xref: /linux/arch/powerpc/platforms/cell/spufs/sched.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /* sched.c - SPU scheduler.
2  *
3  * Copyright (C) IBM 2005
4  * Author: Mark Nutter <mnutter@us.ibm.com>
5  *
6  * 2006-03-31	NUMA domains added.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/errno.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/loadavg.h>
28 #include <linux/sched/rt.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/vmalloc.h>
34 #include <linux/smp.h>
35 #include <linux/stddef.h>
36 #include <linux/unistd.h>
37 #include <linux/numa.h>
38 #include <linux/mutex.h>
39 #include <linux/notifier.h>
40 #include <linux/kthread.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 
45 #include <asm/io.h>
46 #include <asm/mmu_context.h>
47 #include <asm/spu.h>
48 #include <asm/spu_csa.h>
49 #include <asm/spu_priv1.h>
50 #include "spufs.h"
51 #define CREATE_TRACE_POINTS
52 #include "sputrace.h"
53 
54 struct spu_prio_array {
55 	DECLARE_BITMAP(bitmap, MAX_PRIO);
56 	struct list_head runq[MAX_PRIO];
57 	spinlock_t runq_lock;
58 	int nr_waiting;
59 };
60 
61 static unsigned long spu_avenrun[3];
62 static struct spu_prio_array *spu_prio;
63 static struct task_struct *spusched_task;
64 static struct timer_list spusched_timer;
65 static struct timer_list spuloadavg_timer;
66 
67 /*
68  * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
69  */
70 #define NORMAL_PRIO		120
71 
72 /*
73  * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
74  * tick for every 10 CPU scheduler ticks.
75  */
76 #define SPUSCHED_TICK		(10)
77 
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
82  * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  */
84 #define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
85 #define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
86 
87 #define SCALE_PRIO(x, prio) \
88 	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
89 
90 /*
91  * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
92  * [800ms ... 100ms ... 5ms]
93  *
94  * The higher a thread's priority, the bigger timeslices
95  * it gets during one round of execution. But even the lowest
96  * priority thread gets MIN_TIMESLICE worth of execution time.
97  */
98 void spu_set_timeslice(struct spu_context *ctx)
99 {
100 	if (ctx->prio < NORMAL_PRIO)
101 		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
102 	else
103 		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
104 }
105 
106 /*
107  * Update scheduling information from the owning thread.
108  */
109 void __spu_update_sched_info(struct spu_context *ctx)
110 {
111 	/*
112 	 * assert that the context is not on the runqueue, so it is safe
113 	 * to change its scheduling parameters.
114 	 */
115 	BUG_ON(!list_empty(&ctx->rq));
116 
117 	/*
118 	 * 32-Bit assignments are atomic on powerpc, and we don't care about
119 	 * memory ordering here because retrieving the controlling thread is
120 	 * per definition racy.
121 	 */
122 	ctx->tid = current->pid;
123 
124 	/*
125 	 * We do our own priority calculations, so we normally want
126 	 * ->static_prio to start with. Unfortunately this field
127 	 * contains junk for threads with a realtime scheduling
128 	 * policy so we have to look at ->prio in this case.
129 	 */
130 	if (rt_prio(current->prio))
131 		ctx->prio = current->prio;
132 	else
133 		ctx->prio = current->static_prio;
134 	ctx->policy = current->policy;
135 
136 	/*
137 	 * TO DO: the context may be loaded, so we may need to activate
138 	 * it again on a different node. But it shouldn't hurt anything
139 	 * to update its parameters, because we know that the scheduler
140 	 * is not actively looking at this field, since it is not on the
141 	 * runqueue. The context will be rescheduled on the proper node
142 	 * if it is timesliced or preempted.
143 	 */
144 	cpumask_copy(&ctx->cpus_allowed, &current->cpus_allowed);
145 
146 	/* Save the current cpu id for spu interrupt routing. */
147 	ctx->last_ran = raw_smp_processor_id();
148 }
149 
150 void spu_update_sched_info(struct spu_context *ctx)
151 {
152 	int node;
153 
154 	if (ctx->state == SPU_STATE_RUNNABLE) {
155 		node = ctx->spu->node;
156 
157 		/*
158 		 * Take list_mutex to sync with find_victim().
