1 /* sched.c - SPU scheduler. 2 * 3 * Copyright (C) IBM 2005 4 * Author: Mark Nutter <mnutter@us.ibm.com> 5 * 6 * 2006-03-31 NUMA domains added. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/errno.h> 26 #include <linux/sched.h> 27 #include <linux/sched/rt.h> 28 #include <linux/kernel.h> 29 #include <linux/mm.h> 30 #include <linux/slab.h> 31 #include <linux/completion.h> 32 #include <linux/vmalloc.h> 33 #include <linux/smp.h> 34 #include <linux/stddef.h> 35 #include <linux/unistd.h> 36 #include <linux/numa.h> 37 #include <linux/mutex.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/pid_namespace.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 44 #include <asm/io.h> 45 #include <asm/mmu_context.h> 46 #include <asm/spu.h> 47 #include <asm/spu_csa.h> 48 #include <asm/spu_priv1.h> 49 #include "spufs.h" 50 #define CREATE_TRACE_POINTS 51 #include "sputrace.h" 52 53 struct spu_prio_array { 54 DECLARE_BITMAP(bitmap, MAX_PRIO); 55 struct list_head runq[MAX_PRIO]; 56 spinlock_t runq_lock; 57 int nr_waiting; 58 }; 59 60 static unsigned long spu_avenrun[3]; 61 static struct spu_prio_array *spu_prio; 62 static struct task_struct *spusched_task; 63 static struct timer_list spusched_timer; 64 static struct timer_list spuloadavg_timer; 65 66 /* 67 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). 68 */ 69 #define NORMAL_PRIO 120 70 71 /* 72 * Frequency of the spu scheduler tick. By default we do one SPU scheduler 73 * tick for every 10 CPU scheduler ticks. 74 */ 75 #define SPUSCHED_TICK (10) 76 77 /* 78 * These are the 'tuning knobs' of the scheduler: 79 * 80 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is 81 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs. 82 */ 83 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) 84 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) 85 86 #define SCALE_PRIO(x, prio) \ 87 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE) 88 89 /* 90 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values: 91 * [800ms ... 100ms ... 5ms] 92 * 93 * The higher a thread's priority, the bigger timeslices 94 * it gets during one round of execution. But even the lowest 95 * priority thread gets MIN_TIMESLICE worth of execution time. 96 */ 97 void spu_set_timeslice(struct spu_context *ctx) 98 { 99 if (ctx->prio < NORMAL_PRIO) 100 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); 101 else 102 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); 103 } 104 105 /* 106 * Update scheduling information from the owning thread. 107 */ 108 void __spu_update_sched_info(struct spu_context *ctx) 109 { 110 /* 111 * assert that the context is not on the runqueue, so it is safe 112 * to change its scheduling parameters. 113 */ 114 BUG_ON(!list_empty(&ctx->rq)); 115 116 /* 117 * 32-Bit assignments are atomic on powerpc, and we don't care about 118 * memory ordering here because retrieving the controlling thread is 119 * per definition racy. 120 */ 121 ctx->tid = current->pid; 122 123 /* 124 * We do our own priority calculations, so we normally want 125 * ->static_prio to start with. Unfortunately this field 126 * contains junk for threads with a realtime scheduling 127 * policy so we have to look at ->prio in this case. 128 */ 129 if (rt_prio(current->prio)) 130 ctx->prio = current->prio; 131 else 132 ctx->prio = current->static_prio; 133 ctx->policy = current->policy; 134 135 /* 136 * TO DO: the context may be loaded, so we may need to activate 137 * it again on a different node. But it shouldn't hurt anything 138 * to update its parameters, because we know that the scheduler 139 * is not actively looking at this field, since it is not on the 140 * runqueue. The context will be rescheduled on the proper node 141 * if it is timesliced or preempted. 142 */ 143 cpumask_copy(&ctx->cpus_allowed, tsk_cpus_allowed(current)); 144 145 /* Save the current cpu id for spu interrupt routing. */ 146 ctx->last_ran = raw_smp_processor_id(); 147 } 148 149 void spu_update_sched_info(struct spu_context *ctx) 150 { 151 int node; 152 153 if (ctx->state == SPU_STATE_RUNNABLE) { 154 node = ctx->spu->node; 155 156 /* 157 * Take list_mutex to sync with find_victim(). 