xref: /linux/arch/powerpc/platforms/cell/spufs/switch.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34 
35 #include <linux/config.h>
36 #include <linux/module.h>
37 #include <linux/errno.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/smp_lock.h>
44 #include <linux/stddef.h>
45 #include <linux/unistd.h>
46 
47 #include <asm/io.h>
48 #include <asm/spu.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51 
52 #include "spu_save_dump.h"
53 #include "spu_restore_dump.h"
54 
55 #if 0
56 #define POLL_WHILE_TRUE(_c) {				\
57     do {						\
58     } while (_c);					\
59   }
60 #else
61 #define RELAX_SPIN_COUNT				1000
62 #define POLL_WHILE_TRUE(_c) {				\
63     do {						\
64 	int _i;						\
65 	for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
66 	    cpu_relax();				\
67 	}						\
68 	if (unlikely(_c)) yield();			\
69 	else break;					\
70     } while (_c);					\
71   }
72 #endif				/* debug */
73 
74 #define POLL_WHILE_FALSE(_c) 	POLL_WHILE_TRUE(!(_c))
75 
76 static inline void acquire_spu_lock(struct spu *spu)
77 {
78 	/* Save, Step 1:
79 	 * Restore, Step 1:
80 	 *    Acquire SPU-specific mutual exclusion lock.
81 	 *    TBD.
82 	 */
83 }
84 
85 static inline void release_spu_lock(struct spu *spu)
86 {
87 	/* Restore, Step 76:
88 	 *    Release SPU-specific mutual exclusion lock.
89 	 *    TBD.
90 	 */
91 }
92 
93 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
94 {
95 	struct spu_problem __iomem *prob = spu->problem;
96 	u32 isolate_state;
97 
98 	/* Save, Step 2:
99 	 * Save, Step 6:
100 	 *     If SPU_Status[E,L,IS] any field is '1', this
101 	 *     SPU is in isolate state and cannot be context
102 	 *     saved at this time.
103 	 */
104 	isolate_state = SPU_STATUS_ISOLATED_STATE |
105 	    SPU_STATUS_ISOLATED_LOAD_STAUTUS | SPU_STATUS_ISOLATED_EXIT_STAUTUS;
106 	return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
107 }
108 
109 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
110 {
111 	/* Save, Step 3:
112 	 * Restore, Step 2:
113 	 *     Save INT_Mask_class0 in CSA.
114 	 *     Write INT_MASK_class0 with value of 0.
115 	 *     Save INT_Mask_class1 in CSA.
116 	 *     Write INT_MASK_class1 with value of 0.
117 	 *     Save INT_Mask_class2 in CSA.
118 	 *     Write INT_MASK_class2 with value of 0.
119 	 */
120 	spin_lock_irq(&spu->register_lock);
121 	if (csa) {
122 		csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
123 		csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
124 		csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
125 	}
126 	spu_int_mask_set(spu, 0, 0ul);
127 	spu_int_mask_set(spu, 1, 0ul);
128 	spu_int_mask_set(spu, 2, 0ul);
129 	eieio();
130 	spin_unlock_irq(&spu->register_lock);
131 }
132 
133 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
134 {
135 	/* Save, Step 4:
136 	 * Restore, Step 25.
137 	 *    Set a software watchdog timer, which specifies the
138 	 *    maximum allowable time for a context save sequence.
139 	 *
140 	 *    For present, this implementation will not set a global
141 	 *    watchdog timer, as virtualization & variable system load
142 	 *    may cause unpredictable execution times.
143 	 */
144 }
145 
146 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
147 {
148 	/* Save, Step 5:
149 	 * Restore, Step 3:
150 	 *     Inhibit user-space access (if provided) to this
151 	 *     SPU by unmapping the virtual pages assigned to
152 	 *     the SPU memory-mapped I/O (MMIO) for problem
153 	 *     state. TBD.
154 	 */
155 }
156 
157 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
158 {
159 	/* Save, Step 7:
160 	 * Restore, Step 5:
161 	 *     Set a software context switch pending flag.
162 	 */
163 	set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
164 	mb();
165 }
166 
167 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
168 {
169 	struct spu_priv2 __iomem *priv2 = spu->priv2;
170 
171 	/* Save, Step 8:
172 	 *     Suspend DMA and save MFC_CNTL.
173 	 */
174 	switch (in_be64(&priv2->mfc_control_RW) &
175 	       MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
176 	case MFC_CNTL_SUSPEND_IN_PROGRESS:
177 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
178 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
179 				 MFC_CNTL_SUSPEND_COMPLETE);
180 		/* fall through */
181 	case MFC_CNTL_SUSPEND_COMPLETE:
182 		if (csa) {
183 			csa->priv2.mfc_control_RW =
184 				in_be64(&priv2->mfc_control_RW) |
185 				MFC_CNTL_SUSPEND_DMA_QUEUE;
186 		}
187 		break;
188 	case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
189 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
190 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
191 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
192 				 MFC_CNTL_SUSPEND_COMPLETE);
193 		if (csa) {
194 			csa->priv2.mfc_control_RW =
195 				in_be64(&priv2->mfc_control_RW) &
196 				~MFC_CNTL_SUSPEND_DMA_QUEUE;
197 		}
198 		break;
199 	}
200 }
201 
202 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
203 {
204 	struct spu_problem __iomem *prob = spu->problem;
205 
206 	/* Save, Step 9:
207 	 *     Save SPU_Runcntl in the CSA.  This value contains
208 	 *     the "Application Desired State".
209 	 */
210 	csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
211 }
212 
213 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
214 {
215 	/* Save, Step 10:
216 	 *     Save MFC_SR1 in the CSA.
217 	 */
218 	csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
219 }
220 
221 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
222 {
223 	struct spu_problem __iomem *prob = spu->problem;
224 
225 	/* Save, Step 11:
226 	 *     Read SPU_Status[R], and save to CSA.
227 	 */
228 	if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
229 		csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
230 	} else {
231 		u32 stopped;
232 
233 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
234 		eieio();
235 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
236 				SPU_STATUS_RUNNING);
237 		stopped =
238 		    SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
239 		    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
240 		if ((in_be32(&prob->spu_status_R) & stopped) == 0)
241 			csa->prob.spu_status_R = SPU_STATUS_RUNNING;
242 		else
243 			csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
244 	}
245 }
246 
247 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
248 {
249 	struct spu_priv2 __iomem *priv2 = spu->priv2;
250 
251 	/* Save, Step 12:
252 	 *     Read MFC_CNTL[Ds].  Update saved copy of
253 	 *     CSA.MFC_CNTL[Ds].
254 	 */
255 	if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
256 		csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
257 		csa->suspend_time = get_cycles();
258 		out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
259 		eieio();
260 		csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
261 		eieio();
262 	} else {
263 		csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
264 	}
265 }
266 
267 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
268 {
269 	struct spu_priv2 __iomem *priv2 = spu->priv2;
270 
271 	/* Save, Step 13:
272 	 *     Write MFC_CNTL[Dh] set to a '1' to halt
273 	 *     the decrementer.
274 	 */
275 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
276 	eieio();
277 }
278 
279 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
280 {
281 	/* Save, Step 14:
282 	 *    Read PPE Timebase High and Timebase low registers
283 	 *    and save in CSA.  TBD.
284 	 */
285 	csa->suspend_time = get_cycles();
286 }
287 
288 static inline void remove_other_spu_access(struct spu_state *csa,
289 					   struct spu *spu)
290 {
291 	/* Save, Step 15:
292 	 *     Remove other SPU access to this SPU by unmapping
293 	 *     this SPU's pages from their address space.  TBD.
294 	 */
295 }
296 
297 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
298 {
299 	struct spu_problem __iomem *prob = spu->problem;
300 
301 	/* Save, Step 16:
302 	 * Restore, Step 11.
303 	 *     Write SPU_MSSync register. Poll SPU_MSSync[P]
304 	 *     for a value of 0.
305 	 */
306 	out_be64(&prob->spc_mssync_RW, 1UL);
307 	POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
308 }
309 
310 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
311 {
312 	/* Save, Step 17:
313 	 * Restore, Step 12.
314 	 * Restore, Step 48.
315 	 *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
316 	 *     Then issue a PPE sync instruction.
317 	 */
318 	spu_tlb_invalidate(spu);
319 	mb();
320 }
321 
322 static inline void handle_pending_interrupts(struct spu_state *csa,
323 					     struct spu *spu)
324 {
325 	/* Save, Step 18:
326 	 *     Handle any pending interrupts from this SPU
327 	 *     here.  This is OS or hypervisor specific.  One
328 	 *     option is to re-enable interrupts to handle any
329 	 *     pending interrupts, with the interrupt handlers
330 	 *     recognizing the software Context Switch Pending
331 	 *     flag, to ensure the SPU execution or MFC command
332 	 *     queue is not restarted.  TBD.