159 		 */
160 		mutex_lock(&cbe_spu_info[node].list_mutex);
161 		__spu_update_sched_info(ctx);
162 		mutex_unlock(&cbe_spu_info[node].list_mutex);
163 	} else {
164 		__spu_update_sched_info(ctx);
165 	}
166 }
167 
168 static int __node_allowed(struct spu_context *ctx, int node)
169 {
170 	if (nr_cpus_node(node)) {
171 		const struct cpumask *mask = cpumask_of_node(node);
172 
173 		if (cpumask_intersects(mask, &ctx->cpus_allowed))
174 			return 1;
175 	}
176 
177 	return 0;
178 }
179 
180 static int node_allowed(struct spu_context *ctx, int node)
181 {
182 	int rval;
183 
184 	spin_lock(&spu_prio->runq_lock);
185 	rval = __node_allowed(ctx, node);
186 	spin_unlock(&spu_prio->runq_lock);
187 
188 	return rval;
189 }
190 
191 void do_notify_spus_active(void)
192 {
193 	int node;
194 
195 	/*
196 	 * Wake up the active spu_contexts.
197 	 *
198 	 * When the awakened processes see their "notify_active" flag is set,
199 	 * they will call spu_switch_notify().
200 	 */
201 	for_each_online_node(node) {
202 		struct spu *spu;
203 
204 		mutex_lock(&cbe_spu_info[node].list_mutex);
205 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
206 			if (spu->alloc_state != SPU_FREE) {
207 				struct spu_context *ctx = spu->ctx;
208 				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
209 					&ctx->sched_flags);
210 				mb();
211 				wake_up_all(&ctx->stop_wq);
212 			}
213 		}
214 		mutex_unlock(&cbe_spu_info[node].list_mutex);
215 	}
216 }
217 
218 /**
219  * spu_bind_context - bind spu context to physical spu
220  * @spu:	physical spu to bind to
221  * @ctx:	context to bind
222  */
223 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
224 {
225 	spu_context_trace(spu_bind_context__enter, ctx, spu);
226 
227 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
228 
229 	if (ctx->flags & SPU_CREATE_NOSCHED)
230 		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
231 
232 	ctx->stats.slb_flt_base = spu->stats.slb_flt;
233 	ctx->stats.class2_intr_base = spu->stats.class2_intr;
234 
235 	spu_associate_mm(spu, ctx->owner);
236 
237 	spin_lock_irq(&spu->register_lock);
238 	spu->ctx = ctx;
239 	spu->flags = 0;
240 	ctx->spu = spu;
241 	ctx->ops = &spu_hw_ops;
242 	spu->pid = current->pid;
243 	spu->tgid = current->tgid;
244 	spu->ibox_callback = spufs_ibox_callback;
245 	spu->wbox_callback = spufs_wbox_callback;
246 	spu->stop_callback = spufs_stop_callback;
247 	spu->mfc_callback = spufs_mfc_callback;
248 	spin_unlock_irq(&spu->register_lock);
249 
250 	spu_unmap_mappings(ctx);
251 
252 	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
253 	spu_restore(&ctx->csa, spu);
254 	spu->timestamp = jiffies;
255 	spu_switch_notify(spu, ctx);
256 	ctx->state = SPU_STATE_RUNNABLE;
257 
258 	spuctx_switch_state(ctx, SPU_UTIL_USER);
259 }
260 
261 /*
262  * Must be used with the list_mutex held.
263  */
264 static inline int sched_spu(struct spu *spu)
265 {
266 	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
267 
268 	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
269 }
270 
271 static void aff_merge_remaining_ctxs(struct spu_gang *gang)
272 {
273 	struct spu_context *ctx;
274 
275 	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
276 		if (list_empty(&ctx->aff_list))
277 			list_add(&ctx->aff_list, &gang->aff_list_head);
278 	}
279 	gang->aff_flags |= AFF_MERGED;
280 }
281 
282 static void aff_set_offsets(struct spu_gang *gang)
283 {
284 	struct spu_context *ctx;
285 	int offset;
286 
287 	offset = -1;
288 	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
289 								aff_list) {
290 		if (&ctx->aff_list == &gang->aff_list_head)
291 			break;
292 		ctx->aff_offset = offset--;
293 	}
294 
295 	offset = 0;
296 	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
297 		if (&ctx->aff_list == &gang->aff_list_head)
298 			break;
299 		ctx->aff_offset = offset++;
300 	}
301 
302 	gang->aff_flags |= AFF_OFFSETS_SET;
303 }
304 
305 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
306 		 int group_size, int lowest_offset)
307 {
308 	struct spu *spu;
309 	int node, n;
310 
311 	/*
312 	 * TODO: A better algorithm could be used to find a good spu to be
313 	 *       used as reference location for the ctxs chain.
314 	 */
315 	node = cpu_to_node(raw_smp_processor_id());
316 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
317 		/*
318 		 * "available_spus" counts how many spus are not potentially
319 		 * going to be used by other affinity gangs whose reference
320 		 * context is already in place. Although this code seeks to
321 		 * avoid having affinity gangs with a summed amount of
322 		 * contexts bigger than the amount of spus in the node,
323 		 * this may happen sporadically. In this case, available_spus
324 		 * becomes negative, which is harmless.