158 */ 159 mutex_lock(&cbe_spu_info[node].list_mutex); 160 __spu_update_sched_info(ctx); 161 mutex_unlock(&cbe_spu_info[node].list_mutex); 162 } else { 163 __spu_update_sched_info(ctx); 164 } 165 } 166 167 static int __node_allowed(struct spu_context *ctx, int node) 168 { 169 if (nr_cpus_node(node)) { 170 const struct cpumask *mask = cpumask_of_node(node); 171 172 if (cpumask_intersects(mask, &ctx->cpus_allowed)) 173 return 1; 174 } 175 176 return 0; 177 } 178 179 static int node_allowed(struct spu_context *ctx, int node) 180 { 181 int rval; 182 183 spin_lock(&spu_prio->runq_lock); 184 rval = __node_allowed(ctx, node); 185 spin_unlock(&spu_prio->runq_lock); 186 187 return rval; 188 } 189 190 void do_notify_spus_active(void) 191 { 192 int node; 193 194 /* 195 * Wake up the active spu_contexts. 196 * 197 * When the awakened processes see their "notify_active" flag is set, 198 * they will call spu_switch_notify(). 199 */ 200 for_each_online_node(node) { 201 struct spu *spu; 202 203 mutex_lock(&cbe_spu_info[node].list_mutex); 204 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 205 if (spu->alloc_state != SPU_FREE) { 206 struct spu_context *ctx = spu->ctx; 207 set_bit(SPU_SCHED_NOTIFY_ACTIVE, 208 &ctx->sched_flags); 209 mb(); 210 wake_up_all(&ctx->stop_wq); 211 } 212 } 213 mutex_unlock(&cbe_spu_info[node].list_mutex); 214 } 215 } 216 217 /** 218 * spu_bind_context - bind spu context to physical spu 219 * @spu: physical spu to bind to 220 * @ctx: context to bind 221 */ 222 static void spu_bind_context(struct spu *spu, struct spu_context *ctx) 223 { 224 spu_context_trace(spu_bind_context__enter, ctx, spu); 225 226 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 227 228 if (ctx->flags & SPU_CREATE_NOSCHED) 229 atomic_inc(&cbe_spu_info[spu->node].reserved_spus); 230 231 ctx->stats.slb_flt_base = spu->stats.slb_flt; 232 ctx->stats.class2_intr_base = spu->stats.class2_intr; 233 234 spu_associate_mm(spu, ctx->owner); 235 236 spin_lock_irq(&spu->register_lock); 237 spu->ctx = ctx; 238 spu->flags = 0; 239 ctx->spu = spu; 240 ctx->ops = &spu_hw_ops; 241 spu->pid = current->pid; 242 spu->tgid = current->tgid; 243 spu->ibox_callback = spufs_ibox_callback; 244 spu->wbox_callback = spufs_wbox_callback; 245 spu->stop_callback = spufs_stop_callback; 246 spu->mfc_callback = spufs_mfc_callback; 247 spin_unlock_irq(&spu->register_lock); 248 249 spu_unmap_mappings(ctx); 250 251 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0); 252 spu_restore(&ctx->csa, spu); 253 spu->timestamp = jiffies; 254 spu_switch_notify(spu, ctx); 255 ctx->state = SPU_STATE_RUNNABLE; 256 257 spuctx_switch_state(ctx, SPU_UTIL_USER); 258 } 259 260 /* 261 * Must be used with the list_mutex held. 262 */ 263 static inline int sched_spu(struct spu *spu) 264 { 265 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); 266 267 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); 268 } 269 270 static void aff_merge_remaining_ctxs(struct spu_gang *gang) 271 { 272 struct spu_context *ctx; 273 274 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { 275 if (list_empty(&ctx->aff_list)) 276 list_add(&ctx->aff_list, &gang->aff_list_head); 277 } 278 gang->aff_flags |= AFF_MERGED; 279 } 280 281 static void aff_set_offsets(struct spu_gang *gang) 282 { 283 struct spu_context *ctx; 284 int offset; 285 286 offset = -1; 287 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 288 aff_list) { 289 if (&ctx->aff_list == &gang->aff_list_head) 290 break; 291 ctx->aff_offset = offset--; 292 } 293 294 offset = 0; 295 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { 296 if (&ctx->aff_list == &gang->aff_list_head) 297 break; 298 ctx->aff_offset = offset++; 299 } 300 301 gang->aff_flags |= AFF_OFFSETS_SET; 302 } 303 304 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, 305 int group_size, int lowest_offset) 306 { 307 struct spu *spu; 308 int node, n; 309 310 /* 311 * TODO: A better algorithm could be used to find a good spu to be 312 * used as reference location for the ctxs chain. 