333 	 */
334 }
335 
336 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
337 {
338 	struct spu_priv2 __iomem *priv2 = spu->priv2;
339 	int i;
340 
341 	/* Save, Step 19:
342 	 *     If MFC_Cntl[Se]=0 then save
343 	 *     MFC command queues.
344 	 */
345 	if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
346 		for (i = 0; i < 8; i++) {
347 			csa->priv2.puq[i].mfc_cq_data0_RW =
348 			    in_be64(&priv2->puq[i].mfc_cq_data0_RW);
349 			csa->priv2.puq[i].mfc_cq_data1_RW =
350 			    in_be64(&priv2->puq[i].mfc_cq_data1_RW);
351 			csa->priv2.puq[i].mfc_cq_data2_RW =
352 			    in_be64(&priv2->puq[i].mfc_cq_data2_RW);
353 			csa->priv2.puq[i].mfc_cq_data3_RW =
354 			    in_be64(&priv2->puq[i].mfc_cq_data3_RW);
355 		}
356 		for (i = 0; i < 16; i++) {
357 			csa->priv2.spuq[i].mfc_cq_data0_RW =
358 			    in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
359 			csa->priv2.spuq[i].mfc_cq_data1_RW =
360 			    in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
361 			csa->priv2.spuq[i].mfc_cq_data2_RW =
362 			    in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
363 			csa->priv2.spuq[i].mfc_cq_data3_RW =
364 			    in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
365 		}
366 	}
367 }
368 
369 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
370 {
371 	struct spu_problem __iomem *prob = spu->problem;
372 
373 	/* Save, Step 20:
374 	 *     Save the PPU_QueryMask register
375 	 *     in the CSA.
376 	 */
377 	csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
378 }
379 
380 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
381 {
382 	struct spu_problem __iomem *prob = spu->problem;
383 
384 	/* Save, Step 21:
385 	 *     Save the PPU_QueryType register
386 	 *     in the CSA.
387 	 */
388 	csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
389 }
390 
391 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
392 {
393 	struct spu_priv2 __iomem *priv2 = spu->priv2;
394 
395 	/* Save, Step 22:
396 	 *     Save the MFC_CSR_TSQ register
397 	 *     in the LSCSA.
398 	 */
399 	csa->priv2.spu_tag_status_query_RW =
400 	    in_be64(&priv2->spu_tag_status_query_RW);
401 }
402 
403 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
404 {
405 	struct spu_priv2 __iomem *priv2 = spu->priv2;
406 
407 	/* Save, Step 23:
408 	 *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
409 	 *     registers in the CSA.
410 	 */
411 	csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
412 	csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
413 }
414 
415 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
416 {
417 	struct spu_priv2 __iomem *priv2 = spu->priv2;
418 
419 	/* Save, Step 24:
420 	 *     Save the MFC_CSR_ATO register in
421 	 *     the CSA.
422 	 */
423 	csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
424 }
425 
426 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
427 {
428 	/* Save, Step 25:
429 	 *     Save the MFC_TCLASS_ID register in
430 	 *     the CSA.
431 	 */
432 	csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
433 }
434 
435 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
436 {
437 	/* Save, Step 26:
438 	 * Restore, Step 23.
439 	 *     Write the MFC_TCLASS_ID register with
440 	 *     the value 0x10000000.
441 	 */
442 	spu_mfc_tclass_id_set(spu, 0x10000000);
443 	eieio();
444 }
445 
446 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
447 {
448 	struct spu_priv2 __iomem *priv2 = spu->priv2;
449 
450 	/* Save, Step 27:
451 	 * Restore, Step 14.
452 	 *     Write MFC_CNTL[Pc]=1 (purge queue).
453 	 */
454 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
455 	eieio();
456 }
457 
458 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
459 {
460 	struct spu_priv2 __iomem *priv2 = spu->priv2;
461 
462 	/* Save, Step 28:
463 	 *     Poll MFC_CNTL[Ps] until value '11' is read
464 	 *     (purge complete).
465 	 */
466 	POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
467 			 MFC_CNTL_PURGE_DMA_COMPLETE);
468 }
469 
470 static inline void save_mfc_slbs(struct spu_state *csa, struct spu *spu)
471 {
472 	struct spu_priv2 __iomem *priv2 = spu->priv2;
473 	int i;
474 
475 	/* Save, Step 29:
476 	 *     If MFC_SR1[R]='1', save SLBs in CSA.
477 	 */
478 	if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
479 		csa->priv2.slb_index_W = in_be64(&priv2->slb_index_W);
480 		for (i = 0; i < 8; i++) {
481 			out_be64(&priv2->slb_index_W, i);
482 			eieio();
483 			csa->slb_esid_RW[i] = in_be64(&priv2->slb_esid_RW);
484 			csa->slb_vsid_RW[i] = in_be64(&priv2->slb_vsid_RW);
485 			eieio();
486 		}
487 	}
488 }
489 
490 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
491 {
492 	/* Save, Step 30:
493 	 * Restore, Step 18:
494 	 *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
495 	 *     MFC_SR1[TL,R,Pr,T] set correctly for the
496 	 *     OS specific environment.
497 	 *
498 	 *     Implementation note: The SPU-side code
499 	 *     for save/restore is privileged, so the
500 	 *     MFC_SR1[Pr] bit is not set.
501 	 *
502 	 */
503 	spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
504 			      MFC_STATE1_RELOCATE_MASK |
505 			      MFC_STATE1_BUS_TLBIE_MASK));
506 }
507 
508 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
509 {
510 	struct spu_problem __iomem *prob = spu->problem;
511 
512 	/* Save, Step 31:
513 	 *     Save SPU_NPC in the CSA.
514 	 */
515 	csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
516 }
517 
518 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
519 {
520 	struct spu_priv2 __iomem *priv2 = spu->priv2;
521 
522 	/* Save, Step 32:
523 	 *     Save SPU_PrivCntl in the CSA.
524 	 */
525 	csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
526 }
527 
528 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
529 {
530 	struct spu_priv2 __iomem *priv2 = spu->priv2;
531 
532 	/* Save, Step 33:
533 	 * Restore, Step 16:
534 	 *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
535 	 */
536 	out_be64(&priv2->spu_privcntl_RW, 0UL);
537 	eieio();
538 }
539 
540 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
541 {
542 	struct spu_priv2 __iomem *priv2 = spu->priv2;
543 
544 	/* Save, Step 34:
545 	 *     Save SPU_LSLR in the CSA.
546 	 */
547 	csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
548 }
549 
550 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
551 {
552 	struct spu_priv2 __iomem *priv2 = spu->priv2;
553 
554 	/* Save, Step 35:
555 	 * Restore, Step 17.
556 	 *     Reset SPU_LSLR.
557 	 */
558 	out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
559 	eieio();
560 }
561 
562 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
563 {
564 	struct spu_priv2 __iomem *priv2 = spu->priv2;
565 
566 	/* Save, Step 36:
567 	 *     Save SPU_Cfg in the CSA.
568 	 */
569 	csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
570 }
571 
572 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
573 {
574 	/* Save, Step 37:
575 	 *     Save PM_Trace_Tag_Wait_Mask in the CSA.
576 	 *     Not performed by this implementation.
577 	 */
578 }
579 
580 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
581 {
582 	/* Save, Step 38:
583 	 *     Save RA_GROUP_ID register and the
584 	 *     RA_ENABLE reigster in the CSA.
585 	 */
586 	csa->priv1.resource_allocation_groupID_RW =
587 		spu_resource_allocation_groupID_get(spu);
588 	csa->priv1.resource_allocation_enable_RW =
589 		spu_resource_allocation_enable_get(spu);
590 }
591 
592 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
593 {
594 	struct spu_problem __iomem *prob = spu->problem;
595 
596 	/* Save, Step 39:
597 	 *     Save MB_Stat register in the CSA.
598 	 */
599 	csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
600 }
601 
602 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
603 {
604 	struct spu_problem __iomem *prob = spu->problem;
605 
606 	/* Save, Step 40:
607 	 *     Save the PPU_MB register in the CSA.
608 	 */
609 	csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
610 }
611 
612 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
613 {
614 	struct spu_priv2 __iomem *priv2 = spu->priv2;
615 
616 	/* Save, Step 41:
617 	 *     Save the PPUINT_MB register in the CSA.
618 	 */
619 	csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
620 }
621 
622 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
623 {
624 	struct spu_priv2 __iomem *priv2 = spu->priv2;
625 	u64 idx, ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
626 	int i;
627 
628 	/* Save, Step 42:
629 	 *     Save the following CH: [0,1,3,4,24,25,27]
630 	 */
631 	for (i = 0; i < 7; i++) {
632 		idx = ch_indices[i];
633 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
634 		eieio();
635 		csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
636 		csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
637 		out_be64(&priv2->spu_chnldata_RW, 0UL);
638 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
639 		eieio();
640 	}
641 }
642 
643 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
644 {
645 	struct spu_priv2 __iomem *priv2 = spu->priv2;
646 	int i;
647 
648 	/* Save, Step 43:
649 	 *     Save SPU Read Mailbox Channel.
