which
1773 	 * quiesce the SPU state (disable SPU execution, MFC command
1774 	 * queues, decrementer, SPU interrupts, etc.).
1775 	 *
1776 	 * Returns      0 on success.
1777 	 *              2 if failed step 2.
1778 	 *              6 if failed step 6.
1779 	 */
1780 
1781 	if (check_spu_isolate(prev, spu)) {	/* Step 2. */
1782 		return 2;
1783 	}
1784 	disable_interrupts(prev, spu);	        /* Step 3. */
1785 	set_watchdog_timer(prev, spu);	        /* Step 4. */
1786 	inhibit_user_access(prev, spu);	        /* Step 5. */
1787 	if (check_spu_isolate(prev, spu)) {	/* Step 6. */
1788 		return 6;
1789 	}
1790 	set_switch_pending(prev, spu);	        /* Step 7. */
1791 	save_mfc_cntl(prev, spu);		/* Step 8. */
1792 	save_spu_runcntl(prev, spu);	        /* Step 9. */
1793 	save_mfc_sr1(prev, spu);	        /* Step 10. */
1794 	save_spu_status(prev, spu);	        /* Step 11. */
1795 	save_mfc_decr(prev, spu);	        /* Step 12. */
1796 	halt_mfc_decr(prev, spu);	        /* Step 13. */
1797 	save_timebase(prev, spu);		/* Step 14. */
1798 	remove_other_spu_access(prev, spu);	/* Step 15. */
1799 	do_mfc_mssync(prev, spu);	        /* Step 16. */
1800 	issue_mfc_tlbie(prev, spu);	        /* Step 17. */
1801 	handle_pending_interrupts(prev, spu);	/* Step 18. */
1802 
1803 	return 0;
1804 }
1805 
1806 static void save_csa(struct spu_state *prev, struct spu *spu)
1807 {
1808 	/*
1809 	 * Combine steps 19-44 of SPU context save sequence, which
1810 	 * save regions of the privileged & problem state areas.
1811 	 */
1812 
1813 	save_mfc_queues(prev, spu);	/* Step 19. */
1814 	save_ppu_querymask(prev, spu);	/* Step 20. */
1815 	save_ppu_querytype(prev, spu);	/* Step 21. */
1816 	save_mfc_csr_tsq(prev, spu);	/* Step 22. */
1817 	save_mfc_csr_cmd(prev, spu);	/* Step 23. */
1818 	save_mfc_csr_ato(prev, spu);	/* Step 24. */
1819 	save_mfc_tclass_id(prev, spu);	/* Step 25. */
1820 	set_mfc_tclass_id(prev, spu);	/* Step 26. */
1821 	purge_mfc_queue(prev, spu);	/* Step 27. */
1822 	wait_purge_complete(prev, spu);	/* Step 28. */
1823 	setup_mfc_sr1(prev, spu);	/* Step 30. */
1824 	save_spu_npc(prev, spu);	/* Step 31. */
1825 	save_spu_privcntl(prev, spu);	/* Step 32. */
1826 	reset_spu_privcntl(prev, spu);	/* Step 33. */
1827 	save_spu_lslr(prev, spu);	/* Step 34. */
1828 	reset_spu_lslr(prev, spu);	/* Step 35. */
1829 	save_spu_cfg(prev, spu);	/* Step 36. */
1830 	save_pm_trace(prev, spu);	/* Step 37. */
1831 	save_mfc_rag(prev, spu);	/* Step 38. */
1832 	save_ppu_mb_stat(prev, spu);	/* Step 39. */
1833 	save_ppu_mb(prev, spu);	        /* Step 40. */
1834 	save_ppuint_mb(prev, spu);	/* Step 41. */
1835 	save_ch_part1(prev, spu);	/* Step 42. */
1836 	save_spu_mb(prev, spu);	        /* Step 43. */
1837 	save_mfc_cmd(prev, spu);	/* Step 44. */
1838 	reset_ch(prev, spu);	        /* Step 45. */
1839 }
1840 
1841 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1842 {
1843 	/*
1844 	 * Perform steps 46-57 of SPU context save sequence,
1845 	 * which save regions of the local store and register
1846 	 * file.
