1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* sched.c - SPU scheduler. 3 * 4 * Copyright (C) IBM 2005 5 * Author: Mark Nutter <mnutter@us.ibm.com> 6 * 7 * 2006-03-31 NUMA domains added. 8 */ 9 10 #undef DEBUG 11 12 #include <linux/errno.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/rt.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <linux/completion.h> 20 #include <linux/vmalloc.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/numa.h> 25 #include <linux/mutex.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/proc_fs.h> 30 #include <linux/seq_file.h> 31 32 #include <asm/io.h> 33 #include <asm/mmu_context.h> 34 #include <asm/spu.h> 35 #include <asm/spu_csa.h> 36 #include <asm/spu_priv1.h> 37 #include "spufs.h" 38 #define CREATE_TRACE_POINTS 39 #include "sputrace.h" 40 41 struct spu_prio_array { 42 DECLARE_BITMAP(bitmap, MAX_PRIO); 43 struct list_head runq[MAX_PRIO]; 44 spinlock_t runq_lock; 45 int nr_waiting; 46 }; 47 48 static unsigned long spu_avenrun[3]; 49 static struct spu_prio_array *spu_prio; 50 static struct task_struct *spusched_task; 51 static struct timer_list spusched_timer; 52 static struct timer_list spuloadavg_timer; 53 54 /* 55 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). 56 */ 57 #define NORMAL_PRIO 120 58 59 /* 60 * Frequency of the spu scheduler tick. By default we do one SPU scheduler 61 * tick for every 10 CPU scheduler ticks. 62 */ 63 #define SPUSCHED_TICK (10) 64 65 /* 66 * These are the 'tuning knobs' of the scheduler: 67 * 68 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is 69 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs. 70 */ 71 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) 72 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) 73 74 #define SCALE_PRIO(x, prio) \ 75 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE) 76 77 /* 78 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values: 79 * [800ms ... 100ms ... 5ms] 80 * 81 * The higher a thread's priority, the bigger timeslices 82 * it gets during one round of execution. But even the lowest 83 * priority thread gets MIN_TIMESLICE worth of execution time. 84 */ 85 void spu_set_timeslice(struct spu_context *ctx) 86 { 87 if (ctx->prio < NORMAL_PRIO) 88 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); 89 else 90 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); 91 } 92 93 /* 94 * Update scheduling information from the owning thread. 95 */ 96 void __spu_update_sched_info(struct spu_context *ctx) 97 { 98 /* 99 * assert that the context is not on the runqueue, so it is safe 100 * to change its scheduling parameters. 101 */ 102 BUG_ON(!list_empty(&ctx->rq)); 103 104 /* 105 * 32-Bit assignments are atomic on powerpc, and we don't care about 106 * memory ordering here because retrieving the controlling thread is 107 * per definition racy. 108 */ 109 ctx->tid = current->pid; 110 111 /* 112 * We do our own priority calculations, so we normally want 113 * ->static_prio to start with. Unfortunately this field 114 * contains junk for threads with a realtime scheduling 115 * policy so we have to look at ->prio in this case. 116 */ 117 if (rt_prio(current->prio)) 118 ctx->prio = current->prio; 119 else 120 ctx->prio = current->static_prio; 121 ctx->policy = current->policy; 122 123 /* 124 * TO DO: the context may be loaded, so we may need to activate 125 * it again on a different node. But it shouldn't hurt anything 126 * to update its parameters, because we know that the scheduler 127 * is not actively looking at this field, since it is not on the 128 * runqueue. The context will be rescheduled on the proper node 129 * if it is timesliced or preempted. 130 */ 131 cpumask_copy(&ctx->cpus_allowed, ¤t->cpus_allowed); 132 133 /* Save the current cpu id for spu interrupt routing. */ 134 ctx->last_ran = raw_smp_processor_id(); 135 } 136 137 void spu_update_sched_info(struct spu_context *ctx) 138 { 139 int node; 140 141 if (ctx->state == SPU_STATE_RUNNABLE) { 142 node = ctx->spu->node; 143 144 /* 145 * Take list_mutex to sync with find_victim(). 