650 	 */
651 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
652 	eieio();
653 	csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
654 	for (i = 0; i < 4; i++) {
655 		csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
656 	}
657 	out_be64(&priv2->spu_chnlcnt_RW, 0UL);
658 	eieio();
659 }
660 
661 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
662 {
663 	struct spu_priv2 __iomem *priv2 = spu->priv2;
664 
665 	/* Save, Step 44:
666 	 *     Save MFC_CMD Channel.
667 	 */
668 	out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
669 	eieio();
670 	csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
671 	eieio();
672 }
673 
674 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
675 {
676 	struct spu_priv2 __iomem *priv2 = spu->priv2;
677 	u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
678 	u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
679 	u64 idx;
680 	int i;
681 
682 	/* Save, Step 45:
683 	 *     Reset the following CH: [21, 23, 28, 30]
684 	 */
685 	for (i = 0; i < 4; i++) {
686 		idx = ch_indices[i];
687 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
688 		eieio();
689 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
690 		eieio();
691 	}
692 }
693 
694 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
695 {
696 	struct spu_priv2 __iomem *priv2 = spu->priv2;
697 
698 	/* Save, Step 46:
699 	 * Restore, Step 25.
700 	 *     Write MFC_CNTL[Sc]=0 (resume queue processing).
701 	 */
702 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
703 }
704 
705 static inline void invalidate_slbs(struct spu_state *csa, struct spu *spu)
706 {
707 	struct spu_priv2 __iomem *priv2 = spu->priv2;
708 
709 	/* Save, Step 45:
710 	 * Restore, Step 19:
711 	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All.
712 	 */
713 	if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
714 		out_be64(&priv2->slb_invalidate_all_W, 0UL);
715 		eieio();
716 	}
717 }
718 
719 static inline void get_kernel_slb(u64 ea, u64 slb[2])
720 {
721 	slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
722 	slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
723 
724 	/* Large pages are used for kernel text/data, but not vmalloc.  */
725 	if (cpu_has_feature(CPU_FTR_16M_PAGE)
726 	    && REGION_ID(ea) == KERNEL_REGION_ID)
727 		slb[0] |= SLB_VSID_L;
728 }
729 
730 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
731 {
732 	struct spu_priv2 __iomem *priv2 = spu->priv2;
733 
734 	out_be64(&priv2->slb_index_W, slbe);
735 	eieio();
736 	out_be64(&priv2->slb_vsid_RW, slb[0]);
737 	out_be64(&priv2->slb_esid_RW, slb[1]);
738 	eieio();
739 }
740 
741 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
742 {
743 	u64 code_slb[2];
744 	u64 lscsa_slb[2];
745 
746 	/* Save, Step 47:
747 	 * Restore, Step 30.
748 	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
749 	 *     register, then initialize SLB_VSID and SLB_ESID
750 	 *     to provide access to SPU context save code and
751 	 *     LSCSA.
752 	 *
753 	 *     This implementation places both the context
754 	 *     switch code and LSCSA in kernel address space.
755 	 *
756 	 *     Further this implementation assumes that the
757 	 *     MFC_SR1[R]=1 (in other words, assume that
758 	 *     translation is desired by OS environment).
759 	 */
760 	invalidate_slbs(csa, spu);
761 	get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
762 	get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
763 	load_mfc_slb(spu, code_slb, 0);
764 	if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
765 		load_mfc_slb(spu, lscsa_slb, 1);
766 }
767 
768 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
769 {
770 	/* Save, Step 48:
771 	 * Restore, Step 23.
772 	 *     Change the software context switch pending flag
773 	 *     to context switch active.
774 	 */
775 	set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
776 	clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
777 	mb();
778 }
779 
780 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
781 {
782 	unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
783 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
784 
785 	/* Save, Step 49:
786 	 * Restore, Step 22:
787 	 *     Reset and then enable interrupts, as
788 	 *     needed by OS.
789 	 *
790 	 *     This implementation enables only class1
791 	 *     (translation) interrupts.
792 	 */
793 	spin_lock_irq(&spu->register_lock);
794 	spu_int_stat_clear(spu, 0, ~0ul);
795 	spu_int_stat_clear(spu, 1, ~0ul);
796 	spu_int_stat_clear(spu, 2, ~0ul);
797 	spu_int_mask_set(spu, 0, 0ul);
798 	spu_int_mask_set(spu, 1, class1_mask);
799 	spu_int_mask_set(spu, 2, 0ul);
800 	spin_unlock_irq(&spu->register_lock);
801 }
802 
803 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
804 			       unsigned int ls_offset, unsigned int size,
805 			       unsigned int tag, unsigned int rclass,
806 			       unsigned int cmd)
807 {
808 	struct spu_problem __iomem *prob = spu->problem;
809 	union mfc_tag_size_class_cmd command;
810 	unsigned int transfer_size;
811 	volatile unsigned int status = 0x0;
812 
813 	while (size > 0) {
814 		transfer_size =
815 		    (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
816 		command.u.mfc_size = transfer_size;
817 		command.u.mfc_tag = tag;
818 		command.u.mfc_rclassid = rclass;
819 		command.u.mfc_cmd = cmd;
820 		do {
821 			out_be32(&prob->mfc_lsa_W, ls_offset);
822 			out_be64(&prob->mfc_ea_W, ea);
823 			out_be64(&prob->mfc_union_W.all64, command.all64);
824 			status =
825 			    in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
826 			if (unlikely(status & 0x2)) {
827 				cpu_relax();
828 			}
829 		} while (status & 0x3);
830 		size -= transfer_size;
831 		ea += transfer_size;
832 		ls_offset += transfer_size;
833 	}
834 	return 0;
835 }
836 
837 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
838 {
839 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
840 	unsigned int ls_offset = 0x0;
841 	unsigned int size = 16384;
842 	unsigned int tag = 0;
843 	unsigned int rclass = 0;
844 	unsigned int cmd = MFC_PUT_CMD;
845 
846 	/* Save, Step 50:
847 	 *     Issue a DMA command to copy the first 16K bytes
848 	 *     of local storage to the CSA.
849 	 */
850 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
851 }
852 
853 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
854 {
855 	struct spu_problem __iomem *prob = spu->problem;
856 
857 	/* Save, Step 51:
858 	 * Restore, Step 31.
859 	 *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
860 	 *     point address of context save code in local
861 	 *     storage.
862 	 *
863 	 *     This implementation uses SPU-side save/restore
864 	 *     programs with entry points at LSA of 0.
865 	 */
866 	out_be32(&prob->spu_npc_RW, 0);
867 	eieio();
868 }
869 
870 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
871 {
872 	struct spu_problem __iomem *prob = spu->problem;
873 	union {
874 		u64 ull;
875 		u32 ui[2];
876 	} addr64;
877 
878 	/* Save, Step 52:
879 	 * Restore, Step 32:
880 	 *    Write SPU_Sig_Notify_1 register with upper 32-bits
881 	 *    of the CSA.LSCSA effective address.
882 	 */
883 	addr64.ull = (u64) csa->lscsa;
884 	out_be32(&prob->signal_notify1, addr64.ui[0]);
885 	eieio();
886 }
887 
888 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
889 {
890 	struct spu_problem __iomem *prob = spu->problem;
891 	union {
892 		u64 ull;
893 		u32 ui[2];
894 	} addr64;
895 
896 	/* Save, Step 53:
897 	 * Restore, Step 33:
898 	 *    Write SPU_Sig_Notify_2 register with lower 32-bits
899 	 *    of the CSA.LSCSA effective address.
900 	 */
901 	addr64.ull = (u64) csa->lscsa;
902 	out_be32(&prob->signal_notify2, addr64.ui[1]);
903 	eieio();
904 }
905 
906 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
907 {
908 	unsigned long addr = (unsigned long)&spu_save_code[0];
909 	unsigned int ls_offset = 0x0;
910 	unsigned int size = sizeof(spu_save_code);
911 	unsigned int tag = 0;
912 	unsigned int rclass = 0;
913 	unsigned int cmd = MFC_GETFS_CMD;
914 
915 	/* Save, Step 54:
916 	 *     Issue a DMA command to copy context save code
917 	 *     to local storage and start SPU.
918 	 */
919 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
920 }
921 
922 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
923 {
924 	struct spu_problem __iomem *prob = spu->problem;
925 
926 	/* Save, Step 55:
927 	 * Restore, Step 38.
928 	 *     Write PPU_QueryMask=1 (enable Tag Group 0)
929 	 *     and issue eieio instruction.
930 	 */
931 	out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
932 	eieio();
933 }
934 
935 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
936 {
937 	struct spu_problem __iomem *prob = spu->problem;
938 	u32 mask = MFC_TAGID_TO_TAGMASK(0);
939 	unsigned long flags;
940 
941 	/* Save, Step 56:
942 	 * Restore, Step 39.
