xref: /linux/arch/powerpc/platforms/cell/spufs/sched.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /* sched.c - SPU scheduler.
2  *
3  * Copyright (C) IBM 2005
4  * Author: Mark Nutter <mnutter@us.ibm.com>
5  *
6  * SPU scheduler, based on Linux thread priority.  For now use
7  * a simple "cooperative" yield model with no preemption.  SPU
8  * scheduling will eventually be preemptive: When a thread with
9  * a higher static priority gets ready to run, then an active SPU
10  * context will be preempted and returned to the waitq.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26 
27 #undef DEBUG
28 
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/errno.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/completion.h>
36 #include <linux/vmalloc.h>
37 #include <linux/smp.h>
38 #include <linux/smp_lock.h>
39 #include <linux/stddef.h>
40 #include <linux/unistd.h>
41 
42 #include <asm/io.h>
43 #include <asm/mmu_context.h>
44 #include <asm/spu.h>
45 #include <asm/spu_csa.h>
46 #include "spufs.h"
47 
48 #define SPU_MIN_TIMESLICE 	(100 * HZ / 1000)
49 
50 #define SPU_BITMAP_SIZE (((MAX_PRIO+BITS_PER_LONG)/BITS_PER_LONG)+1)
51 struct spu_prio_array {
52 	atomic_t nr_blocked;
53 	unsigned long bitmap[SPU_BITMAP_SIZE];
54 	wait_queue_head_t waitq[MAX_PRIO];
55 };
56 
57 /* spu_runqueue - This is the main runqueue data structure for SPUs. */
58 struct spu_runqueue {
59 	struct semaphore sem;
60 	unsigned long nr_active;
61 	unsigned long nr_idle;
62 	unsigned long nr_switches;
63 	struct list_head active_list;
64 	struct list_head idle_list;
65 	struct spu_prio_array prio;
66 };
67 
68 static struct spu_runqueue *spu_runqueues = NULL;
69 
70 static inline struct spu_runqueue *spu_rq(void)
71 {
72 	/* Future: make this a per-NODE array,
73 	 * and use cpu_to_node(smp_processor_id())
74 	 */
75 	return spu_runqueues;
76 }
77 
78 static inline struct spu *del_idle(struct spu_runqueue *rq)
79 {
80 	struct spu *spu;
81 
82 	BUG_ON(rq->nr_idle <= 0);
83 	BUG_ON(list_empty(&rq->idle_list));
84 	/* Future: Move SPU out of low-power SRI state. */
85 	spu = list_entry(rq->idle_list.next, struct spu, sched_list);
86 	list_del_init(&spu->sched_list);
87 	rq->nr_idle--;
88 	return spu;
89 }
90 
91 static inline void del_active(struct spu_runqueue *rq, struct spu *spu)
92 {
93 	BUG_ON(rq->nr_active <= 0);
94 	BUG_ON(list_empty(&rq->active_list));
95 	list_del_init(&spu->sched_list);
96 	rq->nr_active--;
97 }
98 
99 static inline void add_idle(struct spu_runqueue *rq, struct spu *spu)
100 {
101 	/* Future: Put SPU into low-power SRI state. */
102 	list_add_tail(&spu->sched_list, &rq->idle_list);
103 	rq->nr_idle++;
104 }
105 
106 static inline void add_active(struct spu_runqueue *rq, struct spu *spu)
107 {
108 	rq->nr_active++;
109 	rq->nr_switches++;
110 	list_add_tail(&spu->sched_list, &rq->active_list);
111 }
112 
113 static void prio_wakeup(struct spu_runqueue *rq)
114 {
115 	if (atomic_read(&rq->prio.nr_blocked) && rq->nr_idle) {
116 		int best = sched_find_first_bit(rq->prio.bitmap);
117 		if (best < MAX_PRIO) {
118 			wait_queue_head_t *wq = &rq->prio.waitq[best];