313 */ 314 node = cpu_to_node(raw_smp_processor_id()); 315 for (n = 0; n < MAX_NUMNODES; n++, node++) { 316 /* 317 * "available_spus" counts how many spus are not potentially 318 * going to be used by other affinity gangs whose reference 319 * context is already in place. Although this code seeks to 320 * avoid having affinity gangs with a summed amount of 321 * contexts bigger than the amount of spus in the node, 322 * this may happen sporadically. In this case, available_spus 323 * becomes negative, which is harmless. 324 */ 325 int available_spus; 326 327 node = (node < MAX_NUMNODES) ? node : 0; 328 if (!node_allowed(ctx, node)) 329 continue; 330 331 available_spus = 0; 332 mutex_lock(&cbe_spu_info[node].list_mutex); 333 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 334 if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset 335 && spu->ctx->gang->aff_ref_spu) 336 available_spus -= spu->ctx->gang->contexts; 337 available_spus++; 338 } 339 if (available_spus < ctx->gang->contexts) { 340 mutex_unlock(&cbe_spu_info[node].list_mutex); 341 continue; 342 } 343 344 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 345 if ((!mem_aff || spu->has_mem_affinity) && 346 sched_spu(spu)) { 347 mutex_unlock(&cbe_spu_info[node].list_mutex); 348 return spu; 349 } 350 } 351 mutex_unlock(&cbe_spu_info[node].list_mutex); 352 } 353 return NULL; 354 } 355 356 static void aff_set_ref_point_location(struct spu_gang *gang) 357 { 358 int mem_aff, gs, lowest_offset; 359 struct spu_context *ctx; 360 struct spu *tmp; 361 362 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; 363 lowest_offset = 0; 364 gs = 0; 365 366 list_for_each_entry(tmp, &gang->aff_list_head, aff_list) 367 gs++; 368 369 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 370 aff_list) { 371 if (&ctx->aff_list == &gang->aff_list_head) 372 break; 373 lowest_offset = ctx->aff_offset; 374 } 375 376 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, 377 lowest_offset); 378 } 379 380 static struct spu *ctx_location(struct spu *ref, int offset, int node) 381 { 382 struct spu *spu; 383 384 spu = NULL; 385 if (offset >= 0) { 386 list_for_each_entry(spu, ref->aff_list.prev, aff_list) { 387 BUG_ON(spu->node != node); 388 if (offset == 0) 389 break; 390 if (sched_spu(spu)) 391 offset--; 392 } 393 } else { 394 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { 395 BUG_ON(spu->node != node); 396 if (offset == 0) 397 break; 398 if (sched_spu(spu)) 399 offset++; 400 } 401 } 402 403 return spu; 404 } 405 406 /* 407 * affinity_check is called each time a context is going to be scheduled. 408 * It returns the spu ptr on which the context must run. 409 */ 410 static int has_affinity(struct spu_context *ctx) 411 { 412 struct spu_gang *gang = ctx->gang; 413 414 if (list_empty(&ctx->aff_list)) 415 return 0; 416 417 if (atomic_read(&ctx->gang->aff_sched_count) == 0) 418 ctx->gang->aff_ref_spu = NULL; 419 420 if (!gang->aff_ref_spu) { 421 if (!(gang->aff_flags & AFF_MERGED)) 422 aff_merge_remaining_ctxs(gang); 423 if (!(gang->aff_flags & AFF_OFFSETS_SET)) 424 aff_set_offsets(gang); 425 aff_set_ref_point_location(gang); 426 } 427 428 return gang->aff_ref_spu != NULL; 429 } 430 431 /** 432 * spu_unbind_context - unbind spu context from physical spu 433 * @spu: physical spu to unbind from 434 * @ctx: context to unbind 435 */ 436 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) 437 { 438 u32 status; 439 440 spu_context_trace(spu_unbind_context__enter, ctx, spu); 441 442 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 443 444 if (spu->ctx->flags & SPU_CREATE_NOSCHED) 445 atomic_dec(&cbe_spu_info[spu->node].reserved_spus); 446 447 if (ctx->gang) 448 /* 449 * If ctx->gang->aff_sched_count is positive, SPU affinity is 450 * being considered in this gang. Using atomic_dec_if_positive 451 * allow us to skip an explicit check for affinity in this gang 452 */ 453 atomic_dec_if_positive(&ctx->gang->aff_sched_count); 