943 	 * Restore, Step 39.
944 	 * Restore, Step 46.
945 	 *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
946 	 *     or write PPU_QueryType[TS]=01 and wait for Tag Group
947 	 *     Complete Interrupt.  Write INT_Stat_Class0 or
948 	 *     INT_Stat_Class2 with value of 'handled'.
949 	 */
950 	POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
951 
952 	local_irq_save(flags);
953 	spu_int_stat_clear(spu, 0, ~(0ul));
954 	spu_int_stat_clear(spu, 2, ~(0ul));
955 	local_irq_restore(flags);
956 }
957 
958 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
959 {
960 	struct spu_problem __iomem *prob = spu->problem;
961 	unsigned long flags;
962 
963 	/* Save, Step 57:
964 	 * Restore, Step 40.
965 	 *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
966 	 *     or SPU Class 2 interrupt.  Write INT_Stat_class0
967 	 *     or INT_Stat_class2 with value of handled.
968 	 */
969 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
970 
971 	local_irq_save(flags);
972 	spu_int_stat_clear(spu, 0, ~(0ul));
973 	spu_int_stat_clear(spu, 2, ~(0ul));
974 	local_irq_restore(flags);
975 }
976 
977 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
978 {
979 	struct spu_problem __iomem *prob = spu->problem;
980 	u32 complete;
981 
982 	/* Save, Step 54:
983 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
984 	 *     context save succeeded, otherwise context save
985 	 *     failed.
986 	 */
987 	complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
988 		    SPU_STATUS_STOPPED_BY_STOP);
989 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
990 }
991 
992 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
993 {
994 	/* Restore, Step 4:
995 	 *    If required, notify the "using application" that
996 	 *    the SPU task has been terminated.  TBD.
997 	 */
998 }
999 
1000 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1001 {
1002 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1003 
1004 	/* Restore, Step 7:
1005 	 * Restore, Step 47.
1006 	 *     Write MFC_Cntl[Dh,Sc]='1','1' to suspend
1007 	 *     the queue and halt the decrementer.
1008 	 */
1009 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
1010 		 MFC_CNTL_DECREMENTER_HALTED);
1011 	eieio();
1012 }
1013 
1014 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
1015 					     struct spu *spu)
1016 {
1017 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1018 
1019 	/* Restore, Step 8:
1020 	 * Restore, Step 47.
1021 	 *     Poll MFC_CNTL[Ss] until 11 is returned.
1022 	 */
1023 	POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
1024 			 MFC_CNTL_SUSPEND_COMPLETE);
1025 }
1026 
1027 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1028 {
1029 	struct spu_problem __iomem *prob = spu->problem;
1030 
1031 	/* Restore, Step 9:
1032 	 *    If SPU_Status[R]=1, stop SPU execution
1033 	 *    and wait for stop to complete.
1034 	 *
1035 	 *    Returns       1 if SPU_Status[R]=1 on entry.
1036 	 *                  0 otherwise
1037 	 */
1038 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1039 		if (in_be32(&prob->spu_status_R) &
1040 		    SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1041 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1042 					SPU_STATUS_RUNNING);
1043 		}
1044 		if ((in_be32(&prob->spu_status_R) &
1045 		     SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1046 		    || (in_be32(&prob->spu_status_R) &
1047 			SPU_STATUS_ISOLATED_STATE)) {
1048 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1049 			eieio();
1050 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1051 					SPU_STATUS_RUNNING);
1052 			out_be32(&prob->spu_runcntl_RW, 0x2);
1053 			eieio();
1054 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1055 					SPU_STATUS_RUNNING);
1056 		}
1057 		if (in_be32(&prob->spu_status_R) &
1058 		    SPU_STATUS_WAITING_FOR_CHANNEL) {
1059 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1060 			eieio();
1061 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1062 					SPU_STATUS_RUNNING);
1063 		}
1064 		return 1;
1065 	}
1066 	return 0;
1067 }
1068 
1069 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1070 {
1071 	struct spu_problem __iomem *prob = spu->problem;
1072 
1073 	/* Restore, Step 10:
1074 	 *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1075 	 *    release SPU from isolate state.
1076 	 */
1077 	if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1078 		if (in_be32(&prob->spu_status_R) &
1079 		    SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1080 			spu_mfc_sr1_set(spu,
1081 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1082 			eieio();
1083 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1084 			eieio();
1085 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1086 					SPU_STATUS_RUNNING);
1087 		}
1088 		if ((in_be32(&prob->spu_status_R) &
1089 		     SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1090 		    || (in_be32(&prob->spu_status_R) &
1091 			SPU_STATUS_ISOLATED_STATE)) {
1092 			spu_mfc_sr1_set(spu,
1093 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1094 			eieio();
1095 			out_be32(&prob->spu_runcntl_RW, 0x2);
1096 			eieio();
1097 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1098 					SPU_STATUS_RUNNING);
1099 		}
1100 	}
1101 }
1102 
1103 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1104 {
1105 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1106 	u64 ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1107 	u64 idx;
1108 	int i;
1109 
1110 	/* Restore, Step 20:
1111 	 *     Reset the following CH: [0,1,3,4,24,25,27]
1112 	 */
1113 	for (i = 0; i < 7; i++) {
1114 		idx = ch_indices[i];
1115 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1116 		eieio();
1117 		out_be64(&priv2->spu_chnldata_RW, 0UL);
1118 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1119 		eieio();
1120 	}
1121 }
1122 
1123 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1124 {
1125 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1126 	u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1127 	u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1128 	u64 idx;
1129 	int i;
1130 
1131 	/* Restore, Step 21:
1132 	 *     Reset the following CH: [21, 23, 28, 29, 30]
1133 	 */
1134 	for (i = 0; i < 5; i++) {
1135 		idx = ch_indices[i];
1136 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1137 		eieio();
1138 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1139 		eieio();
1140 	}
1141 }
1142 
1143 static inline void setup_spu_status_part1(struct spu_state *csa,
1144 					  struct spu *spu)
1145 {
1146 	u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1147 	u32 status_I = SPU_STATUS_INVALID_INSTR;
1148 	u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1149 	u32 status_S = SPU_STATUS_SINGLE_STEP;
1150 	u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1151 	u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1152 	u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1153 	u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1154 	u32 status_code;
1155 
1156 	/* Restore, Step 27:
1157 	 *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1158 	 *     instruction sequence to the end of the SPU based restore
1159 	 *     code (after the "context restored" stop and signal) to
1160 	 *     restore the correct SPU status.
1161 	 *
1162 	 *     NOTE: Rather than modifying the SPU executable, we
1163 	 *     instead add a new 'stopped_status' field to the
1164 	 *     LSCSA.  The SPU-side restore reads this field and
1165 	 *     takes the appropriate action when exiting.
1166 	 */
1167 
1168 	status_code =
1169 	    (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1170 	if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1171 
1172 		/* SPU_Status[P,I]=1 - Illegal Instruction followed
1173 		 * by Stop and Signal instruction, followed by 'br -4'.
1174 		 *
1175 		 */
1176 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1177 		csa->lscsa->stopped_status.slot[1] = status_code;
1178 
1179 	} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1180 
1181 		/* SPU_Status[P,H]=1 - Halt Conditional, followed
1182 		 * by Stop and Signal instruction, followed by
1183 		 * 'br -4'.
1184 		 */
1185 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1186 		csa->lscsa->stopped_status.slot[1] = status_code;
1187 
1188 	} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1189 
1190 		/* SPU_Status[S,P]=1 - Stop and Signal instruction
1191 		 * followed by 'br -4'.
1192 		 */
1193 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1194 		csa->lscsa->stopped_status.slot[1] = status_code;
1195 
1196 	} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1197 
1198 		/* SPU_Status[S,I]=1 - Illegal instruction followed
1199 		 * by 'br -4'.
1200 		 */
1201 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1202 		csa->lscsa->stopped_status.slot[1] = status_code;
1203 
1204 	} else if ((csa->prob.spu_status_R & status_P) == status_P) {
1205 
1206 		/* SPU_Status[P]=1 - Stop and Signal instruction
1207 		 * followed by 'br -4'.
1208 		 */
1209 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1210 		csa->lscsa->stopped_status.slot[1] = status_code;
1211 
1212 	} else if ((csa->prob.spu_status_R & status_H) == status_H) {
1213 
1214 		/* SPU_Status[H]=1 - Halt Conditional, followed
1215 		 * by 'br -4'.
1216 		 */
1217 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1218 
1219 	} else if ((csa->prob.spu_status_R & status_S) == status_S) {
1220 
1221 		/* SPU_Status[S]=1 - Two nop instructions.
1222 		 */
1223 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1224 
1225 	} else if ((csa->prob.spu_status_R & status_I) == status_I) {
1226 
1227 		/* SPU_Status[I]=1 - Illegal instruction followed
1228 		 * by 'br -4'.