1847 	 */
1848 
1849 	resume_mfc_queue(prev, spu);	/* Step 46. */
1850 	setup_mfc_slbs(prev, spu);	/* Step 47. */
1851 	set_switch_active(prev, spu);	/* Step 48. */
1852 	enable_interrupts(prev, spu);	/* Step 49. */
1853 	save_ls_16kb(prev, spu);	/* Step 50. */
1854 	set_spu_npc(prev, spu);	        /* Step 51. */
1855 	set_signot1(prev, spu);		/* Step 52. */
1856 	set_signot2(prev, spu);		/* Step 53. */
1857 	send_save_code(prev, spu);	/* Step 54. */
1858 	set_ppu_querymask(prev, spu);	/* Step 55. */
1859 	wait_tag_complete(prev, spu);	/* Step 56. */
1860 	wait_spu_stopped(prev, spu);	/* Step 57. */
1861 }
1862 
1863 static void force_spu_isolate_exit(struct spu *spu)
1864 {
1865 	struct spu_problem __iomem *prob = spu->problem;
1866 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1867 
1868 	/* Stop SPE execution and wait for completion. */
1869 	out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1870 	iobarrier_rw();
1871 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1872 
1873 	/* Restart SPE master runcntl. */
1874 	spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1875 	iobarrier_w();
1876 
1877 	/* Initiate isolate exit request and wait for completion. */
1878 	out_be64(&priv2->spu_privcntl_RW, 4LL);
1879 	iobarrier_w();
1880 	out_be32(&prob->spu_runcntl_RW, 2);
1881 	iobarrier_rw();
1882 	POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1883 				& SPU_STATUS_STOPPED_BY_STOP));
1884 
1885 	/* Reset load request to normal. */
1886 	out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1887 	iobarrier_w();
1888 }
1889 
1890 /**
1891  * stop_spu_isolate
1892  *	Check SPU run-control state and force isolated
1893  *	exit function as necessary.
1894  */
1895 static void stop_spu_isolate(struct spu *spu)
1896 {
1897 	struct spu_problem __iomem *prob = spu->problem;
1898 
1899 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1900 		/* The SPU is in isolated state; the only way
1901 		 * to get it out is to perform an isolated
1902 		 * exit (clean) operation.
1903 		 */
1904 		force_spu_isolate_exit(spu);
1905 	}
1906 }
1907 
1908 static void harvest(struct spu_state *prev, struct spu *spu)
1909 {
1910 	/*
1911 	 * Perform steps 2-25 of SPU context restore sequence,
1912 	 * which resets an SPU either after a failed save, or
1913 	 * when using SPU for first time.
1914 	 */
1915 
1916 	disable_interrupts(prev, spu);	        /* Step 2.  */
1917 	inhibit_user_access(prev, spu);	        /* Step 3.  */
1918 	terminate_spu_app(prev, spu);	        /* Step 4.  */
1919 	set_switch_pending(prev, spu);	        /* Step 5.  */
1920 	stop_spu_isolate(spu);			/* NEW.     */
1921 	remove_other_spu_access(prev, spu);	/* Step 6.  */
1922 	suspend_mfc(prev, spu);	                /* Step 7.  */
1923 	wait_suspend_mfc_complete(prev, spu);	/* Step 8.  */
1924 	if (!suspend_spe(prev, spu))	        /* Step 9.  */
1925 		clear_spu_status(prev, spu);	/* Step 10. */
1926 	do_mfc_mssync(prev, spu);	        /* Step 11. */
1927 	issue_mfc_tlbie(prev, spu);	        /* Step 12. */
1928 	handle_pending_interrupts(prev, spu);	/* Step 13. */
1929 	purge_mfc_queue(prev, spu);	        /* Step 14. */
1930 	wait_purge_complete(prev, spu);	        /* Step 15. */
1931 	reset_spu_privcntl(prev, spu);	        /* Step 16. */
1932 	reset_spu_lslr(prev, spu);              /* Step 17. */
1933 	setup_mfc_sr1(prev, spu);	        /* Step 18. */
1934 	spu_invalidate_slbs(spu);        	/* Step 19. */
1935 	reset_ch_part1(prev, spu);	        /* Step 20. */
1936 	reset_ch_part2(prev, spu);	        /* Step 21. */
1937 	enable_interrupts(prev, spu);	        /* Step 22. */
1938 	set_switch_active(prev, spu);	        /* Step 23. */
1939 	set_mfc_tclass_id(prev, spu);	        /* Step 24. */
1940 	resume_mfc_queue(prev, spu);	        /* Step 25. */
1941 }
1942 
1943 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1944 {
1945 	/*
1946 	 * Perform steps 26-40 of SPU context restore sequence,
1947 	 * which restores regions of the local store and register
1948 	 * file.