325 		 */
326 		int available_spus;
327 
328 		node = (node < MAX_NUMNODES) ? node : 0;
329 		if (!node_allowed(ctx, node))
330 			continue;
331 
332 		available_spus = 0;
333 		mutex_lock(&cbe_spu_info[node].list_mutex);
334 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
335 			if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
336 					&& spu->ctx->gang->aff_ref_spu)
337 				available_spus -= spu->ctx->gang->contexts;
338 			available_spus++;
339 		}
340 		if (available_spus < ctx->gang->contexts) {
341 			mutex_unlock(&cbe_spu_info[node].list_mutex);
342 			continue;
343 		}
344 
345 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
346 			if ((!mem_aff || spu->has_mem_affinity) &&
347 							sched_spu(spu)) {
348 				mutex_unlock(&cbe_spu_info[node].list_mutex);
349 				return spu;
350 			}
351 		}
352 		mutex_unlock(&cbe_spu_info[node].list_mutex);
353 	}
354 	return NULL;
355 }
356 
357 static void aff_set_ref_point_location(struct spu_gang *gang)
358 {
359 	int mem_aff, gs, lowest_offset;
360 	struct spu_context *ctx;
361 	struct spu *tmp;
362 
363 	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
364 	lowest_offset = 0;
365 	gs = 0;
366 
367 	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
368 		gs++;
369 
370 	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
371 								aff_list) {
372 		if (&ctx->aff_list == &gang->aff_list_head)
373 			break;
374 		lowest_offset = ctx->aff_offset;
375 	}
376 
377 	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
378 							lowest_offset);
379 }
380 
381 static struct spu *ctx_location(struct spu *ref, int offset, int node)
382 {
383 	struct spu *spu;
384 
385 	spu = NULL;
386 	if (offset >= 0) {
387 		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
388 			BUG_ON(spu->node != node);
389 			if (offset == 0)
390 				break;
391 			if (sched_spu(spu))
392 				offset--;
393 		}
394 	} else {
395 		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
396 			BUG_ON(spu->node != node);
397 			if (offset == 0)
398 				break;
399 			if (sched_spu(spu))
400 				offset++;
401 		}
402 	}
403 
404 	return spu;
405 }
406 
407 /*
408  * affinity_check is called each time a context is going to be scheduled.
409  * It returns the spu ptr on which the context must run.
410  */
411 static int has_affinity(struct spu_context *ctx)
412 {
413 	struct spu_gang *gang = ctx->gang;
414 
415 	if (list_empty(&ctx->aff_list))
416 		return 0;
417 
418 	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
419 		ctx->gang->aff_ref_spu = NULL;
420 
421 	if (!gang->aff_ref_spu) {
422 		if (!(gang->aff_flags & AFF_MERGED))
423 			aff_merge_remaining_ctxs(gang);
424 		if (!(gang->aff_flags & AFF_OFFSETS_SET))
425 			aff_set_offsets(gang);
426 		aff_set_ref_point_location(gang);
427 	}
428 
429 	return gang->aff_ref_spu != NULL;
430 }
431 
432 /**
433  * spu_unbind_context - unbind spu context from physical spu
434  * @spu:	physical spu to unbind from
435  * @ctx:	context to unbind
436  */
437 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
438 {
439 	u32 status;
440 
441 	spu_context_trace(spu_unbind_context__enter, ctx, spu);
442 
443 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
444 
445  	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
446 		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
447 
448 	if (ctx->gang)
449 		/*
450 		 * If ctx->gang->aff_sched_count is positive, SPU affinity is
451 		 * being considered in this gang. Using atomic_dec_if_positive
452 		 * allow us to skip an explicit check for affinity in this gang
453 		 */
454 		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
455 
456 	spu_switch_notify(spu, NULL);
457 	spu_unmap_mappings(ctx);
458 	spu_save(&ctx->csa, spu);
459 	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
460 
461 	spin_lock_irq(&spu->register_lock);
462 	spu->timestamp = jiffies;
463 	ctx->state = SPU_STATE_SAVED;
464 	spu->ibox_callback = NULL;
465 	spu->wbox_callback = NULL;
466 	spu->stop_callback = NULL;
467 	spu->mfc_callback = NULL;
468 	spu->pid = 0;
469 	spu->tgid = 0;
470 	ctx->ops = &spu_backing_ops;
471 	spu->flags = 0;
472 	spu->ctx = NULL;
473 	spin_unlock_irq(&spu->register_lock);
474 
475 	spu_associate_mm(spu, NULL);
476 
477 	ctx->stats.slb_flt +=
478 		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
479 	ctx->stats.class2_intr +=
480 		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
481 
482 	/* This maps the underlying spu state to idle */
483 	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
484 	ctx->spu = NULL;
485 
486 	if (spu_stopped(ctx, &status))
487 		wake_up_all(&ctx->stop_wq);
488 }
489 
490 /**
491  * spu_add_to_rq - add a context to the runqueue
492  * @ctx:       context to add
493  */
494 static void __spu_add_to_rq(struct spu_context *ctx)
495 {
496 	/*
497 	 * Unfortunately this code path can be called from multiple threads
498 	 * on behalf of a single context due to the way the problem state
499 	 * mmap support works.