454 455 spu_switch_notify(spu, NULL); 456 spu_unmap_mappings(ctx); 457 spu_save(&ctx->csa, spu); 458 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0); 459 460 spin_lock_irq(&spu->register_lock); 461 spu->timestamp = jiffies; 462 ctx->state = SPU_STATE_SAVED; 463 spu->ibox_callback = NULL; 464 spu->wbox_callback = NULL; 465 spu->stop_callback = NULL; 466 spu->mfc_callback = NULL; 467 spu->pid = 0; 468 spu->tgid = 0; 469 ctx->ops = &spu_backing_ops; 470 spu->flags = 0; 471 spu->ctx = NULL; 472 spin_unlock_irq(&spu->register_lock); 473 474 spu_associate_mm(spu, NULL); 475 476 ctx->stats.slb_flt += 477 (spu->stats.slb_flt - ctx->stats.slb_flt_base); 478 ctx->stats.class2_intr += 479 (spu->stats.class2_intr - ctx->stats.class2_intr_base); 480 481 /* This maps the underlying spu state to idle */ 482 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); 483 ctx->spu = NULL; 484 485 if (spu_stopped(ctx, &status)) 486 wake_up_all(&ctx->stop_wq); 487 } 488 489 /** 490 * spu_add_to_rq - add a context to the runqueue 491 * @ctx: context to add 492 */ 493 static void __spu_add_to_rq(struct spu_context *ctx) 494 { 495 /* 496 * Unfortunately this code path can be called from multiple threads 497 * on behalf of a single context due to the way the problem state 498 * mmap support works. 499 * 500 * Fortunately we need to wake up all these threads at the same time 501 * and can simply skip the runqueue addition for every but the first 502 * thread getting into this codepath. 503 * 504 * It's still quite hacky, and long-term we should proxy all other 505 * threads through the owner thread so that spu_run is in control 506 * of all the scheduling activity for a given context. 507 */ 508 if (list_empty(&ctx->rq)) { 509 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); 510 set_bit(ctx->prio, spu_prio->bitmap); 511 if (!spu_prio->nr_waiting++) 512 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 513 } 514 } 515 516 static void spu_add_to_rq(struct spu_context *ctx) 517 { 518 spin_lock(&spu_prio->runq_lock); 519 __spu_add_to_rq(ctx); 520 spin_unlock(&spu_prio->runq_lock); 521 } 522 523 static void __spu_del_from_rq(struct spu_context *ctx) 524 { 525 int prio = ctx->prio; 526 527 if (!list_empty(&ctx->rq)) { 528 if (!--spu_prio->nr_waiting) 529 del_timer(&spusched_timer); 530 list_del_init(&ctx->rq); 531 532 if (list_empty(&spu_prio->runq[prio])) 533 clear_bit(prio, spu_prio->bitmap); 534 } 535 } 536 537 void spu_del_from_rq(struct spu_context *ctx) 538 { 539 spin_lock(&spu_prio->runq_lock); 540 __spu_del_from_rq(ctx); 541 spin_unlock(&spu_prio->runq_lock); 542 } 543 544 static void spu_prio_wait(struct spu_context *ctx) 545 { 546 DEFINE_WAIT(wait); 547 548 /* 549 * The caller must explicitly wait for a context to be loaded 550 * if the nosched flag is set. If NOSCHED is not set, the caller 551 * queues the context and waits for an spu event or error. 552 */ 553 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED)); 554 555 spin_lock(&spu_prio->runq_lock); 556 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); 557 if (!signal_pending(current)) { 558 __spu_add_to_rq(ctx); 559 spin_unlock(&spu_prio->runq_lock); 560 mutex_unlock(&ctx->state_mutex); 561 schedule(); 562 mutex_lock(&ctx->state_mutex); 563 spin_lock(&spu_prio->runq_lock); 564 __spu_del_from_rq(ctx); 565 } 566 spin_unlock(&spu_prio->runq_lock); 567 __set_current_state(TASK_RUNNING); 568 remove_wait_queue(&ctx->stop_wq, &wait); 569 } 570 571 static struct spu *spu_get_idle(struct spu_context *ctx) 572 { 573 struct spu *spu, *aff_ref_spu; 574 int node, n; 575 576 spu_context_nospu_trace(spu_get_idle__enter, ctx); 577 578 if (ctx->gang) { 579 mutex_lock(&ctx->gang->aff_mutex); 580 if (has_affinity(ctx)) { 581 aff_ref_spu = ctx->gang->aff_ref_spu; 582 atomic_inc(&ctx->gang->aff_sched_count); 583 mutex_unlock(&ctx->gang->aff_mutex); 584 node = aff_ref_spu->node; 585 586 mutex_lock(&cbe_spu_info[node].list_mutex); 587 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node); 588 if (spu && spu->alloc_state == SPU_FREE) 589 goto found; 590 mutex_unlock(&cbe_spu_info[node].list_mutex); 591 592 atomic_dec(&ctx->gang->aff_sched_count); 593 goto not_found; 594 } 595 mutex_unlock(&ctx->gang->aff_mutex); 596 } 597 node = cpu_to_node(raw_smp_processor_id()); 598 for (n = 0; n < MAX_NUMNODES; n++, node++) { 599 node = (node < MAX_NUMNODES) ? node : 0; 600 if (!node_allowed(ctx, node)) 601 continue; 602 603 mutex_lock(&cbe_spu_info[node].list_mutex); 604 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 605 if (spu->alloc_state == SPU_FREE) 606 goto found; 607 } 608 mutex_unlock(&cbe_spu_info[node].list_mutex); 609 } 610 611 not_found: 612 spu_context_nospu_trace(spu_get_idle__not_found, ctx); 613 return NULL; 614 615 found: 616 spu->alloc_state = SPU_USED; 617 mutex_unlock(&cbe_spu_info[node].list_mutex); 618 spu_context_trace(spu_get_idle__found, ctx, spu); 619 spu_init_channels(spu); 620 return spu; 621 } 622 623 /** 624 * find_victim - find a lower priority context to preempt 625 * @ctx: canidate context for running 626 * 627 * Returns the freed physical spu to run the new context on. 628 */ 629 static struct spu *find_victim(struct spu_context *ctx) 630 { 631 struct spu_context *victim = NULL; 632 struct spu *spu; 633 int node, n; 634 635 spu_context_nospu_trace(spu_find_victim__enter, ctx); 636 637 /* 638 * Look for a possible preemption candidate on the local node first. 639 * If there is no candidate look at the other nodes. This isn't 640 * exactly fair, but so far the whole spu scheduler tries to keep 641 * a strong node affinity. We might want to fine-tune this in 642 * the future. 643 */ 644 restart: 645 node = cpu_to_node(raw_smp_processor_id()); 646 for (n = 0; n < MAX_NUMNODES; n++, node++) { 647 node = (node < MAX_NUMNODES) ? node : 0; 648 if (!node_allowed(ctx, node)) 649 continue; 650 651 mutex_lock(&cbe_spu_info[node].list_mutex); 652 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 653 struct spu_context *tmp = spu->ctx; 654 655 if (tmp && tmp->prio > ctx->prio && 656 !(tmp->flags & SPU_CREATE_NOSCHED) && 657 (!victim || tmp->prio > victim->prio)) { 658 victim = spu->ctx; 659 } 660 } 661 if (victim) 662 get_spu_context(victim); 663 mutex_unlock(&cbe_spu_info[node].list_mutex); 664 665 if (victim) { 666 /* 667 * This nests ctx->state_mutex, but we always lock 668 * higher priority contexts before lower priority 669 * ones, so this is safe until we introduce 670 * priority inheritance schemes. 671 * 672 * XXX if the highest priority context is locked, 673 * this can loop a long time. Might be better to 674 * look at another context or give up after X retries. 675 */ 676 if (!mutex_trylock(&victim->state_mutex)) { 677 put_spu_context(victim); 678 victim = NULL; 679 goto restart; 680 } 681 682 spu = victim->spu; 683 if (!spu || victim->prio <= ctx->prio) { 684 /* 685 * This race can happen because we've dropped 686 * the active list mutex. Not a problem, just 687 * restart the search. 688 */ 689 mutex_unlock(&victim->state_mutex); 690 put_spu_context(victim); 691 victim = NULL; 692 goto restart; 693 } 694 695 spu_context_trace(__spu_deactivate__unload, ctx, spu); 696 697 mutex_lock(&cbe_spu_info[node].list_mutex); 698 cbe_spu_info[node].nr_active--; 699 spu_unbind_context(spu, victim); 700 mutex_unlock(&cbe_spu_info[node].list_mutex); 701 702 victim->stats.invol_ctx_switch++; 703 spu->stats.invol_ctx_switch++; 704 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags)) 705 spu_add_to_rq(victim); 706 707 mutex_unlock(&victim->state_mutex); 708 put_spu_context(victim); 709 710 return spu; 711 } 712 } 713 714 return NULL; 715 } 716 717 static void __spu_schedule(struct spu *spu, struct spu_context *ctx) 718 { 719 int node = spu->node; 720 int success = 0; 721 722 spu_set_timeslice(ctx); 723 724 mutex_lock(&cbe_spu_info[node].list_mutex); 725 if (spu->ctx == NULL) { 726 spu_bind_context(spu, ctx); 727 cbe_spu_info[node].nr_active++; 728 spu->alloc_state = SPU_USED; 729 success = 1; 730 } 731 mutex_unlock(&cbe_spu_info[node].list_mutex); 732 733 