xref: /linux/arch/powerpc/platforms/cell/spu_base.c (revision 7dd900ea0e1b9a2000270c9c0f4deab0cfa359b1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Low-level SPU handling
4  *
5  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6  *
7  * Author: Arnd Bergmann <arndb@de.ibm.com>
8  */
9 
10 #undef DEBUG
11 
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/wait.h>
18 #include <linux/mm.h>
19 #include <linux/io.h>
20 #include <linux/mutex.h>
21 #include <linux/linux_logo.h>
22 #include <linux/syscore_ops.h>
23 #include <asm/spu.h>
24 #include <asm/spu_priv1.h>
25 #include <asm/spu_csa.h>
26 #include <asm/xmon.h>
27 #include <asm/kexec.h>
28 
29 const struct spu_management_ops *spu_management_ops;
30 EXPORT_SYMBOL_GPL(spu_management_ops);
31 
32 const struct spu_priv1_ops *spu_priv1_ops;
33 EXPORT_SYMBOL_GPL(spu_priv1_ops);
34 
35 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
36 EXPORT_SYMBOL_GPL(cbe_spu_info);
37 
38 /*
39  * The spufs fault-handling code needs to call force_sig_fault to raise signals
40  * on DMA errors. Export it here to avoid general kernel-wide access to this
41  * function
42  */
43 EXPORT_SYMBOL_GPL(force_sig_fault);
44 
45 /*
46  * Protects cbe_spu_info and spu->number.
47  */
48 static DEFINE_SPINLOCK(spu_lock);
49 
50 /*
51  * List of all spus in the system.
52  *
53  * This list is iterated by callers from irq context and callers that
54  * want to sleep.  Thus modifications need to be done with both
55  * spu_full_list_lock and spu_full_list_mutex held, while iterating
56  * through it requires either of these locks.
57  *
58  * In addition spu_full_list_lock protects all assignments to
59  * spu->mm.
60  */
61 static LIST_HEAD(spu_full_list);
62 static DEFINE_SPINLOCK(spu_full_list_lock);
63 static DEFINE_MUTEX(spu_full_list_mutex);
64 
65 void spu_invalidate_slbs(struct spu *spu)
66 {
67 	struct spu_priv2 __iomem *priv2 = spu->priv2;
68 	unsigned long flags;
69 
70 	spin_lock_irqsave(&spu->register_lock, flags);
71 	if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
72 		out_be64(&priv2->slb_invalidate_all_W, 0UL);
73 	spin_unlock_irqrestore(&spu->register_lock, flags);
74 }
75 EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
76 
77 /* This is called by the MM core when a segment size is changed, to
78  * request a flush of all the SPEs using a given mm
79  */
80 void spu_flush_all_slbs(struct mm_struct *mm)
81 {
82 	struct spu *spu;
83 	unsigned long flags;
84 
85 	spin_lock_irqsave(&spu_full_list_lock, flags);
86 	list_for_each_entry(spu, &spu_full_list, full_list) {
87 		if (spu->mm == mm)
88 			spu_invalidate_slbs(spu);
89 	}
90 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
91 }
92 
93 /* The hack below stinks... try to do something better one of
94  * these days... Does it even work properly with NR_CPUS == 1 ?
