1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * spu management operations for of based platforms 4 * 5 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 6 * Copyright 2006 Sony Corp. 7 * (C) Copyright 2007 TOSHIBA CORPORATION 8 */ 9 10 #include <linux/interrupt.h> 11 #include <linux/list.h> 12 #include <linux/export.h> 13 #include <linux/ptrace.h> 14 #include <linux/wait.h> 15 #include <linux/mm.h> 16 #include <linux/io.h> 17 #include <linux/mutex.h> 18 #include <linux/device.h> 19 #include <linux/of_address.h> 20 #include <linux/of_irq.h> 21 22 #include <asm/spu.h> 23 #include <asm/spu_priv1.h> 24 #include <asm/firmware.h> 25 26 #include "spufs/spufs.h" 27 #include "interrupt.h" 28 #include "spu_priv1_mmio.h" 29 30 struct device_node *spu_devnode(struct spu *spu) 31 { 32 return spu->devnode; 33 } 34 35 EXPORT_SYMBOL_GPL(spu_devnode); 36 37 static u64 __init find_spu_unit_number(struct device_node *spe) 38 { 39 const unsigned int *prop; 40 int proplen; 41 42 /* new device trees should provide the physical-id attribute */ 43 prop = of_get_property(spe, "physical-id", &proplen); 44 if (proplen == 4) 45 return (u64)*prop; 46 47 /* celleb device tree provides the unit-id */ 48 prop = of_get_property(spe, "unit-id", &proplen); 49 if (proplen == 4) 50 return (u64)*prop; 51 52 /* legacy device trees provide the id in the reg attribute */ 53 prop = of_get_property(spe, "reg", &proplen); 54 if (proplen == 4) 55 return (u64)*prop; 56 57 return 0; 58 } 59 60 static void spu_unmap(struct spu *spu) 61 { 62 if (!firmware_has_feature(FW_FEATURE_LPAR)) 63 iounmap(spu->priv1); 64 iounmap(spu->priv2); 65 iounmap(spu->problem); 66 iounmap((__force u8 __iomem *)spu->local_store); 67 } 68 69 static int __init spu_map_interrupts_old(struct spu *spu, 70 struct device_node *np) 71 { 72 unsigned int isrc; 73 const u32 *tmp; 74 int nid; 75 76 /* Get the interrupt source unit from the device-tree */ 77 tmp = of_get_property(np, "isrc", NULL); 78 if (!tmp) 79 return -ENODEV; 80 isrc = tmp[0]; 81 82 tmp = of_get_property(np->parent->parent, "node-id", NULL); 83 if (!tmp) { 84 printk(KERN_WARNING "%s: can't find node-id\n", __func__); 85 nid = spu->node; 86 } else 87 nid = tmp[0]; 88 89 /* Add the node number */ 90 isrc |= nid << IIC_IRQ_NODE_SHIFT; 91 92 /* Now map interrupts of all 3 classes */ 93 spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc); 94 spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc); 95 spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc); 96 97 /* Right now, we only fail if class 2 failed */ 98 if (!spu->irqs[2]) 99 return -EINVAL; 100 101 return 0; 102 } 103 104 static void __iomem * __init spu_map_prop_old(struct spu *spu, 105 struct device_node *n, 106 const char *name) 107 { 108 const struct address_prop { 109 unsigned long address; 110 unsigned int len; 111 } __attribute__((packed)) *prop; 112 int proplen; 113 114 prop = of_get_property(n, name, &proplen); 115 if (prop == NULL || proplen != sizeof (struct address_prop)) 116 return NULL; 117 118 return ioremap(prop->address, prop->len); 119 } 120 121 static int __init spu_map_device_old(struct spu *spu) 122 { 123 struct device_node *node = spu->devnode; 124 const char *prop; 125 int ret; 126 127 ret = -ENODEV; 128 spu->name = of_get_property(node, "name", NULL); 129 if (!spu->name) 