xref: /linux/arch/powerpc/platforms/85xx/smp.c (revision 3fa7187eceee11998f756481e45ce8c4f9d9dc48)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Author: Andy Fleming <afleming@freescale.com>
4  * 	   Kumar Gala <galak@kernel.crashing.org>
5  *
6  * Copyright 2006-2008, 2011-2012, 2015 Freescale Semiconductor Inc.
7  */
8 
9 #include <linux/stddef.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/init.h>
13 #include <linux/delay.h>
14 #include <linux/of.h>
15 #include <linux/kexec.h>
16 #include <linux/highmem.h>
17 #include <linux/cpu.h>
18 #include <linux/fsl/guts.h>
19 #include <linux/pgtable.h>
20 
21 #include <asm/machdep.h>
22 #include <asm/page.h>
23 #include <asm/mpic.h>
24 #include <asm/cacheflush.h>
25 #include <asm/dbell.h>
26 #include <asm/code-patching.h>
27 #include <asm/cputhreads.h>
28 #include <asm/fsl_pm.h>
29 
30 #include <sysdev/fsl_soc.h>
31 #include <sysdev/mpic.h>
32 #include "smp.h"
33 
34 struct epapr_spin_table {
35 	u32	addr_h;
36 	u32	addr_l;
37 	u32	r3_h;
38 	u32	r3_l;
39 	u32	reserved;
40 	u32	pir;
41 };
42 
43 static u64 timebase;
44 static int tb_req;
45 static int tb_valid;
46 
47 static void mpc85xx_give_timebase(void)
48 {
49 	unsigned long flags;
50 
51 	local_irq_save(flags);
52 	hard_irq_disable();
53 
54 	while (!tb_req)
55 		barrier();
56 	tb_req = 0;
57 
58 	qoriq_pm_ops->freeze_time_base(true);
59 #ifdef CONFIG_PPC64
60 	/*
61 	 * e5500/e6500 have a workaround for erratum A-006958 in place
62 	 * that will reread the timebase until TBL is non-zero.
63 	 * That would be a bad thing when the timebase is frozen.
64 	 *
65 	 * Thus, we read it manually, and instead of checking that
66 	 * TBL is non-zero, we ensure that TB does not change.  We don't
67 	 * do that for the main mftb implementation, because it requires
68 	 * a scratch register
69 	 */
70 	{
71 		u64 prev;
72 
73 		asm volatile("mfspr %0, %1" : "=r" (timebase) :
74 			     "i" (SPRN_TBRL));
75 
76 		do {
77 			prev = timebase;
78 			asm volatile("mfspr %0, %1" : "=r" (timebase) :
79 				     "i" (SPRN_TBRL));
80 		} while (prev != timebase);
81 	}
82 #else
83 	timebase = get_tb();
84 #endif
85 	mb();
86 	tb_valid = 1;
87 
88 	while (tb_valid)
89 		barrier();
90 
91 	qoriq_pm_ops->freeze_time_base(false);
92 
93 	local_irq_restore(flags);
94 }
95 
96 static void mpc85xx_take_timebase(void)
97 {
98 	unsigned long flags;
99 
100 	local_irq_save(flags);
101 	hard_irq_disable();
102 
103 	tb_req = 1;
104 	while (!tb_valid)
105 		barrier();
106 
107 	set_tb(timebase >> 32, timebase & 0xffffffff);
108 	isync();
109 	tb_valid = 0;
110 
111 	local_irq_restore(flags);
112 }
113 
114 #ifdef CONFIG_HOTPLUG_CPU
115 static void smp_85xx_cpu_offline_self(void)
116 {
117 	unsigned int cpu = smp_processor_id();
118 
119 	local_irq_disable();
120 	hard_irq_disable();
121 	/* mask all irqs to prevent cpu wakeup */
122 	qoriq_pm_ops->irq_mask(cpu);
123 
124 	idle_task_exit();
125 
126 	mtspr(SPRN_TCR, 0);
127 	mtspr(SPRN_TSR, mfspr(SPRN_TSR));
128 
129 	generic_set_cpu_dead(cpu);
130 
131 	cur_cpu_spec->cpu_down_flush();
132 
133 	qoriq_pm_ops->cpu_die(cpu);
134 
135 	while (1)
136 		;
137 }
138 
139 static void qoriq_cpu_kill(unsigned int cpu)
140 {
141 	int i;
142 
143 	for (i = 0; i < 500; i++) {
144 		if (is_cpu_dead(cpu)) {
145 #ifdef CONFIG_PPC64
146 			paca_ptrs[cpu]->cpu_start = 0;
147 #endif
148 			return;
149 		}
150 		msleep(20);
151 	}
152 	pr_err("CPU%d didn't die...\n", cpu);
153 }
154 #endif
155 
156 /*
157  * To keep it compatible with old boot program which uses
158  * cache-inhibit spin table, we need to flush the cache
159  * before accessing spin table to invalidate any staled data.