if (success) 734 wake_up_all(&ctx->run_wq); 735 else 736 spu_add_to_rq(ctx); 737 } 738 739 static void spu_schedule(struct spu *spu, struct spu_context *ctx) 740 { 741 /* not a candidate for interruptible because it's called either 742 from the scheduler thread or from spu_deactivate */ 743 mutex_lock(&ctx->state_mutex); 744 if (ctx->state == SPU_STATE_SAVED) 745 __spu_schedule(spu, ctx); 746 spu_release(ctx); 747 } 748 749 /** 750 * spu_unschedule - remove a context from a spu, and possibly release it. 751 * @spu: The SPU to unschedule from 752 * @ctx: The context currently scheduled on the SPU 753 * @free_spu Whether to free the SPU for other contexts 754 * 755 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the 756 * SPU is made available for other contexts (ie, may be returned by 757 * spu_get_idle). If this is zero, the caller is expected to schedule another 758 * context to this spu. 759 * 760 * Should be called with ctx->state_mutex held. 761 */ 762 static void spu_unschedule(struct spu *spu, struct spu_context *ctx, 763 int free_spu) 764 { 765 int node = spu->node; 766 767 mutex_lock(&cbe_spu_info[node].list_mutex); 768 cbe_spu_info[node].nr_active--; 769 if (free_spu) 770 spu->alloc_state = SPU_FREE; 771 spu_unbind_context(spu, ctx); 772 ctx->stats.invol_ctx_switch++; 773 spu->stats.invol_ctx_switch++; 774 mutex_unlock(&cbe_spu_info[node].list_mutex); 775 } 776 777 /** 778 * spu_activate - find a free spu for a context and execute it 779 * @ctx: spu context to schedule 780 * @flags: flags (currently ignored) 781 * 782 * Tries to find a free spu to run @ctx. If no free spu is available 783 * add the context to the runqueue so it gets woken up once an spu 784 * is available. 785 */ 786 int spu_activate(struct spu_context *ctx, unsigned long flags) 787 { 788 struct spu *spu; 789 790 /* 791 * If there are multiple threads waiting for a single context 792 * only one actually binds the context while the others will 793 * only be able to acquire the state_mutex once the context 794 * already is in runnable state. 795 */ 796 if (ctx->spu) 797 return 0; 798 799 spu_activate_top: 800 if (signal_pending(current)) 801 return -ERESTARTSYS; 802 803 spu = spu_get_idle(ctx); 804 /* 805 * If this is a realtime thread we try to get it running by 806 * preempting a lower priority thread. 807 */ 808 if (!spu && rt_prio(ctx->prio)) 809 spu = find_victim(ctx); 810 if (spu) { 811 unsigned long runcntl; 812 813 runcntl = ctx->ops->runcntl_read(ctx); 814 __spu_schedule(spu, ctx); 815 if (runcntl & SPU_RUNCNTL_RUNNABLE) 816 spuctx_switch_state(ctx, SPU_UTIL_USER); 817 818 return 0; 819 } 820 821 if (ctx->flags & SPU_CREATE_NOSCHED) { 822 spu_prio_wait(ctx); 823 goto spu_activate_top; 824 } 825 826 spu_add_to_rq(ctx); 827 828 return 0; 829 } 830 831 /** 832 * grab_runnable_context - try to find a runnable context 833 * 834 * Remove the highest priority context on the runqueue and return it 835 * to the caller. Returns %NULL if no runnable context was found. 836 */ 837 static struct spu_context *grab_runnable_context(int prio, int node) 838 { 839 struct spu_context *ctx; 840 int best; 841 842 spin_lock(&spu_prio->runq_lock); 843 best = find_first_bit(spu_prio->bitmap, prio); 844 while (best < prio) { 845 struct list_head *rq = &spu_prio->runq[best]; 846 847 list_for_each_entry(ctx, rq, rq) { 848 /* XXX(hch): check for affinity here as well */ 849 if (__node_allowed(ctx, node)) { 850 __spu_del_from_rq(ctx); 851 goto found; 852 } 853 } 854 best++; 855 } 856 ctx = NULL; 857 found: 858 spin_unlock(&spu_prio->runq_lock); 859 return ctx; 860 } 861 862 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) 863 { 864 struct spu *spu = ctx->spu; 865 struct spu_context *new = NULL; 866 867 if (spu) { 868 new = grab_runnable_context(max_prio, spu->node); 869 if (new || force) { 870 spu_unschedule(spu, ctx, new == NULL); 871 if (new) { 872 if (new->flags & SPU_CREATE_NOSCHED) 873 wake_up(&new->stop_wq); 874 else { 875 spu_release(ctx); 876 spu_schedule(spu, new); 877 /* this one can't