95  */
96 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
97 {
98 	int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
99 
100 	/* Global TLBIE broadcast required with SPEs. */
101 	bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
102 }
103 
104 void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
105 {
106 	unsigned long flags;
107 
108 	spin_lock_irqsave(&spu_full_list_lock, flags);
109 	spu->mm = mm;
110 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
111 	if (mm)
112 		mm_needs_global_tlbie(mm);
113 }
114 EXPORT_SYMBOL_GPL(spu_associate_mm);
115 
116 int spu_64k_pages_available(void)
117 {
118 	return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
119 }
120 EXPORT_SYMBOL_GPL(spu_64k_pages_available);
121 
122 static void spu_restart_dma(struct spu *spu)
123 {
124 	struct spu_priv2 __iomem *priv2 = spu->priv2;
125 
126 	if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
127 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
128 	else {
129 		set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
130 		mb();
131 	}
132 }
133 
134 static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb)
135 {
136 	struct spu_priv2 __iomem *priv2 = spu->priv2;
137 
138 	pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
139 			__func__, slbe, slb->vsid, slb->esid);
140 
141 	out_be64(&priv2->slb_index_W, slbe);
142 	/* set invalid before writing vsid */
143 	out_be64(&priv2->slb_esid_RW, 0);
144 	/* now it's safe to write the vsid */
145 	out_be64(&priv2->slb_vsid_RW, slb->vsid);
146 	/* setting the new esid makes the entry valid again */
147 	out_be64(&priv2->slb_esid_RW, slb->esid);
148 }
149 
150 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
151 {
152 	struct copro_slb slb;
153 	int ret;
154 
155 	ret = copro_calculate_slb(spu->mm, ea, &slb);
156 	if (ret)
157 		return ret;
158 
159 	spu_load_slb(spu, spu->slb_replace, &slb);
160 
161 	spu->slb_replace++;
162 	if (spu->slb_replace >= 8)
163 		spu->slb_replace = 0;
164 
165 	spu_restart_dma(spu);
166 	spu->stats.slb_flt++;
167 	return 0;
168 }
169 
170 extern int hash_page(unsigned long ea, unsigned long access,
171 		     unsigned long trap, unsigned long dsisr); //XXX
172 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
173 {
174 	int ret;
175 
176 	pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
177 
178 	/*
179 	 * Handle kernel space hash faults immediately. User hash
180 	 * faults need to be deferred to process context.
181 	 */
182 	if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
183 	    (get_region_id(ea) != USER_REGION_ID)) {
184 
185 		spin_unlock(&spu->register_lock);
186 		ret = hash_page(ea,
187 				_PAGE_PRESENT | _PAGE_READ | _PAGE_PRIVILEGED,
188 				0x300, dsisr);
189 		spin_lock(&spu->register_lock);
190 
191 		if (!ret) {
192 			spu_restart_dma(spu);
193 			return 0;
194 		}
195 	}
196 
197 	spu->class_1_dar = ea;
198 	spu->class_1_dsisr = dsisr;
199 
200 	spu->stop_callback(spu, 1);
201 
202 	spu->class_1_dar = 0;
203 	spu->class_1_dsisr = 0;
204 
205 	return 0;
206 }
207 
208 static void __spu_kernel_slb(void *addr, struct copro_slb *slb)
209 {
210 	unsigned long ea = (unsigned long)addr;
211 	u64 llp;
212 
213 	if (get_region_id(ea) == LINEAR_MAP_REGION_ID)
214 		llp = mmu_psize_defs[mmu_linear_psize].sllp;
215 	else
216 		llp = mmu_psize_defs[mmu_virtual_psize].sllp;
217 
218 	slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
219 		SLB_VSID_KERNEL | llp;
220 	slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
221 }
222 
223 /**
224  * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
225  * address @new_addr is present.
226  */
227 static inline int __slb_present(struct copro_slb *slbs, int nr_slbs,
228 		void *new_addr)
229 {
230 	unsigned long ea = (unsigned long)new_addr;
231 	int i;
232 
233 	for (i = 0; i < nr_slbs; i++)
234 		if (!((slbs[i].esid ^ ea) & ESID_MASK))
235 			return 1;
236 
237 	return 0;
238 }
239 
240 /**
241  * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
242  * need to map both the context save area, and the save/restore code.
243  *
244  * Because the lscsa and code may cross segment boundaries, we check to see
245  * if mappings are required for the start and end of each range. We currently
246  * assume that the mappings are smaller that one segment - if not, something
247  * is seriously wrong.