1949 	 */
1950 
1951 	set_watchdog_timer(next, spu);	        /* Step 26. */
1952 	setup_spu_status_part1(next, spu);	/* Step 27. */
1953 	setup_spu_status_part2(next, spu);	/* Step 28. */
1954 	restore_mfc_rag(next, spu);	        /* Step 29. */
1955 	setup_mfc_slbs(next, spu);	        /* Step 30. */
1956 	set_spu_npc(next, spu);	                /* Step 31. */
1957 	set_signot1(next, spu);	                /* Step 32. */
1958 	set_signot2(next, spu);	                /* Step 33. */
1959 	setup_decr(next, spu);	                /* Step 34. */
1960 	setup_ppu_mb(next, spu);	        /* Step 35. */
1961 	setup_ppuint_mb(next, spu);	        /* Step 36. */
1962 	send_restore_code(next, spu);	        /* Step 37. */
1963 	set_ppu_querymask(next, spu);	        /* Step 38. */
1964 	wait_tag_complete(next, spu);	        /* Step 39. */
1965 	wait_spu_stopped(next, spu);	        /* Step 40. */
1966 }
1967 
1968 static void restore_csa(struct spu_state *next, struct spu *spu)
1969 {
1970 	/*
1971 	 * Combine steps 41-76 of SPU context restore sequence, which
1972 	 * restore regions of the privileged & problem state areas.
1973 	 */
1974 
1975 	restore_spu_privcntl(next, spu);	/* Step 41. */
1976 	restore_status_part1(next, spu);	/* Step 42. */
1977 	restore_status_part2(next, spu);	/* Step 43. */
1978 	restore_ls_16kb(next, spu);	        /* Step 44. */
1979 	wait_tag_complete(next, spu);	        /* Step 45. */
1980 	suspend_mfc(next, spu);	                /* Step 46. */
1981 	wait_suspend_mfc_complete(next, spu);	/* Step 47. */
1982 	issue_mfc_tlbie(next, spu);	        /* Step 48. */
1983 	clear_interrupts(next, spu);	        /* Step 49. */
1984 	restore_mfc_queues(next, spu);	        /* Step 50. */
1985 	restore_ppu_querymask(next, spu);	/* Step 51. */
1986 	restore_ppu_querytype(next, spu);	/* Step 52. */
1987 	restore_mfc_csr_tsq(next, spu);	        /* Step 53. */
1988 	restore_mfc_csr_cmd(next, spu);	        /* Step 54. */
1989 	restore_mfc_csr_ato(next, spu);	        /* Step 55. */
1990 	restore_mfc_tclass_id(next, spu);	/* Step 56. */
1991 	set_llr_event(next, spu);	        /* Step 57. */
1992 	restore_decr_wrapped(next, spu);	/* Step 58. */
1993 	restore_ch_part1(next, spu);	        /* Step 59. */
1994 	restore_ch_part2(next, spu);	        /* Step 60. */
1995 	restore_spu_lslr(next, spu);	        /* Step 61. */
1996 	restore_spu_cfg(next, spu);	        /* Step 62. */
1997 	restore_pm_trace(next, spu);	        /* Step 63. */
1998 	restore_spu_npc(next, spu);	        /* Step 64. */
1999 	restore_spu_mb(next, spu);	        /* Step 65. */
2000 	check_ppu_mb_stat(next, spu);	        /* Step 66. */
2001 	check_ppuint_mb_stat(next, spu);	/* Step 67. */
2002 	spu_invalidate_slbs(spu);		/* Modified Step 68. */
2003 	restore_mfc_sr1(next, spu);	        /* Step 69. */
2004 	restore_other_spu_access(next, spu);	/* Step 70. */
2005 	restore_spu_runcntl(next, spu);	        /* Step 71. */
2006 	restore_mfc_cntl(next, spu);	        /* Step 72. */
2007 	enable_user_access(next, spu);	        /* Step 73. */
2008 	reset_switch_active(next, spu);	        /* Step 74. */
2009 	reenable_interrupts(next, spu);	        /* Step 75. */
2010 }
2011 
2012 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2013 {
2014 	int rc;
2015 
2016 	/*
2017 	 * SPU context save can be broken into three phases:
2018 	 *
2019 	 *     (a) quiesce [steps 2-16].