500 	 *
501 	 * Fortunately we need to wake up all these threads at the same time
502 	 * and can simply skip the runqueue addition for every but the first
503 	 * thread getting into this codepath.
504 	 *
505 	 * It's still quite hacky, and long-term we should proxy all other
506 	 * threads through the owner thread so that spu_run is in control
507 	 * of all the scheduling activity for a given context.
508 	 */
509 	if (list_empty(&ctx->rq)) {
510 		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
511 		set_bit(ctx->prio, spu_prio->bitmap);
512 		if (!spu_prio->nr_waiting++)
513 			mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
514 	}
515 }
516 
517 static void spu_add_to_rq(struct spu_context *ctx)
518 {
519 	spin_lock(&spu_prio->runq_lock);
520 	__spu_add_to_rq(ctx);
521 	spin_unlock(&spu_prio->runq_lock);
522 }
523 
524 static void __spu_del_from_rq(struct spu_context *ctx)
525 {
526 	int prio = ctx->prio;
527 
528 	if (!list_empty(&ctx->rq)) {
529 		if (!--spu_prio->nr_waiting)
530 			del_timer(&spusched_timer);
531 		list_del_init(&ctx->rq);
532 
533 		if (list_empty(&spu_prio->runq[prio]))
534 			clear_bit(prio, spu_prio->bitmap);
535 	}
536 }
537 
538 void spu_del_from_rq(struct spu_context *ctx)
539 {
540 	spin_lock(&spu_prio->runq_lock);
541 	__spu_del_from_rq(ctx);
542 	spin_unlock(&spu_prio->runq_lock);
543 }
544 
545 static void spu_prio_wait(struct spu_context *ctx)
546 {
547 	DEFINE_WAIT(wait);
548 
549 	/*
550 	 * The caller must explicitly wait for a context to be loaded
551 	 * if the nosched flag is set.  If NOSCHED is not set, the caller
552 	 * queues the context and waits for an spu event or error.
553 	 */
554 	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
555 
556 	spin_lock(&spu_prio->runq_lock);
557 	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
558 	if (!signal_pending(current)) {
559 		__spu_add_to_rq(ctx);
560 		spin_unlock(&spu_prio->runq_lock);
561 		mutex_unlock(&ctx->state_mutex);
562 		schedule();
563 		mutex_lock(&ctx->state_mutex);
564 		spin_lock(&spu_prio->runq_lock);
565 		__spu_del_from_rq(ctx);
566 	}
567 	spin_unlock(&spu_prio->runq_lock);
568 	__set_current_state(TASK_RUNNING);
569 	remove_wait_queue(&ctx->stop_wq, &wait);
570 }
571 
572 static struct spu *spu_get_idle(struct spu_context *ctx)
573 {
574 	struct spu *spu, *aff_ref_spu;
575 	int node, n;
576 
577 	spu_context_nospu_trace(spu_get_idle__enter, ctx);
578 
579 	if (ctx->gang) {
580 		mutex_lock(&ctx->gang->aff_mutex);
581 		if (has_affinity(ctx)) {
582 			aff_ref_spu = ctx->gang->aff_ref_spu;
583 			atomic_inc(&ctx->gang->aff_sched_count);
584 			mutex_unlock(&ctx->gang->aff_mutex);
585 			node = aff_ref_spu->node;
586 
587 			mutex_lock(&cbe_spu_info[node].list_mutex);
588 			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
589 			if (spu && spu->alloc_state == SPU_FREE)
590 				goto found;
591 			mutex_unlock(&cbe_spu_info[node].list_mutex);
592 
593 			atomic_dec(&ctx->gang->aff_sched_count);
594 			goto not_found;
595 		}
596 		mutex_unlock(&ctx->gang->aff_mutex);
597 	}
598 	node = cpu_to_node(raw_smp_processor_id());
599 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
600 		node = (node < MAX_NUMNODES) ? node : 0;
601 		if (!node_allowed(ctx, node))
602 			continue;
603 
604 		mutex_lock(&cbe_spu_info[node].list_mutex);
605 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
606 			if (spu->alloc_state == SPU_FREE)
607 				goto found;
608 		}
609 		mutex_unlock(&cbe_spu_info[node].list_mutex);
610 	}
611 
612  not_found:
613 	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
614 	return NULL;
615 
616  found:
617 	spu->alloc_state = SPU_USED;
618 	mutex_unlock(&cbe_spu_info[node].list_mutex);
619 	spu_context_trace(spu_get_idle__found, ctx, spu);
620 	spu_init_channels(spu);
621 	return spu;
622 }
623 
624 /**
625  * find_victim - find a lower priority context to preempt
626  * @ctx:	candidate context for running
627  *
628  * Returns the freed physical spu to run the new context on.