248  */
249 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
250 		void *code, int code_size)
251 {
252 	struct copro_slb slbs[4];
253 	int i, nr_slbs = 0;
254 	/* start and end addresses of both mappings */
255 	void *addrs[] = {
256 		lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
257 		code, code + code_size - 1
258 	};
259 
260 	/* check the set of addresses, and create a new entry in the slbs array
261 	 * if there isn't already a SLB for that address */
262 	for (i = 0; i < ARRAY_SIZE(addrs); i++) {
263 		if (__slb_present(slbs, nr_slbs, addrs[i]))
264 			continue;
265 
266 		__spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
267 		nr_slbs++;
268 	}
269 
270 	spin_lock_irq(&spu->register_lock);
271 	/* Add the set of SLBs */
272 	for (i = 0; i < nr_slbs; i++)
273 		spu_load_slb(spu, i, &slbs[i]);
274 	spin_unlock_irq(&spu->register_lock);
275 }
276 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
277 
278 static irqreturn_t
279 spu_irq_class_0(int irq, void *data)
280 {
281 	struct spu *spu;
282 	unsigned long stat, mask;
283 
284 	spu = data;
285 
286 	spin_lock(&spu->register_lock);
287 	mask = spu_int_mask_get(spu, 0);
288 	stat = spu_int_stat_get(spu, 0) & mask;
289 
290 	spu->class_0_pending |= stat;
291 	spu->class_0_dar = spu_mfc_dar_get(spu);
292 	spu->stop_callback(spu, 0);
293 	spu->class_0_pending = 0;
294 	spu->class_0_dar = 0;
295 
296 	spu_int_stat_clear(spu, 0, stat);
297 	spin_unlock(&spu->register_lock);
298 
299 	return IRQ_HANDLED;
300 }
301 
302 static irqreturn_t
303 spu_irq_class_1(int irq, void *data)
304 {
305 	struct spu *spu;
306 	unsigned long stat, mask, dar, dsisr;
307 
308 	spu = data;
309 
310 	/* atomically read & clear class1 status. */
311 	spin_lock(&spu->register_lock);
312 	mask  = spu_int_mask_get(spu, 1);
313 	stat  = spu_int_stat_get(spu, 1) & mask;
314 	dar   = spu_mfc_dar_get(spu);
315 	dsisr = spu_mfc_dsisr_get(spu);
316 	if (stat & CLASS1_STORAGE_FAULT_INTR)
317 		spu_mfc_dsisr_set(spu, 0ul);
318 	spu_int_stat_clear(spu, 1, stat);
319 
320 	pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
321 			dar, dsisr);
322 
323 	if (stat & CLASS1_SEGMENT_FAULT_INTR)
324 		__spu_trap_data_seg(spu, dar);
325 
326 	if (stat & CLASS1_STORAGE_FAULT_INTR)
327 		__spu_trap_data_map(spu, dar, dsisr);
328 
329 	spu->class_1_dsisr = 0;
330 	spu->class_1_dar = 0;
331 
332 	spin_unlock(&spu->register_lock);
333 
334 	return stat ? IRQ_HANDLED : IRQ_NONE;
335 }
336 
337 static irqreturn_t
338 spu_irq_class_2(int irq, void *data)
339 {
340 	struct spu *spu;
341 	unsigned long stat;
342 	unsigned long mask;
343 	const int mailbox_intrs =
344 		CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
345 
346 	spu = data;
347 	spin_lock(&spu->register_lock);
348 	stat = spu_int_stat_get(spu, 2);
349 	mask = spu_int_mask_get(spu, 2);
350 	/* ignore interrupts we're not waiting for */
351 	stat &= mask;
352 	/* mailbox interrupts are level triggered. mask them now before
353 	 * acknowledging */
354 	if (stat & mailbox_intrs)
355 		spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
356 	/* acknowledge all interrupts before the callbacks */
357 	spu_int_stat_clear(spu, 2, stat);
358 
359 	pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
360 
361 	if (stat & CLASS2_MAILBOX_INTR)
362 		spu->ibox_callback(spu);
363 
364 	if (stat & CLASS2_SPU_STOP_INTR)
365 		spu->stop_callback(spu, 2);
366 
367 	if (stat & CLASS2_SPU_HALT_INTR)
368 		spu->stop_callback(spu, 2);
369 