160  * We also need to flush the cache after writing to spin
161  * table to push data out.
162  */
163 static inline void flush_spin_table(void *spin_table)
164 {
165 	flush_dcache_range((ulong)spin_table,
166 		(ulong)spin_table + sizeof(struct epapr_spin_table));
167 }
168 
169 static inline u32 read_spin_table_addr_l(void *spin_table)
170 {
171 	flush_dcache_range((ulong)spin_table,
172 		(ulong)spin_table + sizeof(struct epapr_spin_table));
173 	return in_be32(&((struct epapr_spin_table *)spin_table)->addr_l);
174 }
175 
176 #ifdef CONFIG_PPC64
177 static void wake_hw_thread(void *info)
178 {
179 	void fsl_secondary_thread_init(void);
180 	unsigned long inia;
181 	int cpu = *(const int *)info;
182 
183 	inia = ppc_function_entry(fsl_secondary_thread_init);
184 	book3e_start_thread(cpu_thread_in_core(cpu), inia);
185 }
186 #endif
187 
188 static int smp_85xx_start_cpu(int cpu)
189 {
190 	int ret = 0;
191 	struct device_node *np;
192 	const u64 *cpu_rel_addr;
193 	unsigned long flags;
194 	int ioremappable;
195 	int hw_cpu = get_hard_smp_processor_id(cpu);
196 	struct epapr_spin_table __iomem *spin_table;
197 
198 	np = of_get_cpu_node(cpu, NULL);
199 	cpu_rel_addr = of_get_property(np, "cpu-release-addr", NULL);
200 	if (!cpu_rel_addr) {
201 		pr_err("No cpu-release-addr for cpu %d\n", cpu);
202 		return -ENOENT;
203 	}
204 
205 	/*
206 	 * A secondary core could be in a spinloop in the bootpage
207 	 * (0xfffff000), somewhere in highmem, or somewhere in lowmem.
208 	 * The bootpage and highmem can be accessed via ioremap(), but
209 	 * we need to directly access the spinloop if its in lowmem.
210 	 */
211 	ioremappable = *cpu_rel_addr > virt_to_phys(high_memory - 1);
212 
213 	/* Map the spin table */
214 	if (ioremappable)
215 		spin_table = ioremap_coherent(*cpu_rel_addr,
216 					      sizeof(struct epapr_spin_table));
217 	else
218 		spin_table = phys_to_virt(*cpu_rel_addr);
219 
220 	local_irq_save(flags);
221 	hard_irq_disable();
222 
223 	if (qoriq_pm_ops && qoriq_pm_ops->cpu_up_prepare)
224 		qoriq_pm_ops->cpu_up_prepare(cpu);
225 
226 	/* if cpu is not spinning, reset it */
227 	if (read_spin_table_addr_l(spin_table) != 1) {
228 		/*
229 		 * We don't set the BPTR register here since it already points
230 		 * to the boot page properly.
231 		 */
232 		mpic_reset_core(cpu);
233 
234 		/*
235 		 * wait until core is ready...
236 		 * We need to invalidate the stale data, in case the boot
237 		 * loader uses a cache-inhibited spin table.