629  */
630 static struct spu *find_victim(struct spu_context *ctx)
631 {
632 	struct spu_context *victim = NULL;
633 	struct spu *spu;
634 	int node, n;
635 
636 	spu_context_nospu_trace(spu_find_victim__enter, ctx);
637 
638 	/*
639 	 * Look for a possible preemption candidate on the local node first.
640 	 * If there is no candidate look at the other nodes.  This isn't
641 	 * exactly fair, but so far the whole spu scheduler tries to keep
642 	 * a strong node affinity.  We might want to fine-tune this in
643 	 * the future.
644 	 */
645  restart:
646 	node = cpu_to_node(raw_smp_processor_id());
647 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
648 		node = (node < MAX_NUMNODES) ? node : 0;
649 		if (!node_allowed(ctx, node))
650 			continue;
651 
652 		mutex_lock(&cbe_spu_info[node].list_mutex);
653 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
654 			struct spu_context *tmp = spu->ctx;
655 
656 			if (tmp && tmp->prio > ctx->prio &&
657 			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
658 			    (!victim || tmp->prio > victim->prio)) {
659 				victim = spu->ctx;
660 			}
661 		}
662 		if (victim)
663 			get_spu_context(victim);
664 		mutex_unlock(&cbe_spu_info[node].list_mutex);
665 
666 		if (victim) {
667 			/*
668 			 * This nests ctx->state_mutex, but we always lock
669 			 * higher priority contexts before lower priority
670 			 * ones, so this is safe until we introduce
671 			 * priority inheritance schemes.
672 			 *
673 			 * XXX if the highest priority context is locked,
674 			 * this can loop a long time.  Might be better to
675 			 * look at another context or give up after X retries.
676 			 */
677 			if (!mutex_trylock(&victim->state_mutex)) {
678 				put_spu_context(victim);
679 				victim = NULL;
680 				goto restart;
681 			}
682 
683 			spu = victim->spu;
684 			if (!spu || victim->prio <= ctx->prio) {
685 				/*
686 				 * This race can happen because we've dropped
687 				 * the active list mutex.  Not a problem, just
688 				 * restart the search.
689 				 */
690 				mutex_unlock(&victim->state_mutex);
691 				put_spu_context(victim);
692 				victim = NULL;
693 				goto restart;
694 			}
695 
696 			spu_context_trace(__spu_deactivate__unload, ctx, spu);
697 
698 			mutex_lock(&cbe_spu_info[node].list_mutex);
699 			cbe_spu_info[node].nr_active--;
700 			spu_unbind_context(spu, victim);
701 			mutex_unlock(&cbe_spu_info[node].list_mutex);
702 
703 			victim->stats.invol_ctx_switch++;
704 			spu->stats.invol_ctx_switch++;
705 			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
706 				spu_add_to_rq(victim);
707 
708 			mutex_unlock(&victim->state_mutex);
709 			put_spu_context(victim);
710 
711 			return spu;
712 		}
713 	}
714 
715 	return NULL;
716 }
717 
718 static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
719 {
720 	int node = spu->node;
721 	int success = 0;
722 
723 	spu_set_timeslice(ctx);
724 
725 	mutex_lock(&cbe_spu_info[node].list_mutex);
726 	if (spu->ctx == NULL) {
727 		spu_bind_context(spu, ctx);
728 		cbe_spu_info[node].nr_active++;
729 		spu->alloc_state = SPU_USED;
730 		success = 1;
731 	}
732 	mutex_unlock(&cbe_spu_info[node].list_mutex);
733 
734 	if (success)
735 		wake_up_all(&ctx->run_wq);
736 	else
737 		spu_add_to_rq(ctx);
738 }
739 
740 static void spu_schedule(struct spu *spu, struct spu_context *ctx)
741 {
742 	/* not a candidate for interruptible because it's called either
743 	   from the scheduler thread or from spu_deactivate */
744 	mutex_lock(&ctx->state_mutex);
745 	if (ctx->state == SPU_STATE_SAVED)
746 		__spu_schedule(spu, ctx);
747 	spu_release(ctx);
748 }
749 
750 /**
751  * spu_unschedule - remove a context from a spu, and possibly release it.