146 */ 147 mutex_lock(&cbe_spu_info[node].list_mutex); 148 __spu_update_sched_info(ctx); 149 mutex_unlock(&cbe_spu_info[node].list_mutex); 150 } else { 151 __spu_update_sched_info(ctx); 152 } 153 } 154 155 static int __node_allowed(struct spu_context *ctx, int node) 156 { 157 if (nr_cpus_node(node)) { 158 const struct cpumask *mask = cpumask_of_node(node); 159 160 if (cpumask_intersects(mask, &ctx->cpus_allowed)) 161 return 1; 162 } 163 164 return 0; 165 } 166 167 static int node_allowed(struct spu_context *ctx, int node) 168 { 169 int rval; 170 171 spin_lock(&spu_prio->runq_lock); 172 rval = __node_allowed(ctx, node); 173 spin_unlock(&spu_prio->runq_lock); 174 175 return rval; 176 } 177 178 void do_notify_spus_active(void) 179 { 180 int node; 181 182 /* 183 * Wake up the active spu_contexts. 184 * 185 * When the awakened processes see their "notify_active" flag is set, 186 * they will call spu_switch_notify(). 187 */ 188 for_each_online_node(node) { 189 struct spu *spu; 190 191 mutex_lock(&cbe_spu_info[node].list_mutex); 192 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 193 if (spu->alloc_state != SPU_FREE) { 194 struct spu_context *ctx = spu->ctx; 195 set_bit(SPU_SCHED_NOTIFY_ACTIVE, 196 &ctx->sched_flags); 197 mb(); 198 wake_up_all(&ctx->stop_wq); 199 } 200 } 201 mutex_unlock(&cbe_spu_info[node].list_mutex); 202 } 203 } 204 205 /** 206 * spu_bind_context - bind spu context to physical spu 207 * @spu: physical spu to bind to 208 * @ctx: context to bind 209 */ 210 static void spu_bind_context(struct spu *spu, struct spu_context *ctx) 211 { 212 spu_context_trace(spu_bind_context__enter, ctx, spu); 213 214 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 215 216 if (ctx->flags & SPU_CREATE_NOSCHED) 217 atomic_inc(&cbe_spu_info[spu->node].reserved_spus); 218 219 ctx->stats.slb_flt_base = spu->stats.slb_flt; 220 ctx->stats.class2_intr_base = spu->stats.class2_intr; 221 222 spu_associate_mm(spu, ctx->owner); 223 224 spin_lock_irq(&spu->register_lock); 225 spu->ctx = ctx; 226 spu->flags = 0; 227 ctx->spu = spu; 228 ctx->ops = &spu_hw_ops; 229 spu->pid = current->pid; 230 spu->tgid = current->tgid; 231 spu->ibox_callback = spufs_ibox_callback; 232 spu->wbox_callback = spufs_wbox_callback; 233 spu->stop_callback = spufs_stop_callback; 234 spu->mfc_callback = spufs_mfc_callback; 235 spin_unlock_irq(&spu->register_lock); 236 237 spu_unmap_mappings(ctx); 238 239 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0); 240 spu_restore(&ctx->csa, spu); 241 spu->timestamp = jiffies; 242 spu_switch_notify(spu, ctx); 243 ctx->state = SPU_STATE_RUNNABLE; 244 245 spuctx_switch_state(ctx, SPU_UTIL_USER); 246 } 247 248 /* 249 * Must be used with the list_mutex held. 250 */ 251 static inline int sched_spu(struct spu *spu) 252 { 253 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); 254 255 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); 256 } 257 258 static void aff_merge_remaining_ctxs(struct spu_gang *gang) 259 { 260 struct spu_context *ctx; 261 262 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { 263 if (list_empty(&ctx->aff_list)) 264 list_add(&ctx->aff_list, &gang->aff_list_head); 265 } 266 gang->aff_flags |= AFF_MERGED; 267 } 268 269 static void aff_set_offsets(struct spu_gang *gang) 270 { 271 struct spu_context *ctx; 272 int offset; 273 274 offset = -1; 275 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 276 aff_list) { 277 if (&ctx->aff_list == &gang->aff_list_head) 278 break; 279 ctx->aff_offset = offset--; 280 } 281 282 offset = 0; 283 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { 284 if (&ctx->aff_list == &gang->aff_list_head) 285 break; 286 ctx->aff_offset = offset++; 287 } 288 289 gang->aff_flags |= AFF_OFFSETS_SET; 290 } 291 292 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, 293 int group_size, int lowest_offset) 294 { 295 struct spu *spu; 296 int node, n; 297 298 /* 299 * TODO: A better algorithm could be used to find a good spu to be 300 * used as reference location for the ctxs chain. 