1229 		 */
1230 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1231 
1232 	}
1233 }
1234 
1235 static inline void setup_spu_status_part2(struct spu_state *csa,
1236 					  struct spu *spu)
1237 {
1238 	u32 mask;
1239 
1240 	/* Restore, Step 28:
1241 	 *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1242 	 *     add a 'br *' instruction to the end of
1243 	 *     the SPU based restore code.
1244 	 *
1245 	 *     NOTE: Rather than modifying the SPU executable, we
1246 	 *     instead add a new 'stopped_status' field to the
1247 	 *     LSCSA.  The SPU-side restore reads this field and
1248 	 *     takes the appropriate action when exiting.
1249 	 */
1250 	mask = SPU_STATUS_INVALID_INSTR |
1251 	    SPU_STATUS_SINGLE_STEP |
1252 	    SPU_STATUS_STOPPED_BY_HALT |
1253 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1254 	if (!(csa->prob.spu_status_R & mask)) {
1255 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1256 	}
1257 }
1258 
1259 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1260 {
1261 	/* Restore, Step 29:
1262 	 *     Restore RA_GROUP_ID register and the
1263 	 *     RA_ENABLE reigster from the CSA.
1264 	 */
1265 	spu_resource_allocation_groupID_set(spu,
1266 			csa->priv1.resource_allocation_groupID_RW);
1267 	spu_resource_allocation_enable_set(spu,
1268 			csa->priv1.resource_allocation_enable_RW);
1269 }
1270 
1271 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1272 {
1273 	unsigned long addr = (unsigned long)&spu_restore_code[0];
1274 	unsigned int ls_offset = 0x0;
1275 	unsigned int size = sizeof(spu_restore_code);
1276 	unsigned int tag = 0;
1277 	unsigned int rclass = 0;
1278 	unsigned int cmd = MFC_GETFS_CMD;
1279 
1280 	/* Restore, Step 37:
1281 	 *     Issue MFC DMA command to copy context
1282 	 *     restore code to local storage.
1283 	 */
1284 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1285 }
1286 
1287 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1288 {
1289 	/* Restore, Step 34:
1290 	 *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1291 	 *     running) then adjust decrementer, set
1292 	 *     decrementer running status in LSCSA,
1293 	 *     and set decrementer "wrapped" status
1294 	 *     in LSCSA.
1295 	 */
1296 	if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1297 		cycles_t resume_time = get_cycles();
1298 		cycles_t delta_time = resume_time - csa->suspend_time;
1299 
1300 		csa->lscsa->decr.slot[0] -= delta_time;
1301 	}
1302 }
1303 
1304 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1305 {
1306 	/* Restore, Step 35:
1307 	 *     Copy the CSA.PU_MB data into the LSCSA.
1308 	 */
1309 	csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1310 }
1311 
1312 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1313 {
1314 	/* Restore, Step 36:
1315 	 *     Copy the CSA.PUINT_MB data into the LSCSA.
1316 	 */
1317 	csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1318 }
1319 
1320 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1321 {
1322 	struct spu_problem __iomem *prob = spu->problem;
1323 	u32 complete;
1324 
1325 	/* Restore, Step 40:
1326 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1327 	 *     context restore succeeded, otherwise context restore
1328 	 *     failed.
1329 	 */
1330 	complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1331 		    SPU_STATUS_STOPPED_BY_STOP);
1332 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1333 }
1334 
1335 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1336 {
1337 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1338 
1339 	/* Restore, Step 41:
1340 	 *     Restore SPU_PrivCntl from the CSA.
1341 	 */
1342 	out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1343 	eieio();
1344 }
1345 
1346 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1347 {
1348 	struct spu_problem __iomem *prob = spu->problem;
1349 	u32 mask;
1350 
1351 	/* Restore, Step 42:
1352 	 *     If any CSA.SPU_Status[I,S,H,P]=1, then
1353 	 *     restore the error or single step state.
1354 	 */
1355 	mask = SPU_STATUS_INVALID_INSTR |
1356 	    SPU_STATUS_SINGLE_STEP |
1357 	    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1358 	if (csa->prob.spu_status_R & mask) {
1359 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1360 		eieio();
1361 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1362 				SPU_STATUS_RUNNING);
1363 	}
1364 }
1365 
1366 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1367 {
1368 	struct spu_problem __iomem *prob = spu->problem;
1369 	u32 mask;
1370 
1371 	/* Restore, Step 43:
1372 	 *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1373 	 *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1374 	 *     then write '00' to SPU_RunCntl[R0R1] and wait
1375 	 *     for SPU_Status[R]=0.
1376 	 */
1377 	mask = SPU_STATUS_INVALID_INSTR |
1378 	    SPU_STATUS_SINGLE_STEP |
1379 	    SPU_STATUS_STOPPED_BY_HALT |
1380 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1381 	if (!(csa->prob.spu_status_R & mask)) {
1382 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1383 		eieio();
1384 		POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1385 				 SPU_STATUS_RUNNING);
1386 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1387 		eieio();
1388 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1389 				SPU_STATUS_RUNNING);
1390 	}
1391 }
1392 
1393 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1394 {
1395 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1396 	unsigned int ls_offset = 0x0;
1397 	unsigned int size = 16384;
1398 	unsigned int tag = 0;
1399 	unsigned int rclass = 0;
1400 	unsigned int cmd = MFC_GET_CMD;
1401 
1402 	/* Restore, Step 44:
1403 	 *     Issue a DMA command to restore the first
1404 	 *     16kb of local storage from CSA.
1405 	 */
1406 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1407 }
1408 
1409 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1410 {
1411 	/* Restore, Step 49:
1412 	 *     Write INT_MASK_class0 with value of 0.
1413 	 *     Write INT_MASK_class1 with value of 0.
1414 	 *     Write INT_MASK_class2 with value of 0.
1415 	 *     Write INT_STAT_class0 with value of -1.
1416 	 *     Write INT_STAT_class1 with value of -1.
1417 	 *     Write INT_STAT_class2 with value of -1.
1418 	 */
1419 	spin_lock_irq(&spu->register_lock);
1420 	spu_int_mask_set(spu, 0, 0ul);
1421 	spu_int_mask_set(spu, 1, 0ul);
1422 	spu_int_mask_set(spu, 2, 0ul);
1423 	spu_int_stat_clear(spu, 0, ~0ul);
1424 	spu_int_stat_clear(spu, 1, ~0ul);
1425 	spu_int_stat_clear(spu, 2, ~0ul);
1426 	spin_unlock_irq(&spu->register_lock);
1427 }
1428 
1429 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1430 {
1431 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1432 	int i;
1433 
1434 	/* Restore, Step 50:
1435 	 *     If MFC_Cntl[Se]!=0 then restore
1436 	 *     MFC command queues.
1437 	 */
1438 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1439 		for (i = 0; i < 8; i++) {
1440 			out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1441 				 csa->priv2.puq[i].mfc_cq_data0_RW);
1442 			out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1443 				 csa->priv2.puq[i].mfc_cq_data1_RW);
1444 			out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1445 				 csa->priv2.puq[i].mfc_cq_data2_RW);
1446 			out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1447 				 csa->priv2.puq[i].mfc_cq_data3_RW);
1448 		}
1449 		for (i = 0; i < 16; i++) {
1450 			out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1451 				 csa->priv2.spuq[i].mfc_cq_data0_RW);
1452 			out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1453 				 csa->priv2.spuq[i].mfc_cq_data1_RW);
1454 			out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1455 				 csa->priv2.spuq[i].mfc_cq_data2_RW);
1456 			out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1457 				 csa->priv2.spuq[i].mfc_cq_data3_RW);
1458 		}
1459 	}
1460 	eieio();
1461 }
1462 
1463 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1464 {
1465 	struct spu_problem __iomem *prob = spu->problem;
1466 
1467 	/* Restore, Step 51:
1468 	 *     Restore the PPU_QueryMask register from CSA.
1469 	 */
1470 	out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1471 	eieio();
1472 }
1473 
1474 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1475 {
1476 	struct spu_problem __iomem *prob = spu->problem;
1477 
1478 	/* Restore, Step 52:
1479 	 *     Restore the PPU_QueryType register from CSA.
1480 	 */
1481 	out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1482 	eieio();
1483 }
1484 
1485 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1486 {
1487 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1488 
1489 	/* Restore, Step 53:
1490 	 *     Restore the MFC_CSR_TSQ register from CSA.
1491 	 */
1492 	out_be64(&priv2->spu_tag_status_query_RW,
1493 		 csa->priv2.spu_tag_status_query_RW);
1494 	eieio();
1495 }
1496 
1497 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1498 {
1499 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1500 
1501 	/* Restore, Step 54:
1502 	 *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1503 	 *     registers from CSA.