2020 	 *     (b) save of CSA, performed by PPE [steps 17-42]
2021 	 *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2022 	 *
2023 	 * Returns      0 on success.
2024 	 *              2,6 if failed to quiece SPU
2025 	 *              53 if SPU-side of save failed.
2026 	 */
2027 
2028 	rc = quiece_spu(prev, spu);	        /* Steps 2-16. */
2029 	switch (rc) {
2030 	default:
2031 	case 2:
2032 	case 6:
2033 		harvest(prev, spu);
2034 		return rc;
2035 		break;
2036 	case 0:
2037 		break;
2038 	}
2039 	save_csa(prev, spu);	                /* Steps 17-43. */
2040 	save_lscsa(prev, spu);	                /* Steps 44-53. */
2041 	return check_save_status(prev, spu);	/* Step 54.     */
2042 }
2043 
2044 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2045 {
2046 	int rc;
2047 
2048 	/*
2049 	 * SPU context restore can be broken into three phases:
2050 	 *
2051 	 *    (a) harvest (or reset) SPU [steps 2-24].
2052 	 *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2053 	 *    (c) restore CSA [steps 41-76], performed by PPE.
2054 	 *
2055 	 * The 'harvest' step is not performed here, but rather
2056 	 * as needed below.
2057 	 */
2058 
2059 	restore_lscsa(next, spu);	        /* Steps 24-39. */
2060 	rc = check_restore_status(next, spu);	/* Step 40.     */
2061 	switch (rc) {
2062 	default:
2063 		/* Failed. Return now. */
2064 		return rc;
2065 		break;
2066 	case 0:
2067 		/* Fall through to next step. */
2068 		break;
2069 	}
2070 	restore_csa(next, spu);
2071 
2072 	return 0;
2073 }
2074 
2075 /**
2076  * spu_save - SPU context save, with locking.
2077  * @prev: pointer to SPU context save area, to be saved.
2078  * @spu: pointer to SPU iomem structure.
2079  *
2080  * Acquire locks, perform the save operation then return.
2081  */
2082 int spu_save(struct spu_state *prev, struct spu *spu)
2083 {
2084 	int rc;
2085 
2086 	acquire_spu_lock(spu);	        /* Step 1.     */
2087 	rc = __do_spu_save(prev, spu);	/* Steps 2-53. */
2088 	release_spu_lock(spu);
2089 	if (rc != 0 && rc != 2 && rc != 6) {
2090 		panic("%s failed on SPU[%d], rc=%d.\n",
2091 		      __func__, spu->number, rc);
2092 	}
2093 	return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(spu_save);
2096 
2097 /**
2098  * spu_restore - SPU context restore, with harvest and locking.
2099  * @new: pointer to SPU context save area, to be restored.
2100  * @spu: pointer to SPU iomem structure.
2101  *
2102  * Perform harvest + restore, as we may not be coming
2103  * from a previous successful save operation, and the
2104  * hardware state is unknown.