301 */ 302 node = cpu_to_node(raw_smp_processor_id()); 303 for (n = 0; n < MAX_NUMNODES; n++, node++) { 304 /* 305 * "available_spus" counts how many spus are not potentially 306 * going to be used by other affinity gangs whose reference 307 * context is already in place. Although this code seeks to 308 * avoid having affinity gangs with a summed amount of 309 * contexts bigger than the amount of spus in the node, 310 * this may happen sporadically. In this case, available_spus 311 * becomes negative, which is harmless. 312 */ 313 int available_spus; 314 315 node = (node < MAX_NUMNODES) ? node : 0; 316 if (!node_allowed(ctx, node)) 317 continue; 318 319 available_spus = 0; 320 mutex_lock(&cbe_spu_info[node].list_mutex); 321 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 322 if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset 323 && spu->ctx->gang->aff_ref_spu) 324 available_spus -= spu->ctx->gang->contexts; 325 available_spus++; 326 } 327 if (available_spus < ctx->gang->contexts) { 328 mutex_unlock(&cbe_spu_info[node].list_mutex); 329 continue; 330 } 331 332 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 333 if ((!mem_aff || spu->has_mem_affinity) && 334 sched_spu(spu)) { 335 mutex_unlock(&cbe_spu_info[node].list_mutex); 336 return spu; 337 } 338 } 339 mutex_unlock(&cbe_spu_info[node].list_mutex); 340 } 341 return NULL; 342 } 343 344 static void aff_set_ref_point_location(struct spu_gang *gang) 345 { 346 int mem_aff, gs, lowest_offset; 347 struct spu_context *ctx; 348 struct spu *tmp; 349 350 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; 351 lowest_offset = 0; 352 gs = 0; 353 354 list_for_each_entry(tmp, &gang->aff_list_head, aff_list) 355 gs++; 356 357 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 358 aff_list) { 359 if (&ctx->aff_list == &gang->aff_list_head) 360 break; 361 lowest_offset = ctx->aff_offset; 362 } 363 364 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, 365 lowest_offset); 366 } 367 368 static struct spu *ctx_location(struct spu *ref, int offset, int node) 369 { 370 struct spu *spu; 371 372 spu = NULL; 373 if (offset >= 0) { 374 list_for_each_entry(spu, ref->aff_list.prev, aff_list) { 375 BUG_ON(spu->node != node); 376 if (offset == 0) 377 break; 378 if (sched_spu(spu)) 379 offset--; 380 } 381 } else { 382 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { 383 BUG_ON(spu->node != node); 384 if (offset == 0) 385 break; 386 if (sched_spu(spu)) 387 offset++; 388 } 389 } 390 391 return spu; 392 } 393 394 /* 395 * affinity_check is called each time a context is going to be scheduled. 396 * It returns the spu ptr on which the context must run. 397 */ 398 static int has_affinity(struct spu_context *ctx) 399 { 400 struct spu_gang *gang = ctx->gang; 401 402 if (list_empty(&ctx->aff_list)) 403 return 0; 404 405 if (atomic_read(&ctx->gang->aff_sched_count) == 0) 406 ctx->gang->aff_ref_spu = NULL; 407 408 if (!gang->aff_ref_spu) { 409 if (!(gang->aff_flags & AFF_MERGED)) 410 aff_merge_remaining_ctxs(gang); 411 if (!(gang->aff_flags & AFF_OFFSETS_SET)) 412 aff_set_offsets(gang); 413 aff_set_ref_point_location(gang); 414 } 415 416 return gang->aff_ref_spu != NULL; 417 } 418 419 /** 420 * spu_unbind_context - unbind spu context from physical spu 421 * @spu: physical spu to unbind from 422 * @ctx: context to unbind 423 */ 424 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) 425 { 426 u32 status; 427 428 spu_context_trace(spu_unbind_context__enter, ctx, spu); 429 430 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 431 432 if (spu->ctx->flags & SPU_CREATE_NOSCHED) 433 atomic_dec(&cbe_spu_info[spu->node].reserved_spus); 434 435 if (ctx->gang) 436 /* 437 * If ctx->gang->aff_sched_count is positive, SPU affinity is 438 * being considered in this gang. Using atomic_dec_if_positive 439 * allow us to skip an explicit