1504 	 */
1505 	out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1506 	out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1507 	eieio();
1508 }
1509 
1510 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1511 {
1512 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1513 
1514 	/* Restore, Step 55:
1515 	 *     Restore the MFC_CSR_ATO register from CSA.
1516 	 */
1517 	out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1518 }
1519 
1520 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1521 {
1522 	/* Restore, Step 56:
1523 	 *     Restore the MFC_TCLASS_ID register from CSA.
1524 	 */
1525 	spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1526 	eieio();
1527 }
1528 
1529 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1530 {
1531 	u64 ch0_cnt, ch0_data;
1532 	u64 ch1_data;
1533 
1534 	/* Restore, Step 57:
1535 	 *    Set the Lock Line Reservation Lost Event by:
1536 	 *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1537 	 *      2. If CSA.SPU_Channel_0_Count=0 and
1538 	 *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1539 	 *         CSA.SPU_Event_Status[Lr]=0 then set
1540 	 *         CSA.SPU_Event_Status_Count=1.
1541 	 */
1542 	ch0_cnt = csa->spu_chnlcnt_RW[0];
1543 	ch0_data = csa->spu_chnldata_RW[0];
1544 	ch1_data = csa->spu_chnldata_RW[1];
1545 	csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1546 	if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1547 	    (ch1_data & MFC_LLR_LOST_EVENT)) {
1548 		csa->spu_chnlcnt_RW[0] = 1;
1549 	}
1550 }
1551 
1552 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1553 {
1554 	/* Restore, Step 58:
1555 	 *     If the status of the CSA software decrementer
1556 	 *     "wrapped" flag is set, OR in a '1' to
1557 	 *     CSA.SPU_Event_Status[Tm].
1558 	 */
1559 	if (csa->lscsa->decr_status.slot[0] == 1) {
1560 		csa->spu_chnldata_RW[0] |= 0x20;
1561 	}
1562 	if ((csa->lscsa->decr_status.slot[0] == 1) &&
1563 	    (csa->spu_chnlcnt_RW[0] == 0 &&
1564 	     ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1565 	     ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1566 		csa->spu_chnlcnt_RW[0] = 1;
1567 	}
1568 }
1569 
1570 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1571 {
1572 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1573 	u64 idx, ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1574 	int i;
1575 
1576 	/* Restore, Step 59:
1577 	 *     Restore the following CH: [0,1,3,4,24,25,27]
1578 	 */
1579 	for (i = 0; i < 7; i++) {
1580 		idx = ch_indices[i];
1581 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1582 		eieio();
1583 		out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1584 		out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1585 		eieio();
1586 	}
1587 }
1588 
1589 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1590 {
1591 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1592 	u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1593 	u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1594 	u64 idx;
1595 	int i;
1596 
1597 	/* Restore, Step 60:
1598 	 *     Restore the following CH: [9,21,23].
1599 	 */
1600 	ch_counts[0] = 1UL;
1601 	ch_counts[1] = csa->spu_chnlcnt_RW[21];
1602 	ch_counts[2] = 1UL;
1603 	for (i = 0; i < 3; i++) {
1604 		idx = ch_indices[i];
1605 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1606 		eieio();
1607 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1608 		eieio();
1609 	}
1610 }
1611 
1612 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1613 {
1614 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1615 
1616 	/* Restore, Step 61:
1617 	 *     Restore the SPU_LSLR register from CSA.
1618 	 */
1619 	out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1620 	eieio();
1621 }
1622 
1623 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1624 {
1625 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1626 
1627 	/* Restore, Step 62:
1628 	 *     Restore the SPU_Cfg register from CSA.
1629 	 */
1630 	out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1631 	eieio();
1632 }
1633 
1634 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1635 {
1636 	/* Restore, Step 63:
1637 	 *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1638 	 *     Not performed by this implementation.
1639 	 */
1640 }
1641 
1642 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1643 {
1644 	struct spu_problem __iomem *prob = spu->problem;
1645 
1646 	/* Restore, Step 64:
1647 	 *     Restore SPU_NPC from CSA.
1648 	 */
1649 	out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1650 	eieio();
1651 }
1652 
1653 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1654 {
1655 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1656 	int i;
1657 
1658 	/* Restore, Step 65:
1659 	 *     Restore MFC_RdSPU_MB from CSA.
1660 	 */
1661 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1662 	eieio();
1663 	out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1664 	for (i = 0; i < 4; i++) {
1665 		out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1666 	}
1667 	eieio();
1668 }
1669 
1670 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1671 {
1672 	struct spu_problem __iomem *prob = spu->problem;
1673 	u32 dummy = 0;
1674 
1675 	/* Restore, Step 66:
1676 	 *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1677 	 *     read from the PPU_MB register.
1678 	 */
1679 	if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1680 		dummy = in_be32(&prob->pu_mb_R);
1681 		eieio();
1682 	}
1683 }
1684 
1685 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1686 {
1687 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1688 	u64 dummy = 0UL;
1689 
1690 	/* Restore, Step 66:
1691 	 *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1692 	 *     read from the PPUINT_MB register.
1693 	 */
1694 	if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1695 		dummy = in_be64(&priv2->puint_mb_R);
1696 		eieio();
1697 		spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1698 		eieio();
1699 	}
1700 }
1701 
1702 static inline void restore_mfc_slbs(struct spu_state *csa, struct spu *spu)
1703 {
1704 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1705 	int i;
1706 
1707 	/* Restore, Step 68:
1708 	 *     If MFC_SR1[R]='1', restore SLBs from CSA.
1709 	 */
1710 	if (csa->priv1.mfc_sr1_RW & MFC_STATE1_RELOCATE_MASK) {
1711 		for (i = 0; i < 8; i++) {
1712 			out_be64(&priv2->slb_index_W, i);
1713 			eieio();
1714 			out_be64(&priv2->slb_esid_RW, csa->slb_esid_RW[i]);
1715 			out_be64(&priv2->slb_vsid_RW, csa->slb_vsid_RW[i]);
1716 			eieio();
1717 		}
1718 		out_be64(&priv2->slb_index_W, csa->priv2.slb_index_W);
1719 		eieio();
1720 	}
1721 }
1722 
1723 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1724 {
1725 	/* Restore, Step 69:
1726 	 *     Restore the MFC_SR1 register from CSA.
1727 	 */
1728 	spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1729 	eieio();
1730 }
1731 
1732 static inline void restore_other_spu_access(struct spu_state *csa,
1733 					    struct spu *spu)
1734 {
1735 	/* Restore, Step 70:
1736 	 *     Restore other SPU mappings to this SPU. TBD.
1737 	 */
1738 }
1739 
1740 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1741 {
1742 	struct spu_problem __iomem *prob = spu->problem;
1743 
1744 	/* Restore, Step 71:
1745 	 *     If CSA.SPU_Status[R]=1 then write
1746 	 *     SPU_RunCntl[R0R1]='01'.
1747 	 */
1748 	if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1749 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1750 		eieio();
1751 	}
1752 }
1753 
1754 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1755 {
1756 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1757 
1758 	/* Restore, Step 72:
1759 	 *    Restore the MFC_CNTL register for the CSA.
1760 	 */
1761 	out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1762 	eieio();
1763 }
1764 
1765 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1766 {
1767 	/* Restore, Step 73:
1768 	 *     Enable user-space access (if provided) to this
1769 	 *     SPU by mapping the virtual pages assigned to
1770 	 *     the SPU memory-mapped I/O (MMIO) for problem
1771 	 *     state. TBD.
1772 	 */
1773 }
1774 
1775 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1776 {
1777 	/* Restore, Step 74:
1778 	 *     Reset the "context switch active" flag.
1779 	 */
1780 	clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1781 	mb();
1782 }
1783 
1784 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1785 {
1786 	/* Restore, Step 75:
1787 	 *     Re-enable SPU interrupts.
1788 	 */
1789 	spin_lock_irq(&spu->register_lock);
1790 	spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1791 	spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1792 	spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1793 	spin_unlock_irq(&spu->register_lock);
1794 }
1795 
1796 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1797 {
1798 	/*
1799 	 * Combined steps 2-18 of SPU context save sequence, which
1800 	 * quiesce the SPU state (disable SPU execution, MFC command
1801 	 * queues, decrementer, SPU interrupts, etc.).
1802 	 *
1803 	 * Returns      0 on success.
1804 	 *              2 if failed step 2.
1805 	 *              6 if failed step 6.