370 	if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
371 		spu->mfc_callback(spu);
372 
373 	if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
374 		spu->wbox_callback(spu);
375 
376 	spu->stats.class2_intr++;
377 
378 	spin_unlock(&spu->register_lock);
379 
380 	return stat ? IRQ_HANDLED : IRQ_NONE;
381 }
382 
383 static int __init spu_request_irqs(struct spu *spu)
384 {
385 	int ret = 0;
386 
387 	if (spu->irqs[0]) {
388 		snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
389 			 spu->number);
390 		ret = request_irq(spu->irqs[0], spu_irq_class_0,
391 				  0, spu->irq_c0, spu);
392 		if (ret)
393 			goto bail0;
394 	}
395 	if (spu->irqs[1]) {
396 		snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
397 			 spu->number);
398 		ret = request_irq(spu->irqs[1], spu_irq_class_1,
399 				  0, spu->irq_c1, spu);
400 		if (ret)
401 			goto bail1;
402 	}
403 	if (spu->irqs[2]) {
404 		snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
405 			 spu->number);
406 		ret = request_irq(spu->irqs[2], spu_irq_class_2,
407 				  0, spu->irq_c2, spu);
408 		if (ret)
409 			goto bail2;
410 	}
411 	return 0;
412 
413 bail2:
414 	if (spu->irqs[1])
415 		free_irq(spu->irqs[1], spu);
416 bail1:
417 	if (spu->irqs[0])
418 		free_irq(spu->irqs[0], spu);
419 bail0:
420 	return ret;
421 }
422 
423 static void spu_free_irqs(struct spu *spu)
424 {
425 	if (spu->irqs[0])
426 		free_irq(spu->irqs[0], spu);
427 	if (spu->irqs[1])
428 		free_irq(spu->irqs[1], spu);
429 	if (spu->irqs[2])
430 		free_irq(spu->irqs[2], spu);
431 }
432 
433 void spu_init_channels(struct spu *spu)
434 {
435 	static const struct {
436 		 unsigned channel;
437 		 unsigned count;
438 	} zero_list[] = {
439 		{ 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
440 		{ 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
441 	}, count_list[] = {
442 		{ 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
443 		{ 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
444 		{ 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
445 	};
446 	struct spu_priv2 __iomem *priv2;
447 	int i;
448 
449 	priv2 = spu->priv2;
450 
451 	/* initialize all channel data to zero */
452 	for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
453 		int count;
454 
455 		out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
456 		for (count = 0; count < zero_list[i].count; count++)
457 			out_be64(&priv2->spu_chnldata_RW, 0);
458 	}
459 
460 	/* initialize channel counts to meaningful values */
461 	for (i = 0; i < ARRAY_SIZE(count_list); i++) {
462 		out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
463 		out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
464 	}
465 }
466 EXPORT_SYMBOL_GPL(spu_init_channels);
467 
468 static struct bus_type spu_subsys = {
469 	.name = "spu",
470 	.dev_name = "spu",
471 };
472 
473 int spu_add_dev_attr(struct device_attribute *attr)
474 {
475 	struct spu *spu;
476 
477 	mutex_lock(&spu_full_list_mutex);
478 	list_for_each_entry(spu, &spu_full_list, full_list)
479 		device_create_file(&spu->dev, attr);
480 	mutex_unlock(&spu_full_list_mutex);
481 
482 	return 0;
483 }
484 EXPORT_SYMBOL_GPL(spu_add_dev_attr);
485 
486 int spu_add_dev_attr_group(const struct attribute_group *attrs)
487 {
488 	struct spu *spu;
489 	int rc = 0;
490 
491 	mutex_lock(&spu_full_list_mutex);
492 	list_for_each_entry(spu, &spu_full_list, full_list) {
493 		rc = sysfs_create_group(&spu->dev.kobj, attrs);
494 
495 		/* we're in trouble here, but try unwinding anyway */