check for affinity in this gang 440 */ 441 atomic_dec_if_positive(&ctx->gang->aff_sched_count); 442 443 spu_switch_notify(spu, NULL); 444 spu_unmap_mappings(ctx); 445 spu_save(&ctx->csa, spu); 446 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0); 447 448 spin_lock_irq(&spu->register_lock); 449 spu->timestamp = jiffies; 450 ctx->state = SPU_STATE_SAVED; 451 spu->ibox_callback = NULL; 452 spu->wbox_callback = NULL; 453 spu->stop_callback = NULL; 454 spu->mfc_callback = NULL; 455 spu->pid = 0; 456 spu->tgid = 0; 457 ctx->ops = &spu_backing_ops; 458 spu->flags = 0; 459 spu->ctx = NULL; 460 spin_unlock_irq(&spu->register_lock); 461 462 spu_associate_mm(spu, NULL); 463 464 ctx->stats.slb_flt += 465 (spu->stats.slb_flt - ctx->stats.slb_flt_base); 466 ctx->stats.class2_intr += 467 (spu->stats.class2_intr - ctx->stats.class2_intr_base); 468 469 /* This maps the underlying spu state to idle */ 470 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); 471 ctx->spu = NULL; 472 473 if (spu_stopped(ctx, &status)) 474 wake_up_all(&ctx->stop_wq); 475 } 476 477 /** 478 * spu_add_to_rq - add a context to the runqueue 479 * @ctx: context to add 480 */ 481 static void __spu_add_to_rq(struct spu_context *ctx) 482 { 483 /* 484 * Unfortunately this code path can be called from multiple threads 485 * on behalf of a single context due to the way the problem state 486 * mmap support works. 487 * 488 * Fortunately we need to wake up all these threads at the same time 489 * and can simply skip the runqueue addition for every but the first 490 * thread getting into this codepath. 491 * 492 * It's still quite hacky, and long-term we should proxy all other 493 * threads through the owner thread so that spu_run is in control 494 * of all the scheduling activity for a given context. 495 */ 496 if (list_empty(&ctx->rq)) { 497 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); 498 set_bit(ctx->prio, spu_prio->bitmap); 499 if (!spu_prio->nr_waiting++) 500 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 501 } 502 } 503 504 static void spu_add_to_rq(struct spu_context *ctx) 505 { 506 spin_lock(&spu_prio->runq_lock); 507 __spu_add_to_rq(ctx); 508 spin_unlock(&spu_prio->runq_lock); 509 } 510 511 static void __spu_del_from_rq(struct spu_context *ctx) 512 { 513 int prio = ctx->prio; 514 515 if (!list_empty(&ctx->rq)) { 516 if (!--spu_prio->nr_waiting) 517 del_timer(&spusched_timer); 518 list_del_init(&ctx->rq); 519 520 if (list_empty(&spu_prio->runq[prio])) 521 clear_bit(prio, spu_prio->bitmap); 522 } 523 } 524 525 void spu_del_from_rq(struct spu_context *ctx) 526 { 527 spin_lock(&spu_prio->runq_lock); 528 __spu_del_from_rq(ctx); 529 spin_unlock(&spu_prio->runq_lock); 530 } 531 532 static void spu_prio_wait(struct spu_context *ctx) 533 { 534 DEFINE_WAIT(wait); 535 536 /* 537 * The caller must explicitly wait for a context to be loaded 538 * if the nosched flag is set. If NOSCHED is not set, the caller 539 * queues the context and waits for an spu event or error. 540 */ 541 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED)); 542 543 spin_lock(&spu_prio->runq_lock); 544 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); 545 if (!signal_pending(current)) { 546 __spu_add_to_rq(ctx); 547 spin_unlock(&spu_prio->runq_lock); 548 mutex_unlock(&ctx->state_mutex); 549 schedule(); 550 mutex_lock(&ctx->state_mutex); 551 spin_lock(&spu_prio->runq_lock); 552 __spu_del_from_rq(ctx); 553 } 554 spin_unlock(&spu_prio->runq_lock); 555 __set_current_state(TASK_RUNNING); 556 remove_wait_queue(&ctx->stop_wq, &wait); 557 } 558 559 static struct spu *spu_get_idle(struct spu_context *ctx) 560 { 561 struct spu *spu, *aff_ref_spu; 562 int node, n; 563 564 spu_context_nospu_trace(spu_get_idle__enter, ctx); 565 566 if (ctx->gang) { 567 mutex_lock(&ctx->gang->aff_mutex); 568 if (has_affinity(ctx)) { 569 aff_ref_spu = ctx->gang->aff_ref_spu; 570 atomic_inc(&ctx->gang->aff_sched_count); 571 mutex_unlock(&ctx->gang->aff_mutex); 572 node = aff_ref_spu->node; 573 574 mutex_lock(&cbe_spu_info[node].list_mutex); 575 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node); 576 if (spu && spu->alloc_state == SPU_FREE) 577 goto found; 578 mutex_unlock(&cbe_spu_info[node].list_mutex); 579 580 atomic_dec(&ctx->gang->aff_sched_count); 581 goto not_found; 582 } 583 mutex_unlock(&ctx->gang->aff_mutex); 584 } 585 node = cpu_to_node(raw_smp_processor_id()); 586 for (n = 0; n < MAX_NUMNODES; n++, node++) { 587 node = (node < MAX_NUMNODES) ? node : 0; 588 if (!node_allowed(ctx, node)) 589 continue; 590 591 mutex_lock(&cbe_spu_info[node].list_mutex); 592 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 593 if (spu->alloc_state == SPU_FREE) 594 goto found; 595 } 596 mutex_unlock(&cbe_spu_info[node].list_mutex); 597 } 598 599 not_found: 600 spu_context_nospu_trace(spu_get_idle__not_found, ctx); 601 return NULL; 602 603 found: 604 spu->alloc_state = SPU_USED; 605 mutex_unlock(&cbe_spu_info[node].list_mutex); 606 spu_context_trace(spu_get_idle__found, ctx, spu); 607 spu_init_channels(spu); 608 return spu; 609 } 610 611 /** 612 * find_victim - find a lower priority context to preempt 613 * @ctx: candidate context for running 614 * 615 * Returns the freed physical spu to run the new context on. 616 */ 617 static struct spu *find_victim(struct spu_context *ctx) 618 { 619 struct spu_context *victim = NULL; 620 struct spu *spu; 621 int node, n; 622 623 spu_context_nospu_trace(spu_find_victim__enter, ctx); 624 625 /* 626 * Look for a possible preemption candidate on the local node first. 627 * If there is no candidate look at the other nodes. This isn't 628 * exactly fair, but so far the whole spu scheduler tries to keep 629 * a strong node affinity. We might want to fine-tune this in 630 * the future. 631 */ 632 restart: 633 node = cpu_to_node(raw_smp_processor_id()); 634 for (n = 0; n < MAX_NUMNODES; n++, node++) { 635 node = (node < MAX_NUMNODES) ? node : 0; 636 if (!node_allowed(ctx, node)) 637 continue; 638 639 mutex_lock(&cbe_spu_info[node].list_mutex); 640 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 641 struct spu_context *tmp = spu->ctx; 642 643 if (tmp && tmp->prio > ctx->prio && 644 !(tmp->flags & SPU_CREATE_NOSCHED) && 645 (!victim || tmp->prio > victim->prio)) { 646 victim = spu->ctx; 647 } 648 } 649 if (victim) 650 get_spu_context(victim); 651 mutex_unlock(&cbe_spu_info[node].list_mutex); 652 653 if (victim) { 654 /* 655 * This nests ctx->state_mutex, but we always lock 656 * higher priority contexts before lower priority 657 * ones, so this is safe until we introduce 658 * priority inheritance schemes. 659 * 660 * XXX if the highest priority context is locked, 661 * this can loop a long time. Might be better to 662 * look at another context or give up after X retries. 663 */ 664 if (!mutex_trylock(&victim->state_mutex)) { 665 put_spu_context(victim); 666 victim = NULL; 667 goto restart; 668 } 669 670 spu = victim->spu; 671 if (!spu || victim->prio <= ctx->prio) { 672 /* 673 * This race can happen because we've dropped 674 * the active list mutex. Not a problem, just 675 * restart the search. 676 */ 677 mutex_unlock(&victim->state_mutex); 678 put_spu_context(victim); 679 victim = NULL; 680 goto restart; 681 } 682 683 spu_context_trace(__spu_deactivate__unload, ctx, spu); 684 685 mutex_lock(&cbe_spu_info[node].list_mutex); 686 cbe_spu_info[node].nr_active--; 687 spu_unbind_context(spu, victim); 688 mutex_unlock(&cbe_spu_info[node].list_mutex); 689 690 victim->stats.invol_ctx_switch++; 691 spu->stats.invol_ctx_switch++; 692 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags)) 693 spu_add_to_rq(victim); 694 695 mutex_unlock(&victim->state_mutex); 696 put_spu_context(victim); 697 698 return spu; 699 } 700 } 701 702 return NULL; 703 } 704 705 static void __spu_schedule(struct spu *spu, struct spu_context *ctx) 706 { 707 int node = spu->node; 708 int success = 0; 709 710 spu_set_timeslice(ctx); 711 712 mutex_lock(&cbe_spu_info[node].list_mutex); 