752  * @spu:	The SPU to unschedule from
753  * @ctx:	The context currently scheduled on the SPU
754  * @free_spu	Whether to free the SPU for other contexts
755  *
756  * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
757  * SPU is made available for other contexts (ie, may be returned by
758  * spu_get_idle). If this is zero, the caller is expected to schedule another
759  * context to this spu.
760  *
761  * Should be called with ctx->state_mutex held.
762  */
763 static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
764 		int free_spu)
765 {
766 	int node = spu->node;
767 
768 	mutex_lock(&cbe_spu_info[node].list_mutex);
769 	cbe_spu_info[node].nr_active--;
770 	if (free_spu)
771 		spu->alloc_state = SPU_FREE;
772 	spu_unbind_context(spu, ctx);
773 	ctx->stats.invol_ctx_switch++;
774 	spu->stats.invol_ctx_switch++;
775 	mutex_unlock(&cbe_spu_info[node].list_mutex);
776 }
777 
778 /**
779  * spu_activate - find a free spu for a context and execute it
780  * @ctx:	spu context to schedule
781  * @flags:	flags (currently ignored)
782  *
783  * Tries to find a free spu to run @ctx.  If no free spu is available
784  * add the context to the runqueue so it gets woken up once an spu
785  * is available.
786  */
787 int spu_activate(struct spu_context *ctx, unsigned long flags)
788 {
789 	struct spu *spu;
790 
791 	/*
792 	 * If there are multiple threads waiting for a single context
793 	 * only one actually binds the context while the others will
794 	 * only be able to acquire the state_mutex once the context
795 	 * already is in runnable state.
796 	 */
797 	if (ctx->spu)
798 		return 0;
799 
800 spu_activate_top:
801 	if (signal_pending(current))
802 		return -ERESTARTSYS;
803 
804 	spu = spu_get_idle(ctx);
805 	/*
806 	 * If this is a realtime thread we try to get it running by
807 	 * preempting a lower priority thread.
808 	 */
809 	if (!spu && rt_prio(ctx->prio))
810 		spu = find_victim(ctx);
811 	if (spu) {
812 		unsigned long runcntl;
813 
814 		runcntl = ctx->ops->runcntl_read(ctx);
815 		__spu_schedule(spu, ctx);
816 		if (runcntl & SPU_RUNCNTL_RUNNABLE)
817 			spuctx_switch_state(ctx, SPU_UTIL_USER);
818 
819 		return 0;
820 	}
821 
822 	if (ctx->flags & SPU_CREATE_NOSCHED) {
823 		spu_prio_wait(ctx);
824 		goto spu_activate_top;
825 	}
826 
827 	spu_add_to_rq(ctx);
828 
829 	return 0;
830 }
831 
832 /**
833  * grab_runnable_context - try to find a runnable context
834  *
835  * Remove the highest priority context on the runqueue and return it
836  * to the caller.  Returns %NULL if no runnable context was found.
837  */
838 static struct spu_context *grab_runnable_context(int prio, int node)
839 {
840 	struct spu_context *ctx;
841 	int best;
842 
843 	spin_lock(&spu_prio->runq_lock);
844 	best = find_first_bit(spu_prio->bitmap, prio);
845 	while (best < prio) {
846 		struct list_head *rq = &spu_prio->runq[best];
847 
848 		list_for_each_entry(ctx, rq, rq) {
849 			/* XXX(hch): check for affinity here as well */
850 			if (__node_allowed(ctx, node)) {
851 				__spu_del_from_rq(ctx);
852 				goto found;
853 			}
854 		}
855 		best++;
856 	}
857 	ctx = NULL;
858  found:
859 	spin_unlock(&spu_prio->runq_lock);
860 	return ctx;
861 }
862 
863 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
864 {
865 	struct spu *spu = ctx->spu;
866 	struct spu_context *new = NULL;
867 
868 	if (spu) {
869 		new = grab_runnable_context(max_prio, spu->node);
870 		if (new || force) {
871 			spu_unschedule(spu, ctx, new == NULL);
872 			if (new) {
873 				if (new->flags & SPU_CREATE_NOSCHED)
874 					wake_up(&new->stop_wq);
875 				else {
876 					spu_release(ctx);
877 					spu_schedule(spu, new);
878 					/* this one can't easily be made
879 					   interruptible */
880 					mutex_lock(&ctx->state_mutex);
881 				}
882 			}
883 		}
884 	}
885 
886 	return new != NULL;
887 }
888 
889 /**
890  * spu_deactivate - unbind a context from it's physical spu
891  * @ctx:	spu context to unbind
892  *
893  * Unbind @ctx from the physical spu it is running on and schedule
894  * the highest priority context to run on the freed physical spu.