496 		if (rc) {
497 			printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
498 					__func__, attrs->name);
499 
500 			list_for_each_entry_continue_reverse(spu,
501 					&spu_full_list, full_list)
502 				sysfs_remove_group(&spu->dev.kobj, attrs);
503 			break;
504 		}
505 	}
506 
507 	mutex_unlock(&spu_full_list_mutex);
508 
509 	return rc;
510 }
511 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
512 
513 
514 void spu_remove_dev_attr(struct device_attribute *attr)
515 {
516 	struct spu *spu;
517 
518 	mutex_lock(&spu_full_list_mutex);
519 	list_for_each_entry(spu, &spu_full_list, full_list)
520 		device_remove_file(&spu->dev, attr);
521 	mutex_unlock(&spu_full_list_mutex);
522 }
523 EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
524 
525 void spu_remove_dev_attr_group(const struct attribute_group *attrs)
526 {
527 	struct spu *spu;
528 
529 	mutex_lock(&spu_full_list_mutex);
530 	list_for_each_entry(spu, &spu_full_list, full_list)
531 		sysfs_remove_group(&spu->dev.kobj, attrs);
532 	mutex_unlock(&spu_full_list_mutex);
533 }
534 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
535 
536 static int __init spu_create_dev(struct spu *spu)
537 {
538 	int ret;
539 
540 	spu->dev.id = spu->number;
541 	spu->dev.bus = &spu_subsys;
542 	ret = device_register(&spu->dev);
543 	if (ret) {
544 		printk(KERN_ERR "Can't register SPU %d with sysfs\n",
545 				spu->number);
546 		return ret;
547 	}
548 
549 	sysfs_add_device_to_node(&spu->dev, spu->node);
550 
551 	return 0;
552 }
553 
554 static int __init create_spu(void *data)
555 {
556 	struct spu *spu;
557 	int ret;
558 	static int number;
559 	unsigned long flags;
560 
561 	ret = -ENOMEM;
562 	spu = kzalloc(sizeof (*spu), GFP_KERNEL);
563 	if (!spu)
564 		goto out;
565 
566 	spu->alloc_state = SPU_FREE;
567 
568 	spin_lock_init(&spu->register_lock);
569 	spin_lock(&spu_lock);
570 	spu->number = number++;
571 	spin_unlock(&spu_lock);
572 
573 	ret = spu_create_spu(spu, data);
574 
575 	if (ret)
576 		goto out_free;
577 
578 	spu_mfc_sdr_setup(spu);
579 	spu_mfc_sr1_set(spu, 0x33);
580 	ret = spu_request_irqs(spu);
581 	if (ret)
582 		goto out_destroy;
583 
584 	ret = spu_create_dev(spu);
585 	if (ret)
586 		goto out_free_irqs;
587 
588 	mutex_lock(&cbe_spu_info[spu->node].list_mutex);
589 	list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
590 	cbe_spu_info[spu->node].n_spus++;
591 	mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
592 
593 	mutex_lock(&spu_full_list_mutex);
594 	spin_lock_irqsave(&spu_full_list_lock, flags);
595 	list_add(&spu->full_list, &spu_full_list);
596 	spin_unlock_irqrestore(&spu_full_list_lock, flags);
597 	mutex_unlock(&spu_full_list_mutex);
598 
599 	spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
600 	spu->stats.tstamp = ktime_get_ns();
601 
602 	INIT_LIST_HEAD(&spu->aff_list);
603 
604 	goto out;
605 
606 out_free_irqs:
607 	spu_free_irqs(spu);
608 out_destroy:
609 	spu_destroy_spu(spu);
610 out_free:
611 	kfree(spu);
612 out:
613 	return ret;
614 }
615 
616 static const char *spu_state_names[] = {
617 	"user", "system", "iowait", "idle"
618 };
619 
620 static unsigned long long spu_acct_time(struct spu *spu,
621 		enum spu_utilization_state state)
622 {
623 	unsigned long long time = spu->stats.times[state];
624 
625 	/*
626 	 * If the spu is idle or the context is stopped, utilization
627 	 * statistics are not updated.  Apply the time delta from the
628 	 * last recorded state of the spu.