2105  */
2106 int spu_restore(struct spu_state *new, struct spu *spu)
2107 {
2108 	int rc;
2109 
2110 	acquire_spu_lock(spu);
2111 	harvest(NULL, spu);
2112 	spu->dar = 0;
2113 	spu->dsisr = 0;
2114 	spu->slb_replace = 0;
2115 	spu->class_0_pending = 0;
2116 	rc = __do_spu_restore(new, spu);
2117 	release_spu_lock(spu);
2118 	if (rc) {
2119 		panic("%s failed on SPU[%d] rc=%d.\n",
2120 		       __func__, spu->number, rc);
2121 	}
2122 	return rc;
2123 }
2124 EXPORT_SYMBOL_GPL(spu_restore);
2125 
2126 /**
2127  * spu_harvest - SPU harvest (reset) operation
2128  * @spu: pointer to SPU iomem structure.
2129  *
2130  * Perform SPU harvest (reset) operation.
2131  */
2132 void spu_harvest(struct spu *spu)
2133 {
2134 	acquire_spu_lock(spu);
2135 	harvest(NULL, spu);
2136 	release_spu_lock(spu);
2137 }
2138 
2139 static void init_prob(struct spu_state *csa)
2140 {
2141 	csa->spu_chnlcnt_RW[9] = 1;
2142 	csa->spu_chnlcnt_RW[21] = 16;
2143 	csa->spu_chnlcnt_RW[23] = 1;
2144 	csa->spu_chnlcnt_RW[28] = 1;
2145 	csa->spu_chnlcnt_RW[30] = 1;
2146 	csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2147 	csa->prob.mb_stat_R = 0x000400;
2148 }
2149 
2150 static void init_priv1(struct spu_state *csa)
2151 {
2152 	/* Enable decode, relocate, tlbie response, master runcntl. */
2153 	csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2154 	    MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2155 	    MFC_STATE1_PROBLEM_STATE_MASK |
2156 	    MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2157 
2158 	/* Enable OS-specific set of interrupts. */
2159 	csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2160 	    CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2161 	    CLASS0_ENABLE_SPU_ERROR_INTR;
2162 	csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2163 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
2164 	csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2165 	    CLASS2_ENABLE_SPU_HALT_INTR |
2166 	    CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2167 }
2168 
2169 static void init_priv2(struct spu_state *csa)
2170 {
2171 	csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2172 	csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2173 	    MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2174 	    MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2175 }
2176 
2177 /**
2178  * spu_alloc_csa - allocate and initialize an SPU context save area.
2179  *
2180  * Allocate and initialize the contents of an SPU context save area.
2181  * This includes enabling address translation, interrupt masks, etc.,
2182  * as appropriate for the given OS environment.
2183  *
2184  * Note that storage for the 'lscsa' is allocated separately,
2185  * as it is by far the largest of the context save regions,
2186  * and may need to be pinned or otherwise specially aligned.
2187  */
2188 void spu_init_csa(struct spu_state *csa)
2189 {
2190 	struct spu_lscsa *lscsa;
2191 	unsigned char *p;
2192 
2193 	if (!csa)
2194 		return;
2195 	memset(csa, 0, sizeof(struct spu_state));
2196 
2197 	lscsa = vmalloc(sizeof(struct spu_lscsa));
2198 	if (!lscsa)
2199 		return;
2200 
2201 	memset(lscsa, 0, sizeof(struct spu_lscsa));
2202 	csa->lscsa = lscsa;
2203 	spin_lock_init(&csa->register_lock);
2204 
2205 	/* Set LS pages reserved to allow for user-space mapping. */
2206 	for (p = lscsa->ls; p < lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2207 		SetPageReserved(vmalloc_to_page(p));
2208 
2209 	init_prob(csa);
2210 	init_priv1(csa);
2211 	init_priv2(csa);
2212 }
2213 EXPORT_SYMBOL_GPL(spu_init_csa);
2214 
2215 void spu_fini_csa(struct spu_state *csa)
2216 {
2217 	/* Clear reserved bit before vfree. */
2218 	unsigned char *p;
2219 	for (p = csa->lscsa->ls; p < csa->lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2220 		ClearPageReserved(vmalloc_to_page(p));
2221 
2222 	vfree(csa->lscsa);
2223 }
2224 EXPORT_SYMBOL_GPL(spu_fini_csa);
2225