130 goto out; 131 132 prop = of_get_property(node, "local-store", NULL); 133 if (!prop) 134 goto out; 135 spu->local_store_phys = *(unsigned long *)prop; 136 137 /* we use local store as ram, not io memory */ 138 spu->local_store = (void __force *) 139 spu_map_prop_old(spu, node, "local-store"); 140 if (!spu->local_store) 141 goto out; 142 143 prop = of_get_property(node, "problem", NULL); 144 if (!prop) 145 goto out_unmap; 146 spu->problem_phys = *(unsigned long *)prop; 147 148 spu->problem = spu_map_prop_old(spu, node, "problem"); 149 if (!spu->problem) 150 goto out_unmap; 151 152 spu->priv2 = spu_map_prop_old(spu, node, "priv2"); 153 if (!spu->priv2) 154 goto out_unmap; 155 156 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 157 spu->priv1 = spu_map_prop_old(spu, node, "priv1"); 158 if (!spu->priv1) 159 goto out_unmap; 160 } 161 162 ret = 0; 163 goto out; 164 165 out_unmap: 166 spu_unmap(spu); 167 out: 168 return ret; 169 } 170 171 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np) 172 { 173 int i; 174 175 for (i=0; i < 3; i++) { 176 spu->irqs[i] = irq_of_parse_and_map(np, i); 177 if (!spu->irqs[i]) 178 goto err; 179 } 180 return 0; 181 182 err: 183 pr_debug("failed to map irq %x for spu %s\n", i, spu->name); 184 for (; i >= 0; i--) { 185 if (spu->irqs[i]) 186 irq_dispose_mapping(spu->irqs[i]); 187 } 188 return -EINVAL; 189 } 190 191 static int __init spu_map_resource(struct spu *spu, int nr, 192 void __iomem** virt, unsigned long *phys) 193 { 194 struct device_node *np = spu->devnode; 195 struct resource resource = { }; 196 unsigned long len; 197 int ret; 198 199 ret = of_address_to_resource(np, nr, &resource); 200 if (ret) 201 return ret; 202 if (phys) 203 *phys = resource.start; 204 len = resource_size(&resource); 205 *virt = ioremap(resource.start, len); 206 if (!*virt) 207 return -EINVAL; 208 return 0; 209 } 210 211 static int __init spu_map_device(struct spu *spu) 212 { 213 struct device_node *np = spu->devnode; 214 int ret = -ENODEV; 215 216 spu->name = of_get_property(np, "name", NULL); 217 if (!spu->name) 218 goto out; 219 220 ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store, 221 &spu->local_store_phys); 222 if (ret) { 223 pr_debug("spu_new: failed to map %pOF resource 0\n", 224 np); 225 goto out; 226 } 227 ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem, 228 &spu->problem_phys); 229 if (ret) { 230 pr_debug("spu_new: failed to map %pOF resource 1\n", 231 np); 232 goto out_unmap; 233 } 234 ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL); 235 if (ret) { 236 pr_debug("spu_new: failed to map %pOF resource 2\n", 237 np); 238 goto out_unmap; 239 } 240 if (!firmware_has_feature(FW_FEATURE_LPAR)) 241 ret = spu_map_resource(spu, 3, 242 (void __iomem**)&spu->priv1, NULL); 243 if (ret) { 244 pr_debug("spu_new: failed to map %pOF resource 3\n", 245 np); 246 goto out_unmap; 247 } 248 pr_debug("spu_new: %pOF maps:\n", np); 249 pr_debug(" local store : 0x%016lx -> 0x%p\n", 250 spu->local_store_phys, spu->local_store); 251 pr_debug(" problem state : 0x%016lx -> 0x%p\n", 252 spu->problem_phys, spu->problem); 253 pr_debug(" priv2 : 0x%p\n", spu->priv2); 254 pr_debug(" priv1 : 0x%p\n", spu->priv1); 255 256 return 0; 257 258 out_unmap: 259 spu_unmap(spu); 260 out: 261 pr_debug("failed to map spe %s: %d\n", spu->name, ret); 