713 if (spu->ctx == NULL) { 714 spu_bind_context(spu, ctx); 715 cbe_spu_info[node].nr_active++; 716 spu->alloc_state = SPU_USED; 717 success = 1; 718 } 719 mutex_unlock(&cbe_spu_info[node].list_mutex); 720 721 if (success) 722 wake_up_all(&ctx->run_wq); 723 else 724 spu_add_to_rq(ctx); 725 } 726 727 static void spu_schedule(struct spu *spu, struct spu_context *ctx) 728 { 729 /* not a candidate for interruptible because it's called either 730 from the scheduler thread or from spu_deactivate */ 731 mutex_lock(&ctx->state_mutex); 732 if (ctx->state == SPU_STATE_SAVED) 733 __spu_schedule(spu, ctx); 734 spu_release(ctx); 735 } 736 737 /** 738 * spu_unschedule - remove a context from a spu, and possibly release it. 739 * @spu: The SPU to unschedule from 740 * @ctx: The context currently scheduled on the SPU 741 * @free_spu Whether to free the SPU for other contexts 742 * 743 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the 744 * SPU is made available for other contexts (ie, may be returned by 745 * spu_get_idle). If this is zero, the caller is expected to schedule another 746 * context to this spu. 747 * 748 * Should be called with ctx->state_mutex held. 749 */ 750 static void spu_unschedule(struct spu *spu, struct spu_context *ctx, 751 int free_spu) 752 { 753 int node = spu->node; 754 755 mutex_lock(&cbe_spu_info[node].list_mutex); 756 cbe_spu_info[node].nr_active--; 757 if (free_spu) 758 spu->alloc_state = SPU_FREE; 759 spu_unbind_context(spu, ctx); 760 ctx->stats.invol_ctx_switch++; 761 spu->stats.invol_ctx_switch++; 762 mutex_unlock(&cbe_spu_info[node].list_mutex); 763 } 764 765 /** 766 * spu_activate - find a free spu for a context and execute it 767 * @ctx: spu context to schedule 768 * @flags: flags (currently ignored) 769 * 770 * Tries to find a free spu to run @ctx. If no free spu is available 771 * add the context to the runqueue so it gets woken up once an spu 772 * is available. 773 */ 774 int spu_activate(struct spu_context *ctx, unsigned long flags) 775 { 776 struct spu *spu; 777 778 /* 779 * If there are multiple threads waiting for a single context 780 * only one actually binds the context while the others will 781 * only be able to acquire the state_mutex once the context 782 * already is in runnable state. 783 */ 784 if (ctx->spu) 785 return 0; 786 787 spu_activate_top: 788 if (signal_pending(current)) 789 return -ERESTARTSYS; 790 791 spu = spu_get_idle(ctx); 792 /* 793 * If this is a realtime thread we try to get it running by 794 * preempting a lower priority thread. 795 */ 796 if (!spu && rt_prio(ctx->prio)) 797 spu = find_victim(ctx); 798 if (spu) { 799 unsigned long runcntl; 800 801 runcntl = ctx->ops->runcntl_read(ctx); 802 __spu_schedule(spu, ctx); 803 if (runcntl & SPU_RUNCNTL_RUNNABLE) 804 spuctx_switch_state(ctx, SPU_UTIL_USER); 805 806 return 0; 807 } 808 809 if (ctx->flags & SPU_CREATE_NOSCHED) { 810 spu_prio_wait(ctx); 811 goto spu_activate_top; 812 } 813 814 spu_add_to_rq(ctx); 815 816 return 0; 817 } 818 819 /** 820 * grab_runnable_context - try to find a runnable context 821 * 822 * Remove the highest priority context on the runqueue and return it 823 * to the caller. Returns %NULL if no runnable context was found. 824 */ 825 static struct spu_context *grab_runnable_context(int prio, int node) 826 { 827 struct spu_context *ctx; 828 int best; 829 830 spin_lock(&spu_prio->runq_lock); 831 best = find_first_bit(spu_prio->bitmap, prio); 832 while (best < prio) { 833 struct list_head *rq = &spu_prio->runq[best]; 834 835 list_for_each_entry(ctx, rq, rq) { 836 /* XXX(hch): check for affinity here as well */ 837 if (__node_allowed(ctx, node)) { 838 __spu_del_from_rq(ctx); 839 goto found; 840 } 841 } 842 best++; 843 } 844 ctx = NULL; 845 found: 846 spin_unlock(&spu_prio->runq_lock); 847 return ctx; 848 } 849 850 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) 851 { 852 struct spu *spu = ctx->spu; 853 struct spu_context *new = NULL; 854 855 if (spu) { 