119 			wake_up_interruptible_nr(wq, 1);
120 		}
121 	}
122 }
123 
124 static void prio_wait(struct spu_runqueue *rq, struct spu_context *ctx,
125 		      u64 flags)
126 {
127 	int prio = current->prio;
128 	wait_queue_head_t *wq = &rq->prio.waitq[prio];
129 	DEFINE_WAIT(wait);
130 
131 	__set_bit(prio, rq->prio.bitmap);
132 	atomic_inc(&rq->prio.nr_blocked);
133 	prepare_to_wait_exclusive(wq, &wait, TASK_INTERRUPTIBLE);
134 	if (!signal_pending(current)) {
135 		up(&rq->sem);
136 		up_write(&ctx->state_sema);
137 		pr_debug("%s: pid=%d prio=%d\n", __FUNCTION__,
138 			 current->pid, current->prio);
139 		schedule();
140 		down_write(&ctx->state_sema);
141 		down(&rq->sem);
142 	}
143 	finish_wait(wq, &wait);
144 	atomic_dec(&rq->prio.nr_blocked);
145 	if (!waitqueue_active(wq))
146 		__clear_bit(prio, rq->prio.bitmap);
147 }
148 
149 static inline int is_best_prio(struct spu_runqueue *rq)
150 {
151 	int best_prio;
152 
153 	best_prio = sched_find_first_bit(rq->prio.bitmap);
154 	return (current->prio < best_prio) ? 1 : 0;
155 }
156 
157 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
158 {
159 	/* Global TLBIE broadcast required with SPEs. */
160 #if (NR_CPUS > 1)
161 	__cpus_setall(&mm->cpu_vm_mask, NR_CPUS);
162 #else
163 	__cpus_setall(&mm->cpu_vm_mask, NR_CPUS+1); /* is this ok? */
164 #endif
165 }
166 
167 static inline void bind_context(struct spu *spu, struct spu_context *ctx)
168 {
169 	pr_debug("%s: pid=%d SPU=%d\n", __FUNCTION__, current->pid,
170 		 spu->number);
171 	spu->ctx = ctx;
172 	spu->flags = 0;
173 	ctx->flags = 0;
174 	ctx->spu = spu;
175 	ctx->ops = &spu_hw_ops;
176 	spu->pid = current->pid;
177 	spu->prio = current->prio;
178 	spu->mm = ctx->owner;
179 	mm_needs_global_tlbie(spu->mm);
180 	spu->ibox_callback = spufs_ibox_callback;
181 	spu->wbox_callback = spufs_wbox_callback;
182 	spu->stop_callback = spufs_stop_callback;
183 	spu->mfc_callback = spufs_mfc_callback;
184 	mb();
185 	spu_unmap_mappings(ctx);
186 	spu_restore(&ctx->csa, spu);
187 	spu->timestamp = jiffies;
188 }
189 
190 static inline void unbind_context(struct spu *spu, struct spu_context *ctx)
191 {
192 	pr_debug("%s: unbind pid=%d SPU=%d\n", __FUNCTION__,
193 		 spu->pid, spu->number);
194 	spu_unmap_mappings(ctx);
195 	spu_save(&ctx->csa, spu);
196 	spu->timestamp = jiffies;
197 	ctx->state = SPU_STATE_SAVED;
198 	spu->ibox_callback = NULL;
199 	spu->wbox_callback = NULL;
200 	spu->stop_callback = NULL;
201 	spu->mfc_callback = NULL;
202 	spu->mm = NULL;
203 	spu->pid = 0;
204 	spu->prio = MAX_PRIO;
205 	ctx->ops = &spu_backing_ops;
206 	ctx->spu = NULL;
207 	ctx->flags = 0;
208 	spu->flags = 0;
209 	spu->ctx = NULL;
210 }
211 
212 static void spu_reaper(void *data)
213 {
214 	struct spu_context *ctx = data;
215 	struct spu *spu;
216 
217 	down_write(&ctx->state_sema);
218 	spu = ctx->spu;
219 	if (spu && test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) {
220 		if (atomic_read(&spu->rq->prio.nr_blocked)) {
221 			pr_debug("%s: spu=%d\n", __func__, spu->number);
222 			ctx->ops->runcntl_stop(ctx);
223 			spu_deactivate(ctx);