629 	 */
630 	if (spu->stats.util_state == state)
631 		time += ktime_get_ns() - spu->stats.tstamp;
632 
633 	return time / NSEC_PER_MSEC;
634 }
635 
636 
637 static ssize_t spu_stat_show(struct device *dev,
638 				struct device_attribute *attr, char *buf)
639 {
640 	struct spu *spu = container_of(dev, struct spu, dev);
641 
642 	return sprintf(buf, "%s %llu %llu %llu %llu "
643 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
644 		spu_state_names[spu->stats.util_state],
645 		spu_acct_time(spu, SPU_UTIL_USER),
646 		spu_acct_time(spu, SPU_UTIL_SYSTEM),
647 		spu_acct_time(spu, SPU_UTIL_IOWAIT),
648 		spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
649 		spu->stats.vol_ctx_switch,
650 		spu->stats.invol_ctx_switch,
651 		spu->stats.slb_flt,
652 		spu->stats.hash_flt,
653 		spu->stats.min_flt,
654 		spu->stats.maj_flt,
655 		spu->stats.class2_intr,
656 		spu->stats.libassist);
657 }
658 
659 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL);
660 
661 #ifdef CONFIG_KEXEC_CORE
662 
663 struct crash_spu_info {
664 	struct spu *spu;
665 	u32 saved_spu_runcntl_RW;
666 	u32 saved_spu_status_R;
667 	u32 saved_spu_npc_RW;
668 	u64 saved_mfc_sr1_RW;
669 	u64 saved_mfc_dar;
670 	u64 saved_mfc_dsisr;
671 };
672 
673 #define CRASH_NUM_SPUS	16	/* Enough for current hardware */
674 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
675 
676 static void crash_kexec_stop_spus(void)
677 {
678 	struct spu *spu;
679 	int i;
680 	u64 tmp;
681 
682 	for (i = 0; i < CRASH_NUM_SPUS; i++) {
683 		if (!crash_spu_info[i].spu)
684 			continue;
685 
686 		spu = crash_spu_info[i].spu;
687 
688 		crash_spu_info[i].saved_spu_runcntl_RW =
689 			in_be32(&spu->problem->spu_runcntl_RW);
690 		crash_spu_info[i].saved_spu_status_R =
691 			in_be32(&spu->problem->spu_status_R);
692 		crash_spu_info[i].saved_spu_npc_RW =
693 			in_be32(&spu->problem->spu_npc_RW);
694 
695 		crash_spu_info[i].saved_mfc_dar    = spu_mfc_dar_get(spu);
696 		crash_spu_info[i].saved_mfc_dsisr  = spu_mfc_dsisr_get(spu);
697 		tmp = spu_mfc_sr1_get(spu);
698 		crash_spu_info[i].saved_mfc_sr1_RW = tmp;
699 
700 		tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
701 		spu_mfc_sr1_set(spu, tmp);
702 
703 		__delay(200);
704 	}
705 }
706 
707 static void __init crash_register_spus(struct list_head *list)
708 {
709 	struct spu *spu;
710 	int ret;
711 
712 	list_for_each_entry(spu, list, full_list) {
713 		if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
714 			continue;
715 
716 		crash_spu_info[spu->number].spu = spu;
717 	}
718 
719 	ret = crash_shutdown_register(&crash_kexec_stop_spus);
720 	if (ret)
721 		printk(KERN_ERR "Could not register SPU crash handler");
722 }
723 
724 #else
725 static inline void crash_register_spus(struct list_head *list)
726 {
727 }
728 #endif
729 
730 static void spu_shutdown(void)
731 {
732 	struct spu *spu;
733 
734 	mutex_lock(&spu_full_list_mutex);
735 	list_for_each_entry(spu, &spu_full_list, full_list) {
736 		spu_free_irqs(spu);
737 		spu_destroy_spu(spu);
738 	}
739 	mutex_unlock(&spu_full_list_mutex);
740 }
741 
742 static struct syscore_ops spu_syscore_ops = {
743 	.shutdown = spu_shutdown,
744 };
745 
746 static int __init init_spu_base(void)
747 {
748 	int i, ret = 0;
749 
750 	for (i = 0; i < MAX_NUMNODES; i++) {
751 		mutex_init(&cbe_spu_info[i].list_mutex);
752 		INIT_LIST_HEAD(&cbe_spu_info[i].spus);
753 	}
754 
755 	if (!spu_management_ops)
756 		goto out;
757 
758 	/* create system subsystem for spus */
759 	ret = subsys_system_register(&spu_subsys, NULL);
760 	if (ret)
761 		goto out;
762 
763 	ret = spu_enumerate_spus(create_spu);
764 
765 	if (ret < 0) {
766 		printk(KERN_WARNING "%s: Error initializing spus\n",
767 			__func__);
768 		goto out_unregister_subsys;
769 	}
770 
771 	if (ret > 0)
772 		fb_append_extra_logo(&logo_spe_clut224, ret);
773 
774 	mutex_lock(&spu_full_list_mutex);
775 	xmon_register_spus(&spu_full_list);
776 	crash_register_spus(&spu_full_list);
777 	mutex_unlock(&spu_full_list_mutex);
778 	spu_add_dev_attr(&dev_attr_stat);
779 	register_syscore_ops(&spu_syscore_ops);
780 
781 	spu_init_affinity();
782 
783 	return 0;
784 
785  out_unregister_subsys:
786 	bus_unregister(&spu_subsys);
787  out:
788 	return ret;
789 }
790 device_initcall(init_spu_base);
791