856 new = grab_runnable_context(max_prio, spu->node); 857 if (new || force) { 858 spu_unschedule(spu, ctx, new == NULL); 859 if (new) { 860 if (new->flags & SPU_CREATE_NOSCHED) 861 wake_up(&new->stop_wq); 862 else { 863 spu_release(ctx); 864 spu_schedule(spu, new); 865 /* this one can't easily be made 866 interruptible */ 867 mutex_lock(&ctx->state_mutex); 868 } 869 } 870 } 871 } 872 873 return new != NULL; 874 } 875 876 /** 877 * spu_deactivate - unbind a context from it's physical spu 878 * @ctx: spu context to unbind 879 * 880 * Unbind @ctx from the physical spu it is running on and schedule 881 * the highest priority context to run on the freed physical spu. 882 */ 883 void spu_deactivate(struct spu_context *ctx) 884 { 885 spu_context_nospu_trace(spu_deactivate__enter, ctx); 886 __spu_deactivate(ctx, 1, MAX_PRIO); 887 } 888 889 /** 890 * spu_yield - yield a physical spu if others are waiting 891 * @ctx: spu context to yield 892 * 893 * Check if there is a higher priority context waiting and if yes 894 * unbind @ctx from the physical spu and schedule the highest 895 * priority context to run on the freed physical spu instead. 896 */ 897 void spu_yield(struct spu_context *ctx) 898 { 899 spu_context_nospu_trace(spu_yield__enter, ctx); 900 if (!(ctx->flags & SPU_CREATE_NOSCHED)) { 901 mutex_lock(&ctx->state_mutex); 902 __spu_deactivate(ctx, 0, MAX_PRIO); 903 mutex_unlock(&ctx->state_mutex); 904 } 905 } 906 907 static noinline void spusched_tick(struct spu_context *ctx) 908 { 909 struct spu_context *new = NULL; 910 struct spu *spu = NULL; 911 912 if (spu_acquire(ctx)) 913 BUG(); /* a kernel thread never has signals pending */ 914 915 if (ctx->state != SPU_STATE_RUNNABLE) 916 goto out; 917 if (ctx->flags & SPU_CREATE_NOSCHED) 918 goto out; 919 if (ctx->policy == SCHED_FIFO) 920 goto out; 921 922 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 923 goto out; 924 925 spu = ctx->spu; 926 927 spu_context_trace(spusched_tick__preempt, ctx, spu); 928 929 new = grab_runnable_context(ctx->prio + 1, spu->node); 930 if (new) { 931 spu_unschedule(spu, ctx, 0); 932 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 933 spu_add_to_rq(ctx); 934 } else { 935 spu_context_nospu_trace(spusched_tick__newslice, ctx); 936 if (!ctx->time_slice) 937 ctx->time_slice++; 938 } 939 out: 940 spu_release(ctx); 941 942 if (new) 943 spu_schedule(spu, new); 944 } 945 946 /** 947 * count_active_contexts - count nr of active tasks 948 * 949 * Return the number of tasks currently running or waiting to run. 950 * 951 * Note that we don't take runq_lock / list_mutex here. Reading 952 * a single 32bit value is atomic on powerpc, and we don't care 953 * about memory ordering issues here. 954 */ 955 static unsigned long count_active_contexts(void) 956 { 957 int nr_active = 0, node; 958 959 for (node = 0; node < MAX_NUMNODES; node++) 960 nr_active += cbe_spu_info[node].nr_active; 961 nr_active += spu_prio->nr_waiting; 962 963 return nr_active; 964 } 965 966 /** 967 * spu_calc_load - update the avenrun load estimates. 968 * 969 * No locking against reading these values from userspace, as for 970 * the CPU loadavg code. 971 */ 972 static void spu_calc_load(void) 973 { 974 unsigned long active_tasks; /* fixed-point */ 975 976 active_tasks = count_active_contexts() * FIXED_1; 977 spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks); 978 spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks); 979 spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks); 980 } 981 982 static void spusched_wake(struct timer_list *unused) 983 { 984 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 985 wake_up_process(spusched_task); 986 } 987 988 static void spuloadavg_wake(struct timer_list *unused) 989 { 990 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ); 991 spu_calc_load(); 992 } 993 994 static int spusched_thread(void *unused) 995 { 996 struct spu *spu; 997 int node; 998 999 while (!kthread_should_stop()) { 1000 