895  */
896 void spu_deactivate(struct spu_context *ctx)
897 {
898 	spu_context_nospu_trace(spu_deactivate__enter, ctx);
899 	__spu_deactivate(ctx, 1, MAX_PRIO);
900 }
901 
902 /**
903  * spu_yield -	yield a physical spu if others are waiting
904  * @ctx:	spu context to yield
905  *
906  * Check if there is a higher priority context waiting and if yes
907  * unbind @ctx from the physical spu and schedule the highest
908  * priority context to run on the freed physical spu instead.
909  */
910 void spu_yield(struct spu_context *ctx)
911 {
912 	spu_context_nospu_trace(spu_yield__enter, ctx);
913 	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
914 		mutex_lock(&ctx->state_mutex);
915 		__spu_deactivate(ctx, 0, MAX_PRIO);
916 		mutex_unlock(&ctx->state_mutex);
917 	}
918 }
919 
920 static noinline void spusched_tick(struct spu_context *ctx)
921 {
922 	struct spu_context *new = NULL;
923 	struct spu *spu = NULL;
924 
925 	if (spu_acquire(ctx))
926 		BUG();	/* a kernel thread never has signals pending */
927 
928 	if (ctx->state != SPU_STATE_RUNNABLE)
929 		goto out;
930 	if (ctx->flags & SPU_CREATE_NOSCHED)
931 		goto out;
932 	if (ctx->policy == SCHED_FIFO)
933 		goto out;
934 
935 	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
936 		goto out;
937 
938 	spu = ctx->spu;
939 
940 	spu_context_trace(spusched_tick__preempt, ctx, spu);
941 
942 	new = grab_runnable_context(ctx->prio + 1, spu->node);
943 	if (new) {
944 		spu_unschedule(spu, ctx, 0);
945 		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
946 			spu_add_to_rq(ctx);
947 	} else {
948 		spu_context_nospu_trace(spusched_tick__newslice, ctx);
949 		if (!ctx->time_slice)
950 			ctx->time_slice++;
951 	}
952 out:
953 	spu_release(ctx);
954 
955 	if (new)
956 		spu_schedule(spu, new);
957 }
958 
959 /**
960  * count_active_contexts - count nr of active tasks
961  *
962  * Return the number of tasks currently running or waiting to run.
963  *
964  * Note that we don't take runq_lock / list_mutex here.  Reading
965  * a single 32bit value is atomic on powerpc, and we don't care
966  * about memory ordering issues here.
967  */
968 static unsigned long count_active_contexts(void)
969 {
970 	int nr_active = 0, node;
971 
972 	for (node = 0; node < MAX_NUMNODES; node++)
973 		nr_active += cbe_spu_info[node].nr_active;
974 	nr_active += spu_prio->nr_waiting;
975 
976 	return nr_active;
977 }
978 
979 /**
980  * spu_calc_load - update the avenrun load estimates.
981  *
982  * No locking against reading these values from userspace, as for
983  * the CPU loadavg code.
984  */
985 static void spu_calc_load(void)
986 {
987 	unsigned long active_tasks; /* fixed-point */
988 
989 	active_tasks = count_active_contexts() * FIXED_1;
990 	spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks);
991 	spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks);
992 	spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks);
993 }
994 
995 static void spusched_wake(struct timer_list *unused)
996 {
997 	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
998 	wake_up_process(spusched_task);
999 }
1000 
1001 static void spuloadavg_wake(struct timer_list *unused)
1002 {
1003 	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
1004 	spu_calc_load();
1005 }
1006 
1007 static int spusched_thread(void *unused)
1008 {
1009 	struct spu *spu;
1010 	int node;
1011 
1012 	while (!kthread_should_stop()) {
1013 		set_current_state(TASK_INTERRUPTIBLE);
1014 		schedule();
1015 		for (node = 0; node < MAX_NUMNODES; node++) {
1016 			struct mutex *mtx = &cbe_spu_info[node].list_mutex;
1017 
1018 			mutex_lock(mtx);
1019 			list_for_each_entry(spu, &cbe_spu_info[node].spus,
1020 					cbe_list) {
1021 				struct spu_context *ctx = spu->ctx;
1022 
1023 				if (ctx) {
1024 					get_spu_context(ctx);
1025 					mutex_unlock(mtx);
1026 					spusched_tick(ctx);
1027 					mutex_lock(mtx);
1028 					put_spu_context(ctx);
1029 				}
1030 			}
1031 			mutex_unlock(mtx);
1032 		}
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 void spuctx_switch_state(struct spu_context *ctx,
1039 		enum spu_utilization_state new_state)
1040 {
1041 	unsigned long long curtime;
1042 	signed long long delta;
1043 	struct spu *spu;
1044 	enum spu_utilization_state old_state;
1045 	int node;
1046 
1047 	curtime = ktime_get_ns();
1048 	delta = curtime - ctx->stats.tstamp;
1049 
1050 	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1051 	WARN_ON(delta < 0);
1052 
1053 	spu = ctx->spu;
1054 	old_state = ctx->stats.util_state;
1055 	ctx->stats.util_state = new_state;
1056 	ctx->stats.tstamp = curtime;
1057 
1058 	/*
1059 	 * Update the physical SPU utilization statistics.