1806 	 */
1807 
1808 	if (check_spu_isolate(prev, spu)) {	/* Step 2. */
1809 		return 2;
1810 	}
1811 	disable_interrupts(prev, spu);	        /* Step 3. */
1812 	set_watchdog_timer(prev, spu);	        /* Step 4. */
1813 	inhibit_user_access(prev, spu);	        /* Step 5. */
1814 	if (check_spu_isolate(prev, spu)) {	/* Step 6. */
1815 		return 6;
1816 	}
1817 	set_switch_pending(prev, spu);	        /* Step 7. */
1818 	save_mfc_cntl(prev, spu);		/* Step 8. */
1819 	save_spu_runcntl(prev, spu);	        /* Step 9. */
1820 	save_mfc_sr1(prev, spu);	        /* Step 10. */
1821 	save_spu_status(prev, spu);	        /* Step 11. */
1822 	save_mfc_decr(prev, spu);	        /* Step 12. */
1823 	halt_mfc_decr(prev, spu);	        /* Step 13. */
1824 	save_timebase(prev, spu);		/* Step 14. */
1825 	remove_other_spu_access(prev, spu);	/* Step 15. */
1826 	do_mfc_mssync(prev, spu);	        /* Step 16. */
1827 	issue_mfc_tlbie(prev, spu);	        /* Step 17. */
1828 	handle_pending_interrupts(prev, spu);	/* Step 18. */
1829 
1830 	return 0;
1831 }
1832 
1833 static void save_csa(struct spu_state *prev, struct spu *spu)
1834 {
1835 	/*
1836 	 * Combine steps 19-44 of SPU context save sequence, which
1837 	 * save regions of the privileged & problem state areas.
1838 	 */
1839 
1840 	save_mfc_queues(prev, spu);	/* Step 19. */
1841 	save_ppu_querymask(prev, spu);	/* Step 20. */
1842 	save_ppu_querytype(prev, spu);	/* Step 21. */
1843 	save_mfc_csr_tsq(prev, spu);	/* Step 22. */
1844 	save_mfc_csr_cmd(prev, spu);	/* Step 23. */
1845 	save_mfc_csr_ato(prev, spu);	/* Step 24. */
1846 	save_mfc_tclass_id(prev, spu);	/* Step 25. */
1847 	set_mfc_tclass_id(prev, spu);	/* Step 26. */
1848 	purge_mfc_queue(prev, spu);	/* Step 27. */
1849 	wait_purge_complete(prev, spu);	/* Step 28. */
1850 	save_mfc_slbs(prev, spu);	/* Step 29. */
1851 	setup_mfc_sr1(prev, spu);	/* Step 30. */
1852 	save_spu_npc(prev, spu);	/* Step 31. */
1853 	save_spu_privcntl(prev, spu);	/* Step 32. */
1854 	reset_spu_privcntl(prev, spu);	/* Step 33. */
1855 	save_spu_lslr(prev, spu);	/* Step 34. */
1856 	reset_spu_lslr(prev, spu);	/* Step 35. */
1857 	save_spu_cfg(prev, spu);	/* Step 36. */
1858 	save_pm_trace(prev, spu);	/* Step 37. */
1859 	save_mfc_rag(prev, spu);	/* Step 38. */
1860 	save_ppu_mb_stat(prev, spu);	/* Step 39. */
1861 	save_ppu_mb(prev, spu);	        /* Step 40. */
1862 	save_ppuint_mb(prev, spu);	/* Step 41. */
1863 	save_ch_part1(prev, spu);	/* Step 42. */
1864 	save_spu_mb(prev, spu);	        /* Step 43. */
1865 	save_mfc_cmd(prev, spu);	/* Step 44. */
1866 	reset_ch(prev, spu);	        /* Step 45. */
1867 }
1868 
1869 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1870 {
1871 	/*
1872 	 * Perform steps 46-57 of SPU context save sequence,
1873 	 * which save regions of the local store and register
1874 	 * file.
1875 	 */
1876 
1877 	resume_mfc_queue(prev, spu);	/* Step 46. */
1878 	setup_mfc_slbs(prev, spu);	/* Step 47. */
1879 	set_switch_active(prev, spu);	/* Step 48. */
1880 	enable_interrupts(prev, spu);	/* Step 49. */
1881 	save_ls_16kb(prev, spu);	/* Step 50. */
1882 	set_spu_npc(prev, spu);	        /* Step 51. */
1883 	set_signot1(prev, spu);		/* Step 52. */
1884 	set_signot2(prev, spu);		/* Step 53. */
1885 	send_save_code(prev, spu);	/* Step 54. */
1886 	set_ppu_querymask(prev, spu);	/* Step 55. */
1887 	wait_tag_complete(prev, spu);	/* Step 56. */
1888 	wait_spu_stopped(prev, spu);	/* Step 57. */
1889 }
1890 
1891 static void harvest(struct spu_state *prev, struct spu *spu)
1892 {
1893 	/*
1894 	 * Perform steps 2-25 of SPU context restore sequence,
1895 	 * which resets an SPU either after a failed save, or
1896 	 * when using SPU for first time.
1897 	 */
1898 
1899 	disable_interrupts(prev, spu);	        /* Step 2.  */
1900 	inhibit_user_access(prev, spu);	        /* Step 3.  */
1901 	terminate_spu_app(prev, spu);	        /* Step 4.  */
1902 	set_switch_pending(prev, spu);	        /* Step 5.  */
1903 	remove_other_spu_access(prev, spu);	/* Step 6.  */
1904 	suspend_mfc(prev, spu);	                /* Step 7.  */
1905 	wait_suspend_mfc_complete(prev, spu);	/* Step 8.  */
1906 	if (!suspend_spe(prev, spu))	        /* Step 9.  */
1907 		clear_spu_status(prev, spu);	/* Step 10. */
1908 	do_mfc_mssync(prev, spu);	        /* Step 11. */
1909 	issue_mfc_tlbie(prev, spu);	        /* Step 12. */
1910 	handle_pending_interrupts(prev, spu);	/* Step 13. */
1911 	purge_mfc_queue(prev, spu);	        /* Step 14. */
1912 	wait_purge_complete(prev, spu);	        /* Step 15. */
1913 	reset_spu_privcntl(prev, spu);	        /* Step 16. */
1914 	reset_spu_lslr(prev, spu);              /* Step 17. */
1915 	setup_mfc_sr1(prev, spu);	        /* Step 18. */
1916 	invalidate_slbs(prev, spu);	        /* Step 19. */
1917 	reset_ch_part1(prev, spu);	        /* Step 20. */
1918 	reset_ch_part2(prev, spu);	        /* Step 21. */
1919 	enable_interrupts(prev, spu);	        /* Step 22. */
1920 	set_switch_active(prev, spu);	        /* Step 23. */
1921 	set_mfc_tclass_id(prev, spu);	        /* Step 24. */
1922 	resume_mfc_queue(prev, spu);	        /* Step 25. */
1923 }
1924 
1925 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1926 {
1927 	/*
1928 	 * Perform steps 26-40 of SPU context restore sequence,
1929 	 * which restores regions of the local store and register
1930 	 * file.
1931 	 */
1932 
1933 	set_watchdog_timer(next, spu);	        /* Step 26. */
1934 	setup_spu_status_part1(next, spu);	/* Step 27. */
1935 	setup_spu_status_part2(next, spu);	/* Step 28. */
1936 	restore_mfc_rag(next, spu);	        /* Step 29. */
1937 	setup_mfc_slbs(next, spu);	        /* Step 30. */
1938 	set_spu_npc(next, spu);	                /* Step 31. */
1939 	set_signot1(next, spu);	                /* Step 32. */
1940 	set_signot2(next, spu);	                /* Step 33. */
1941 	setup_decr(next, spu);	                /* Step 34. */
1942 	setup_ppu_mb(next, spu);	        /* Step 35. */
1943 	setup_ppuint_mb(next, spu);	        /* Step 36. */
1944 	send_restore_code(next, spu);	        /* Step 37. */
1945 	set_ppu_querymask(next, spu);	        /* Step 38. */
1946 	wait_tag_complete(next, spu);	        /* Step 39. */
1947 	wait_spu_stopped(next, spu);	        /* Step 40. */
1948 }
1949 
1950 static void restore_csa(struct spu_state *next, struct spu *spu)
1951 {
1952 	/*
1953 	 * Combine steps 41-76 of SPU context restore sequence, which
1954 	 * restore regions of the privileged & problem state areas.