262 return ret; 263 } 264 265 static int __init of_enumerate_spus(int (*fn)(void *data)) 266 { 267 int ret; 268 struct device_node *node; 269 unsigned int n = 0; 270 271 ret = -ENODEV; 272 for_each_node_by_type(node, "spe") { 273 ret = fn(node); 274 if (ret) { 275 printk(KERN_WARNING "%s: Error initializing %pOFn\n", 276 __func__, node); 277 of_node_put(node); 278 break; 279 } 280 n++; 281 } 282 return ret ? ret : n; 283 } 284 285 static int __init of_create_spu(struct spu *spu, void *data) 286 { 287 int ret; 288 struct device_node *spe = (struct device_node *)data; 289 static int legacy_map = 0, legacy_irq = 0; 290 291 spu->devnode = of_node_get(spe); 292 spu->spe_id = find_spu_unit_number(spe); 293 294 spu->node = of_node_to_nid(spe); 295 if (spu->node >= MAX_NUMNODES) { 296 printk(KERN_WARNING "SPE %pOF on node %d ignored," 297 " node number too big\n", spe, spu->node); 298 printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n"); 299 ret = -ENODEV; 300 goto out; 301 } 302 303 ret = spu_map_device(spu); 304 if (ret) { 305 if (!legacy_map) { 306 legacy_map = 1; 307 printk(KERN_WARNING "%s: Legacy device tree found, " 308 "trying to map old style\n", __func__); 309 } 310 ret = spu_map_device_old(spu); 311 if (ret) { 312 printk(KERN_ERR "Unable to map %s\n", 313 spu->name); 314 goto out; 315 } 316 } 317 318 ret = spu_map_interrupts(spu, spe); 319 if (ret) { 320 if (!legacy_irq) { 321 legacy_irq = 1; 322 printk(KERN_WARNING "%s: Legacy device tree found, " 323 "trying old style irq\n", __func__); 324 } 325 ret = spu_map_interrupts_old(spu, spe); 326 if (ret) { 327 printk(KERN_ERR "%s: could not map interrupts\n", 328 spu->name); 329 goto out_unmap; 330 } 331 } 332 333 pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name, 334 spu->local_store, spu->problem, spu->priv1, 335 spu->priv2, spu->number); 336 goto out; 337 338 out_unmap: 339 spu_unmap(spu); 340 out: 341 return ret; 342 } 343 344 static int of_destroy_spu(struct spu *spu) 345 { 346 spu_unmap(spu); 347 of_node_put(spu->devnode); 348 return 0; 349 } 350 351 static void enable_spu_by_master_run(struct spu_context *ctx) 352 { 353 ctx->ops->master_start(ctx); 354 } 355 356 static void disable_spu_by_master_run(struct spu_context *ctx) 357 { 358 ctx->ops->master_stop(ctx); 359 } 360 361 /* Hardcoded affinity idxs for qs20 */ 362 #define QS20_SPES_PER_BE 8 363 static int qs20_reg_idxs[QS20_SPES_PER_BE] = { 0, 2, 4, 6, 7, 5, 3, 1 }; 364 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 }; 365 366 static struct spu *__init spu_lookup_reg(int node, u32 reg) 367 { 368 struct spu *spu; 369 const u32 *spu_reg; 370 371 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 372 spu_reg = of_get_property(spu_devnode(spu), "reg", NULL); 373 if (*spu_reg == reg) 374 return spu; 375 } 376 return NULL; 377 } 378 379 static void __init init_affinity_qs20_harcoded(void) 380 { 381 int node, i; 382 struct spu *last_spu, *spu; 383 u32 reg; 384 385 for (node = 0; node < MAX_NUMNODES; node++) { 386 last_spu = NULL; 387 for (i = 0; i < QS20_SPES_PER_BE; i++) { 388 reg = qs20_reg_idxs[i]; 389 spu = spu_lookup_reg(node, reg); 390 if (!spu) 391 continue; 392 spu->has_mem_affinity = qs20_reg_memory[reg]; 393 if (last_spu) 394 list_add_tail(&spu->aff_list, 395 &last_spu->aff_list); 396 last_spu = spu; 397 } 398 } 399 } 400 401 static int __init of_has_vicinity(void) 402 { 403 struct device_node *dn; 404 405 for_each_node_by_type(dn, "spe") { 406 if (of_property_present(dn, "vicinity")) { 407 of_node_put(dn); 408 return 1; 409 } 410 } 411 return 0; 412 } 413 414 static struct spu *__init devnode_spu(int cbe, struct device_node *dn) 415 { 416 struct spu *spu; 417 418 list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) 419 if (spu_devnode(spu) == dn) 420 return spu; 421 return NULL; 422 } 423 424 static struct spu * __init 425 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid) 426 { 427 struct spu *spu; 428 struct device_node *spu_dn; 429 const phandle *vic_handles; 430 int lenp, i; 431 432 list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) { 433 spu_dn = spu_devnode(spu); 434 if (spu_dn == avoid) 435 continue; 436 vic_handles = of_get_property(spu_dn, "vicinity", &lenp); 437 for (i=0; i < (lenp / sizeof(phandle)); i++) { 438 if (vic_handles[i] == target->phandle) 439 return spu; 440 } 441 } 442 return NULL; 443 } 444 445 static void __init init_affinity_node(int cbe) 446 { 447 struct spu *spu, *last_spu; 448 struct device_node *vic_dn, *last_spu_dn; 449 phandle avoid_ph; 450 const phandle *vic_handles; 451 int lenp, i, added; 452 453 last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu, 454 cbe_list); 455 avoid_ph = 0; 456 for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) { 457 last_spu_dn = spu_devnode(last_spu); 458 vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp); 459 460 /* 461 * Walk through each phandle in vicinity property of the spu 462 * (typically two vicinity phandles per spe node) 463 */ 464 for (i = 0; i < (lenp / sizeof(phandle)); i++) { 465 if (vic_handles[i] == avoid_ph) 466 continue; 467 468 vic_dn = of_find_node_by_phandle(vic_handles[i]); 469 if (!vic_dn) 470 continue; 471 472 if (of_node_name_eq(vic_dn, "spe") ) { 473 spu = devnode_spu(cbe, vic_dn); 474 avoid_ph = last_spu_dn->phandle; 475 } else { 476 /* 477 * "mic-tm" and "bif0" nodes do not have 478 * vicinity property. So we need to find the 479 * spe which has vic_dn as neighbour, but 480 * skipping the one we came from (last_spu_dn) 481 */ 482 spu = neighbour_spu(cbe, vic_dn, last_spu_dn); 483 if (!spu) 484 continue; 485 if (of_node_name_eq(vic_dn, "mic-tm")) { 486 last_spu->has_mem_affinity = 1; 487 spu->has_mem_affinity = 1; 488 } 489 avoid_ph = vic_dn->phandle; 490 } 491 492 of_node_put(vic_dn); 493 494 list_add_tail(&spu->aff_list, &last_spu->aff_list); 495 last_spu = spu; 496 break; 497 } 498 } 499 } 500 501 static void __init init_affinity_fw(void) 502 { 503 int cbe; 504 505 for (cbe = 0; cbe < MAX_NUMNODES; cbe++) 506 init_affinity_node(cbe); 507 } 508 509 static int __init init_affinity(void) 510 { 511 if (of_has_vicinity()) { 512 init_affinity_fw(); 513 } else { 514 if (of_machine_is_compatible("IBM,CPBW-1.0")) 515 init_affinity_qs20_harcoded(); 516 else 517 printk("No affinity configuration found\n"); 518 } 519 520 return 0; 521 } 522 523 const struct spu_management_ops spu_management_of_ops = { 524 .enumerate_spus = of_enumerate_spus, 525 .create_spu = of_create_spu, 526 .destroy_spu = of_destroy_spu, 527 .enable_spu = enable_spu_by_master_run, 528 .disable_spu = disable_spu_by_master_run, 529 .init_affinity = init_affinity, 530 }; 531