easily be made 878 interruptible */ 879 mutex_lock(&ctx->state_mutex); 880 } 881 } 882 } 883 } 884 885 return new != NULL; 886 } 887 888 /** 889 * spu_deactivate - unbind a context from it's physical spu 890 * @ctx: spu context to unbind 891 * 892 * Unbind @ctx from the physical spu it is running on and schedule 893 * the highest priority context to run on the freed physical spu. 894 */ 895 void spu_deactivate(struct spu_context *ctx) 896 { 897 spu_context_nospu_trace(spu_deactivate__enter, ctx); 898 __spu_deactivate(ctx, 1, MAX_PRIO); 899 } 900 901 /** 902 * spu_yield - yield a physical spu if others are waiting 903 * @ctx: spu context to yield 904 * 905 * Check if there is a higher priority context waiting and if yes 906 * unbind @ctx from the physical spu and schedule the highest 907 * priority context to run on the freed physical spu instead. 908 */ 909 void spu_yield(struct spu_context *ctx) 910 { 911 spu_context_nospu_trace(spu_yield__enter, ctx); 912 if (!(ctx->flags & SPU_CREATE_NOSCHED)) { 913 mutex_lock(&ctx->state_mutex); 914 __spu_deactivate(ctx, 0, MAX_PRIO); 915 mutex_unlock(&ctx->state_mutex); 916 } 917 } 918 919 static noinline void spusched_tick(struct spu_context *ctx) 920 { 921 struct spu_context *new = NULL; 922 struct spu *spu = NULL; 923 924 if (spu_acquire(ctx)) 925 BUG(); /* a kernel thread never has signals pending */ 926 927 if (ctx->state != SPU_STATE_RUNNABLE) 928 goto out; 929 if (ctx->flags & SPU_CREATE_NOSCHED) 930 goto out; 931 if (ctx->policy == SCHED_FIFO) 932 goto out; 933 934 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 935 goto out; 936 937 spu = ctx->spu; 938 939 spu_context_trace(spusched_tick__preempt, ctx, spu); 940 941 new = grab_runnable_context(ctx->prio + 1, spu->node); 942 if (new) { 943 spu_unschedule(spu, ctx, 0); 944 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 945 spu_add_to_rq(ctx); 946 } else { 947 spu_context_nospu_trace(spusched_tick__newslice, ctx); 948 if (!ctx->time_slice) 949 ctx->time_slice++; 950 } 951 out: 952 spu_release(ctx); 953 954 if (new) 955 spu_schedule(spu, new); 956 } 957 958 /** 959 * count_active_contexts - count nr of active tasks 960 * 961 * Return the number of tasks currently running or waiting to run. 962 * 963 * Note that we don't take runq_lock / list_mutex here. Reading 964 * a single 32bit value is atomic on powerpc, and we don't care 965 * about memory ordering issues here. 966 */ 967 static unsigned long count_active_contexts(void) 968 { 969 int nr_active = 0, node; 970 971 for (node = 0; node < MAX_NUMNODES; node++) 972 nr_active += cbe_spu_info[node].nr_active; 973 nr_active += spu_prio->nr_waiting; 974 975 return nr_active; 976 } 977 978 /** 979 * spu_calc_load - update the avenrun load estimates. 980 * 981 * No locking against reading these values from userspace, as for 982 * the CPU loadavg code. 983 */ 984 static void spu_calc_load(void) 985 { 986 unsigned long active_tasks; /* fixed-point */ 987 988 active_tasks = count_active_contexts() * FIXED_1; 989 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks); 990 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks); 991 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks); 992 } 993 994 static void spusched_wake(unsigned long data) 995 { 996 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 997 wake_up_process(spusched_task); 998 } 999 1000 static void spuloadavg_wake(unsigned long data) 1001 { 1002 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ); 1003 spu_calc_load(); 1004 } 1005 1006 static int spusched_thread(void *unused) 1007 { 1008 struct spu *spu; 1009 int node; 1010 1011 while (!kthread_should_stop()) { 1012 set_current_state(TASK_INTERRUPTIBLE); 1013 schedule(); 1014 for (node = 0; node < MAX_NUMNODES; node++) { 1015 struct mutex *mtx = &cbe_spu_info[node].list_mutex; 1016 1017 mutex_lock(mtx); 1018 list_for_each_entry(spu, &cbe_spu_info[node].spus, 1019 cbe_list) { 1020 struct spu_context *ctx = spu->ctx; 1021 1022 if (ctx) { 1023 get_spu_context(ctx); 1024 mutex_unlock(mtx); 1025 