1955 	 */
1956 
1957 	restore_spu_privcntl(next, spu);	/* Step 41. */
1958 	restore_status_part1(next, spu);	/* Step 42. */
1959 	restore_status_part2(next, spu);	/* Step 43. */
1960 	restore_ls_16kb(next, spu);	        /* Step 44. */
1961 	wait_tag_complete(next, spu);	        /* Step 45. */
1962 	suspend_mfc(next, spu);	                /* Step 46. */
1963 	wait_suspend_mfc_complete(next, spu);	/* Step 47. */
1964 	issue_mfc_tlbie(next, spu);	        /* Step 48. */
1965 	clear_interrupts(next, spu);	        /* Step 49. */
1966 	restore_mfc_queues(next, spu);	        /* Step 50. */
1967 	restore_ppu_querymask(next, spu);	/* Step 51. */
1968 	restore_ppu_querytype(next, spu);	/* Step 52. */
1969 	restore_mfc_csr_tsq(next, spu);	        /* Step 53. */
1970 	restore_mfc_csr_cmd(next, spu);	        /* Step 54. */
1971 	restore_mfc_csr_ato(next, spu);	        /* Step 55. */
1972 	restore_mfc_tclass_id(next, spu);	/* Step 56. */
1973 	set_llr_event(next, spu);	        /* Step 57. */
1974 	restore_decr_wrapped(next, spu);	/* Step 58. */
1975 	restore_ch_part1(next, spu);	        /* Step 59. */
1976 	restore_ch_part2(next, spu);	        /* Step 60. */
1977 	restore_spu_lslr(next, spu);	        /* Step 61. */
1978 	restore_spu_cfg(next, spu);	        /* Step 62. */
1979 	restore_pm_trace(next, spu);	        /* Step 63. */
1980 	restore_spu_npc(next, spu);	        /* Step 64. */
1981 	restore_spu_mb(next, spu);	        /* Step 65. */
1982 	check_ppu_mb_stat(next, spu);	        /* Step 66. */
1983 	check_ppuint_mb_stat(next, spu);	/* Step 67. */
1984 	restore_mfc_slbs(next, spu);	        /* Step 68. */
1985 	restore_mfc_sr1(next, spu);	        /* Step 69. */
1986 	restore_other_spu_access(next, spu);	/* Step 70. */
1987 	restore_spu_runcntl(next, spu);	        /* Step 71. */
1988 	restore_mfc_cntl(next, spu);	        /* Step 72. */
1989 	enable_user_access(next, spu);	        /* Step 73. */
1990 	reset_switch_active(next, spu);	        /* Step 74. */
1991 	reenable_interrupts(next, spu);	        /* Step 75. */
1992 }
1993 
1994 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
1995 {
1996 	int rc;
1997 
1998 	/*
1999 	 * SPU context save can be broken into three phases:
2000 	 *
2001 	 *     (a) quiesce [steps 2-16].
2002 	 *     (b) save of CSA, performed by PPE [steps 17-42]
2003 	 *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2004 	 *
2005 	 * Returns      0 on success.
2006 	 *              2,6 if failed to quiece SPU
2007 	 *              53 if SPU-side of save failed.
2008 	 */
2009 
2010 	rc = quiece_spu(prev, spu);	        /* Steps 2-16. */
2011 	switch (rc) {
2012 	default:
2013 	case 2:
2014 	case 6:
2015 		harvest(prev, spu);
2016 		return rc;
2017 		break;
2018 	case 0:
2019 		break;
2020 	}
2021 	save_csa(prev, spu);	                /* Steps 17-43. */
2022 	save_lscsa(prev, spu);	                /* Steps 44-53. */
2023 	return check_save_status(prev, spu);	/* Step 54.     */
2024 }
2025 
2026 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2027 {
2028 	int rc;
2029 
2030 	/*
2031 	 * SPU context restore can be broken into three phases:
2032 	 *
2033 	 *    (a) harvest (or reset) SPU [steps 2-24].
2034 	 *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2035 	 *    (c) restore CSA [steps 41-76], performed by PPE.
2036 	 *
2037 	 * The 'harvest' step is not performed here, but rather
2038 	 * as needed below.
2039 	 */
2040 
2041 	restore_lscsa(next, spu);	        /* Steps 24-39. */
2042 	rc = check_restore_status(next, spu);	/* Step 40.     */
2043 	switch (rc) {
2044 	default:
2045 		/* Failed. Return now. */
2046 		return rc;
2047 		break;
2048 	case 0:
2049 		/* Fall through to next step. */
2050 		break;
2051 	}
2052 	restore_csa(next, spu);
2053 
2054 	return 0;
2055 }
2056 
2057 /**
2058  * spu_save - SPU context save, with locking.
2059  * @prev: pointer to SPU context save area, to be saved.
2060  * @spu: pointer to SPU iomem structure.
2061  *
2062  * Acquire locks, perform the save operation then return.
2063  */
2064 int spu_save(struct spu_state *prev, struct spu *spu)
2065 {
2066 	int rc;
2067 
2068 	acquire_spu_lock(spu);	        /* Step 1.     */
2069 	rc = __do_spu_save(prev, spu);	/* Steps 2-53. */
2070 	release_spu_lock(spu);
2071 	if (rc) {
2072 		panic("%s failed on SPU[%d], rc=%d.\n",
2073 		      __func__, spu->number, rc);
2074 	}
2075 	return rc;
2076 }
2077 
2078 /**
2079  * spu_restore - SPU context restore, with harvest and locking.
2080  * @new: pointer to SPU context save area, to be restored.
2081  * @spu: pointer to SPU iomem structure.
2082  *
2083  * Perform harvest + restore, as we may not be coming
2084  * from a previous succesful save operation, and the
2085  * hardware state is unknown.
2086  */
2087 int spu_restore(struct spu_state *new, struct spu *spu)
2088 {
2089 	int rc;
2090 
2091 	acquire_spu_lock(spu);
2092 	harvest(NULL, spu);
2093 	spu->stop_code = 0;
2094 	spu->dar = 0;
2095 	spu->dsisr = 0;
2096 	spu->slb_replace = 0;
2097 	spu->class_0_pending = 0;
2098 	rc = __do_spu_restore(new, spu);
2099 	release_spu_lock(spu);
2100 	if (rc) {
2101 		panic("%s failed on SPU[%d] rc=%d.\n",
2102 		       __func__, spu->number, rc);
2103 	}
2104 	return rc;
2105 }
2106 
2107 /**
2108  * spu_harvest - SPU harvest (reset) operation
2109  * @spu: pointer to SPU iomem structure.
2110  *
2111  * Perform SPU harvest (reset) operation.
2112  */
2113 void spu_harvest(struct spu *spu)
2114 {
2115 	acquire_spu_lock(spu);
2116 	harvest(NULL, spu);
2117 	release_spu_lock(spu);
2118 }
2119 
2120 static void init_prob(struct spu_state *csa)
2121 {
2122 	csa->spu_chnlcnt_RW[9] = 1;
2123 	csa->spu_chnlcnt_RW[21] = 16;
2124 	csa->spu_chnlcnt_RW[23] = 1;
2125 	csa->spu_chnlcnt_RW[28] = 1;
2126 	csa->spu_chnlcnt_RW[30] = 1;
2127 	csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2128 }
2129 
2130 static void init_priv1(struct spu_state *csa)
2131 {
2132 	/* Enable decode, relocate, tlbie response, master runcntl. */
2133 	csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2134 	    MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2135 	    MFC_STATE1_PROBLEM_STATE_MASK |
2136 	    MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2137 
2138 	/* Set storage description.  */
2139 	csa->priv1.mfc_sdr_RW = mfspr(SPRN_SDR1);
2140 
2141 	/* Enable OS-specific set of interrupts. */
2142 	csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2143 	    CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2144 	    CLASS0_ENABLE_SPU_ERROR_INTR;
2145 	csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2146 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
2147 	csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2148 	    CLASS2_ENABLE_SPU_HALT_INTR |
2149 	    CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2150 }
2151 
2152 static void init_priv2(struct spu_state *csa)
2153 {
2154 	csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2155 	csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2156 	    MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2157 	    MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2158 }
2159 
2160 /**
2161  * spu_alloc_csa - allocate and initialize an SPU context save area.
2162  *
2163  * Allocate and initialize the contents of an SPU context save area.
2164  * This includes enabling address translation, interrupt masks, etc.,
2165  * as appropriate for the given OS environment.
2166  *
2167  * Note that storage for the 'lscsa' is allocated separately,
2168  * as it is by far the largest of the context save regions,
2169  * and may need to be pinned or otherwise specially aligned.
2170  */
2171 void spu_init_csa(struct spu_state *csa)
2172 {
2173 	struct spu_lscsa *lscsa;
2174 	unsigned char *p;
2175 
2176 	if (!csa)
2177 		return;
2178 	memset(csa, 0, sizeof(struct spu_state));
2179 
2180 	lscsa = vmalloc(sizeof(struct spu_lscsa));
2181 	if (!lscsa)
2182 		return;
2183 
2184 	memset(lscsa, 0, sizeof(struct spu_lscsa));
2185 	csa->lscsa = lscsa;
2186 	csa->register_lock = SPIN_LOCK_UNLOCKED;
2187 
2188 	/* Set LS pages reserved to allow for user-space mapping. */
2189 	for (p = lscsa->ls; p < lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2190 		SetPageReserved(vmalloc_to_page(p));
2191 
2192 	init_prob(csa);
2193 	init_priv1(csa);
2194 	init_priv2(csa);
2195 }
2196 
2197 void spu_fini_csa(struct spu_state *csa)
2198 {
2199 	/* Clear reserved bit before vfree. */
2200 	unsigned char *p;
2201 	for (p = csa->lscsa->ls; p < csa->lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2202 		ClearPageReserved(vmalloc_to_page(p));
2203 
2204 	vfree(csa->lscsa);
2205 }
2206