set_current_state(TASK_INTERRUPTIBLE); 1001 schedule(); 1002 for (node = 0; node < MAX_NUMNODES; node++) { 1003 struct mutex *mtx = &cbe_spu_info[node].list_mutex; 1004 1005 mutex_lock(mtx); 1006 list_for_each_entry(spu, &cbe_spu_info[node].spus, 1007 cbe_list) { 1008 struct spu_context *ctx = spu->ctx; 1009 1010 if (ctx) { 1011 get_spu_context(ctx); 1012 mutex_unlock(mtx); 1013 spusched_tick(ctx); 1014 mutex_lock(mtx); 1015 put_spu_context(ctx); 1016 } 1017 } 1018 mutex_unlock(mtx); 1019 } 1020 } 1021 1022 return 0; 1023 } 1024 1025 void spuctx_switch_state(struct spu_context *ctx, 1026 enum spu_utilization_state new_state) 1027 { 1028 unsigned long long curtime; 1029 signed long long delta; 1030 struct spu *spu; 1031 enum spu_utilization_state old_state; 1032 int node; 1033 1034 curtime = ktime_get_ns(); 1035 delta = curtime - ctx->stats.tstamp; 1036 1037 WARN_ON(!mutex_is_locked(&ctx->state_mutex)); 1038 WARN_ON(delta < 0); 1039 1040 spu = ctx->spu; 1041 old_state = ctx->stats.util_state; 1042 ctx->stats.util_state = new_state; 1043 ctx->stats.tstamp = curtime; 1044 1045 /* 1046 * Update the physical SPU utilization statistics. 1047 */ 1048 if (spu) { 1049 ctx->stats.times[old_state] += delta; 1050 spu->stats.times[old_state] += delta; 1051 spu->stats.util_state = new_state; 1052 spu->stats.tstamp = curtime; 1053 node = spu->node; 1054 if (old_state == SPU_UTIL_USER) 1055 atomic_dec(&cbe_spu_info[node].busy_spus); 1056 if (new_state == SPU_UTIL_USER) 1057 atomic_inc(&cbe_spu_info[node].busy_spus); 1058 } 1059 } 1060 1061 static int show_spu_loadavg(struct seq_file *s, void *private) 1062 { 1063 int a, b, c; 1064 1065 a = spu_avenrun[0] + (FIXED_1/200); 1066 b = spu_avenrun[1] + (FIXED_1/200); 1067 c = spu_avenrun[2] + (FIXED_1/200); 1068 1069 /* 1070 * Note that last_pid doesn't really make much sense for the 1071 * SPU loadavg (it even seems very odd on the CPU side...), 1072 * but we include it here to have a 100% compatible interface. 1073 */ 1074 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", 1075 LOAD_INT(a), LOAD_FRAC(a), 1076 LOAD_INT(b), LOAD_FRAC(b), 1077 LOAD_INT(c), LOAD_FRAC(c), 1078 count_active_contexts(), 1079 atomic_read(&nr_spu_contexts), 1080 idr_get_cursor(&task_active_pid_ns(current)->idr) - 1); 1081 return 0; 1082 }; 1083 1084 int __init spu_sched_init(void) 1085 { 1086 struct proc_dir_entry *entry; 1087 int err = -ENOMEM, i; 1088 1089 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); 1090 if (!spu_prio) 1091 goto out; 1092 1093 for (i = 0; i < MAX_PRIO; i++) { 1094 INIT_LIST_HEAD(&spu_prio->runq[i]); 1095 __clear_bit(i, spu_prio->bitmap); 1096 } 1097 spin_lock_init(&spu_prio->runq_lock); 1098 1099 timer_setup(&spusched_timer, spusched_wake, 0); 1100 timer_setup(&spuloadavg_timer, spuloadavg_wake, 0); 1101 1102 spusched_task = kthread_run(spusched_thread, NULL, "spusched"); 1103 if (IS_ERR(spusched_task)) { 1104 err = PTR_ERR(spusched_task); 1105 goto out_free_spu_prio; 1106 } 1107 1108 mod_timer(&spuloadavg_timer, 0); 1109 1110 entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg); 1111 if (!entry) 1112 goto out_stop_kthread; 1113 1114 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", 1115 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); 1116 return 0; 1117 1118 out_stop_kthread: 1119 kthread_stop(spusched_task); 1120 out_free_spu_prio: 1121 kfree(spu_prio); 1122 out: 1123 return err; 1124 } 1125 1126 void spu_sched_exit(void) 1127 { 1128 struct spu *spu; 1129 int node; 1130 1131 remove_proc_entry("spu_loadavg", NULL); 1132 1133 del_timer_sync(&spusched_timer); 1134 del_timer_sync(&spuloadavg_timer); 1135 kthread_stop(spusched_task); 1136 1137 for (node = 0; node < MAX_NUMNODES; node++) { 1138 mutex_lock(&cbe_spu_info[node].list_mutex); 1139 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) 1140 if (spu->alloc_state != SPU_FREE) 1141 spu->alloc_state = SPU_FREE; 1142 mutex_unlock(&cbe_spu_info[node].list_mutex); 1143 } 1144 kfree(spu_prio); 1145 } 1146