spusched_tick(ctx); 1026 mutex_lock(mtx); 1027 put_spu_context(ctx); 1028 } 1029 } 1030 mutex_unlock(mtx); 1031 } 1032 } 1033 1034 return 0; 1035 } 1036 1037 void spuctx_switch_state(struct spu_context *ctx, 1038 enum spu_utilization_state new_state) 1039 { 1040 unsigned long long curtime; 1041 signed long long delta; 1042 struct spu *spu; 1043 enum spu_utilization_state old_state; 1044 int node; 1045 1046 curtime = ktime_get_ns(); 1047 delta = curtime - ctx->stats.tstamp; 1048 1049 WARN_ON(!mutex_is_locked(&ctx->state_mutex)); 1050 WARN_ON(delta < 0); 1051 1052 spu = ctx->spu; 1053 old_state = ctx->stats.util_state; 1054 ctx->stats.util_state = new_state; 1055 ctx->stats.tstamp = curtime; 1056 1057 /* 1058 * Update the physical SPU utilization statistics. 1059 */ 1060 if (spu) { 1061 ctx->stats.times[old_state] += delta; 1062 spu->stats.times[old_state] += delta; 1063 spu->stats.util_state = new_state; 1064 spu->stats.tstamp = curtime; 1065 node = spu->node; 1066 if (old_state == SPU_UTIL_USER) 1067 atomic_dec(&cbe_spu_info[node].busy_spus); 1068 if (new_state == SPU_UTIL_USER) 1069 atomic_inc(&cbe_spu_info[node].busy_spus); 1070 } 1071 } 1072 1073 #define LOAD_INT(x) ((x) >> FSHIFT) 1074 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 1075 1076 static int show_spu_loadavg(struct seq_file *s, void *private) 1077 { 1078 int a, b, c; 1079 1080 a = spu_avenrun[0] + (FIXED_1/200); 1081 b = spu_avenrun[1] + (FIXED_1/200); 1082 c = spu_avenrun[2] + (FIXED_1/200); 1083 1084 /* 1085 * Note that last_pid doesn't really make much sense for the 1086 * SPU loadavg (it even seems very odd on the CPU side...), 1087 * but we include it here to have a 100% compatible interface. 1088 */ 1089 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", 1090 LOAD_INT(a), LOAD_FRAC(a), 1091 LOAD_INT(b), LOAD_FRAC(b), 1092 LOAD_INT(c), LOAD_FRAC(c), 1093 count_active_contexts(), 1094 atomic_read(&nr_spu_contexts), 1095 task_active_pid_ns(current)->last_pid); 1096 return 0; 1097 } 1098 1099 static int spu_loadavg_open(struct inode *inode, struct file *file) 1100 { 1101 return single_open(file, show_spu_loadavg, NULL); 1102 } 1103 1104 static const struct file_operations spu_loadavg_fops = { 1105 .open = spu_loadavg_open, 1106 .read = seq_read, 1107 .llseek = seq_lseek, 1108 .release = single_release, 1109 }; 1110 1111 int __init spu_sched_init(void) 1112 { 1113 struct proc_dir_entry *entry; 1114 int err = -ENOMEM, i; 1115 1116 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); 1117 if (!spu_prio) 1118 goto out; 1119 1120 for (i = 0; i < MAX_PRIO; i++) { 1121 INIT_LIST_HEAD(&spu_prio->runq[i]); 1122 __clear_bit(i, spu_prio->bitmap); 1123 } 1124 spin_lock_init(&spu_prio->runq_lock); 1125 1126 setup_timer(&spusched_timer, spusched_wake, 0); 1127 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0); 1128 1129 spusched_task = kthread_run(spusched_thread, NULL, "spusched"); 1130 if (IS_ERR(spusched_task)) { 1131 err = PTR_ERR(spusched_task); 1132 goto out_free_spu_prio; 1133 } 1134 1135 mod_timer(&spuloadavg_timer, 0); 1136 1137 entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops); 1138 if (!entry) 1139 goto out_stop_kthread; 1140 1141 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", 1142 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); 1143 return 0; 1144 1145 out_stop_kthread: 1146 kthread_stop(spusched_task); 1147 out_free_spu_prio: 1148 kfree(spu_prio); 1149 out: 1150 return err; 1151 } 1152 1153 void spu_sched_exit(void) 1154 { 1155 struct spu *spu; 1156 int node; 1157 1158 remove_proc_entry("spu_loadavg", NULL); 1159 1160 del_timer_sync(&spusched_timer); 1161 del_timer_sync(&spuloadavg_timer); 1162 kthread_stop(spusched_task); 1163 1164 for (node = 0; node < MAX_NUMNODES; node++) { 1165 mutex_lock(&cbe_spu_info[node].list_mutex); 1166 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) 1167 if (spu->alloc_state != SPU_FREE) 1168 spu->alloc_state = SPU_FREE; 1169 mutex_unlock(&cbe_spu_info[node].list_mutex); 1170 } 1171 kfree(spu_prio); 1172 } 1173