1060 	 */
1061 	if (spu) {
1062 		ctx->stats.times[old_state] += delta;
1063 		spu->stats.times[old_state] += delta;
1064 		spu->stats.util_state = new_state;
1065 		spu->stats.tstamp = curtime;
1066 		node = spu->node;
1067 		if (old_state == SPU_UTIL_USER)
1068 			atomic_dec(&cbe_spu_info[node].busy_spus);
1069 		if (new_state == SPU_UTIL_USER)
1070 			atomic_inc(&cbe_spu_info[node].busy_spus);
1071 	}
1072 }
1073 
1074 static int show_spu_loadavg(struct seq_file *s, void *private)
1075 {
1076 	int a, b, c;
1077 
1078 	a = spu_avenrun[0] + (FIXED_1/200);
1079 	b = spu_avenrun[1] + (FIXED_1/200);
1080 	c = spu_avenrun[2] + (FIXED_1/200);
1081 
1082 	/*
1083 	 * Note that last_pid doesn't really make much sense for the
1084 	 * SPU loadavg (it even seems very odd on the CPU side...),
1085 	 * but we include it here to have a 100% compatible interface.
1086 	 */
1087 	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1088 		LOAD_INT(a), LOAD_FRAC(a),
1089 		LOAD_INT(b), LOAD_FRAC(b),
1090 		LOAD_INT(c), LOAD_FRAC(c),
1091 		count_active_contexts(),
1092 		atomic_read(&nr_spu_contexts),
1093 		idr_get_cursor(&task_active_pid_ns(current)->idr) - 1);
1094 	return 0;
1095 };
1096 
1097 int __init spu_sched_init(void)
1098 {
1099 	struct proc_dir_entry *entry;
1100 	int err = -ENOMEM, i;
1101 
1102 	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1103 	if (!spu_prio)
1104 		goto out;
1105 
1106 	for (i = 0; i < MAX_PRIO; i++) {
1107 		INIT_LIST_HEAD(&spu_prio->runq[i]);
1108 		__clear_bit(i, spu_prio->bitmap);
1109 	}
1110 	spin_lock_init(&spu_prio->runq_lock);
1111 
1112 	timer_setup(&spusched_timer, spusched_wake, 0);
1113 	timer_setup(&spuloadavg_timer, spuloadavg_wake, 0);
1114 
1115 	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1116 	if (IS_ERR(spusched_task)) {
1117 		err = PTR_ERR(spusched_task);
1118 		goto out_free_spu_prio;
1119 	}
1120 
1121 	mod_timer(&spuloadavg_timer, 0);
1122 
1123 	entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg);
1124 	if (!entry)
1125 		goto out_stop_kthread;
1126 
1127 	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1128 			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1129 	return 0;
1130 
1131  out_stop_kthread:
1132 	kthread_stop(spusched_task);
1133  out_free_spu_prio:
1134 	kfree(spu_prio);
1135  out:
1136 	return err;
1137 }
1138 
1139 void spu_sched_exit(void)
1140 {
1141 	struct spu *spu;
1142 	int node;
1143 
1144 	remove_proc_entry("spu_loadavg", NULL);
1145 
1146 	del_timer_sync(&spusched_timer);
1147 	del_timer_sync(&spuloadavg_timer);
1148 	kthread_stop(spusched_task);
1149 
1150 	for (node = 0; node < MAX_NUMNODES; node++) {
1151 		mutex_lock(&cbe_spu_info[node].list_mutex);
1152 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1153 			if (spu->alloc_state != SPU_FREE)
1154 				spu->alloc_state = SPU_FREE;
1155 		mutex_unlock(&cbe_spu_info[node].list_mutex);
1156 	}
1157 	kfree(spu_prio);
1158 }
1159