224 			wake_up_all(&ctx->stop_wq);
225 		} else {
226 			clear_bit(SPU_CONTEXT_PREEMPT, &ctx->flags);
227 		}
228 	}
229 	up_write(&ctx->state_sema);
230 	put_spu_context(ctx);
231 }
232 
233 static void schedule_spu_reaper(struct spu_runqueue *rq, struct spu *spu)
234 {
235 	struct spu_context *ctx = get_spu_context(spu->ctx);
236 	unsigned long now = jiffies;
237 	unsigned long expire = spu->timestamp + SPU_MIN_TIMESLICE;
238 
239 	set_bit(SPU_CONTEXT_PREEMPT, &ctx->flags);
240 	INIT_WORK(&ctx->reap_work, spu_reaper, ctx);
241 	if (time_after(now, expire))
242 		schedule_work(&ctx->reap_work);
243 	else
244 		schedule_delayed_work(&ctx->reap_work, expire - now);
245 }
246 
247 static void check_preempt_active(struct spu_runqueue *rq)
248 {
249 	struct list_head *p;
250 	struct spu *worst = NULL;
251 
252 	list_for_each(p, &rq->active_list) {
253 		struct spu *spu = list_entry(p, struct spu, sched_list);
254 		struct spu_context *ctx = spu->ctx;
255 		if (!test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) {
256 			if (!worst || (spu->prio > worst->prio)) {
257 				worst = spu;
258 			}
259 		}
260 	}
261 	if (worst && (current->prio < worst->prio))
262 		schedule_spu_reaper(rq, worst);
263 }
264 
265 static struct spu *get_idle_spu(struct spu_context *ctx, u64 flags)
266 {
267 	struct spu_runqueue *rq;
268 	struct spu *spu = NULL;
269 
270 	rq = spu_rq();
271 	down(&rq->sem);
272 	for (;;) {
273 		if (rq->nr_idle > 0) {
274 			if (is_best_prio(rq)) {
275 				/* Fall through. */
276 				spu = del_idle(rq);
277 				break;
278 			} else {
279 				prio_wakeup(rq);
280 				up(&rq->sem);
281 				yield();
282 				if (signal_pending(current)) {
283 					return NULL;
284 				}
285 				rq = spu_rq();
286 				down(&rq->sem);
287 				continue;
288 			}
289 		} else {
290 			check_preempt_active(rq);
291 			prio_wait(rq, ctx, flags);
292 			if (signal_pending(current)) {
293 				prio_wakeup(rq);
294 				spu = NULL;
295 				break;
296 			}
297 			continue;
298 		}
299 	}
300 	up(&rq->sem);
301 	return spu;
302 }
303 
304 static void put_idle_spu(struct spu *spu)
305 {
306 	struct spu_runqueue *rq = spu->rq;
307 
308 	down(&rq->sem);
309 	add_idle(rq, spu);
310 	prio_wakeup(rq);
311 	up(&rq->sem);
312 }
313 
314 static int get_active_spu(struct spu *spu)
315 {
316 	struct spu_runqueue *rq = spu->rq;
317 	struct list_head *p;
318 	struct spu *tmp;
319 	int rc = 0;
320 
321 	down(&rq->sem);
322 	list_for_each(p, &rq->active_list) {
323 		tmp = list_entry(p, struct spu, sched_list);
324 		if (tmp == spu) {
325 			del_active(rq, spu);
326 			rc = 1;
327 			break;
328 		}
329 	}
330 	up(&rq->sem);
331 	return rc;
332 }
333 
334 static void put_active_spu(struct spu *spu)
335 {
336 	struct spu_runqueue *rq = spu->rq;
337 
338 	down(&rq->sem);
339 	add_active(rq, spu);
340 	up(&rq->sem);
341 }
342 
343 /* Lock order:
344  *	spu_activate() & spu_deactivate() require the
345  *	caller to have down_write(&ctx->state_sema).
346  *
347  *	The rq->sem is breifly held (inside or outside a
348  *	given ctx lock) for list management, but is never
349  *	held during save/restore.
350  */
351 
352 int spu_activate(struct spu_context *ctx, u64 flags)
353 {
354 	struct spu *spu;
355 
356 	if (ctx->spu)
357 		return 0;
358 	spu = get_idle_spu(ctx, flags);
359 	if (!spu)
360 		return (signal_pending(current)) ? -ERESTARTSYS : -EAGAIN;
361 	bind_context(spu, ctx);
362 	/*
363 	 * We're likely to wait for interrupts on the same
364 	 * CPU that we are now on, so send them here.
365 	 */
366 	spu_irq_setaffinity(spu, raw_smp_processor_id());
367 	put_active_spu(spu);
368 	return 0;
369 }
370 
371 void spu_deactivate(struct spu_context *ctx)
372 {
373 	struct spu *spu;
374 	int needs_idle;
375 
376 	spu = ctx->spu;
377 	if (!spu)
378 		return;
379 	needs_idle = get_active_spu(spu);
380 	unbind_context(spu, ctx);
381 	if (needs_idle)
382 		put_idle_spu(spu);
383 }
384 
385 void spu_yield(struct spu_context *ctx)
386 {
387 	struct spu *spu;
388 	int need_yield = 0;
389 
390 	down_write(&ctx->state_sema);
391 	spu = ctx->spu;
392 	if (spu && (sched_find_first_bit(spu->rq->prio.bitmap) < MAX_PRIO)) {
393 		pr_debug("%s: yielding SPU %d\n", __FUNCTION__, spu->number);
394 		spu_deactivate(ctx);
395 		ctx->state = SPU_STATE_SAVED;
396 		need_yield = 1;
397 	} else if (spu) {
398 		spu->prio = MAX_PRIO;
399 	}
400 	up_write(&ctx->state_sema);
401 	if (unlikely(need_yield))
402 		yield();
403 }
404 
405 int __init spu_sched_init(void)
406 {
407 	struct spu_runqueue *rq;
408 	struct spu *spu;
409 	int i;
410 
411 	rq = spu_runqueues = kmalloc(sizeof(struct spu_runqueue), GFP_KERNEL);
412 	if (!rq) {
413 		printk(KERN_WARNING "%s: Unable to allocate runqueues.\n",
414 		       __FUNCTION__);
415 		return 1;
416 	}
417 	memset(rq, 0, sizeof(struct spu_runqueue));
418 	init_MUTEX(&rq->sem);
419 	INIT_LIST_HEAD(&rq->active_list);
420 	INIT_LIST_HEAD(&rq->idle_list);
421 	rq->nr_active = 0;
422 	rq->nr_idle = 0;
423 	rq->nr_switches = 0;
424 	atomic_set(&rq->prio.nr_blocked, 0);
425 	for (i = 0; i < MAX_PRIO; i++) {
426 		init_waitqueue_head(&rq->prio.waitq[i]);
427 		__clear_bit(i, rq->prio.bitmap);
428 	}
429 	__set_bit(MAX_PRIO, rq->prio.bitmap);
430 	for (;;) {
431 		spu = spu_alloc();
432 		if (!spu)
433 			break;
434 		pr_debug("%s: adding SPU[%d]\n", __FUNCTION__, spu->number);
435 		add_idle(rq, spu);
436 		spu->rq = rq;
437 		spu->timestamp = jiffies;
438 	}
439 	if (!rq->nr_idle) {
440 		printk(KERN_WARNING "%s: No available SPUs.\n", __FUNCTION__);
441 		kfree(rq);
442 		return 1;
443 	}
444 	return 0;
445 }
446 
447 void __exit spu_sched_exit(void)
448 {
449 	struct spu_runqueue *rq = spu_rq();
450 	struct spu *spu;
451 
452 	if (!rq) {
453 		printk(KERN_WARNING "%s: no runqueues!\n", __FUNCTION__);
454 		return;
455 	}
456 	while (rq->nr_idle > 0) {
457 		spu = del_idle(rq);
458 		if (!spu)
459 			break;
460 		spu_free(spu);
461 	}
462 	kfree(rq);
463 }
464