238 		 */
239 		if (!spin_event_timeout(
240 				read_spin_table_addr_l(spin_table) == 1,
241 				10000, 100)) {
242 			pr_err("timeout waiting for cpu %d to reset\n",
243 				hw_cpu);
244 			ret = -EAGAIN;
245 			goto err;
246 		}
247 	}
248 
249 	flush_spin_table(spin_table);
250 	out_be32(&spin_table->pir, hw_cpu);
251 #ifdef CONFIG_PPC64
252 	out_be64((u64 *)(&spin_table->addr_h),
253 		__pa(ppc_function_entry(generic_secondary_smp_init)));
254 #else
255 #ifdef CONFIG_PHYS_ADDR_T_64BIT
256 	/*
257 	 * We need also to write addr_h to spin table for systems
258 	 * in which their physical memory start address was configured
259 	 * to above 4G, otherwise the secondary core can not get
260 	 * correct entry to start from.
261 	 */
262 	out_be32(&spin_table->addr_h, __pa(__early_start) >> 32);
263 #endif
264 	out_be32(&spin_table->addr_l, __pa(__early_start));
265 #endif
266 	flush_spin_table(spin_table);
267 err:
268 	local_irq_restore(flags);
269 
270 	if (ioremappable)
271 		iounmap(spin_table);
272 
273 	return ret;
274 }
275 
276 static int smp_85xx_kick_cpu(int nr)
277 {
278 	int ret = 0;
279 #ifdef CONFIG_PPC64
280 	int primary = nr;
281 #endif
282 
283 	WARN_ON(nr < 0 || nr >= num_possible_cpus());
284 
285 	pr_debug("kick CPU #%d\n", nr);
286 
287 #ifdef CONFIG_PPC64
288 	if (threads_per_core == 2) {
289 		if (WARN_ON_ONCE(!cpu_has_feature(CPU_FTR_SMT)))
290 			return -ENOENT;
291 
292 		booting_thread_hwid = cpu_thread_in_core(nr);
293 		primary = cpu_first_thread_sibling(nr);
294 
295 		if (qoriq_pm_ops && qoriq_pm_ops->cpu_up_prepare)
296 			qoriq_pm_ops->cpu_up_prepare(nr);
297 
298 		/*
299 		 * If either thread in the core is online, use it to start
300 		 * the other.
301 		 */
302 		if (cpu_online(primary)) {
303 			smp_call_function_single(primary,
304 					wake_hw_thread, &nr, 1);
305 			goto done;
306 		} else if (cpu_online(primary + 1)) {
307 			smp_call_function_single(primary + 1,
308 					wake_hw_thread, &nr, 1);
309 			goto done;
310 		}
311 
312 		/*
313 		 * If getting here, it means both threads in the core are
314 		 * offline. So start the primary thread, then it will start
315 		 * the thread specified in booting_thread_hwid, the one
316 		 * corresponding to nr.
317 		 */
318 
319 	} else if (threads_per_core == 1) {
320 		/*
321 		 * If one core has only one thread, set booting_thread_hwid to
322 		 * an invalid value.
323 		 */
324 		booting_thread_hwid = INVALID_THREAD_HWID;
325 
326 	} else if (threads_per_core > 2) {
327 		pr_err("Do not support more than 2 threads per CPU.");
328 		return -EINVAL;
329 	}
330 
331 	ret = smp_85xx_start_cpu(primary);
332 	if (ret)
333 		return ret;
334 
335 done:
336 	paca_ptrs[nr]->cpu_start = 1;
337 	generic_set_cpu_up(nr);
338 
339 	return ret;
340 #else
341 	ret = smp_85xx_start_cpu(nr);
342 	if (ret)
343 		return ret;
344 
345 	generic_set_cpu_up(nr);
346 
347 	return ret;
348 #endif
349 }
350 
351 struct smp_ops_t smp_85xx_ops = {
352 	.cause_nmi_ipi = NULL,
353 	.kick_cpu = smp_85xx_kick_cpu,
354 	.cpu_bootable = smp_generic_cpu_bootable,
355 #ifdef CONFIG_HOTPLUG_CPU
356 	.cpu_disable	= generic_cpu_disable,
357 	.cpu_die	= generic_cpu_die,
358 #endif
359 #if defined(CONFIG_KEXEC_CORE) && !defined(CONFIG_PPC64)
360 	.give_timebase	= smp_generic_give_timebase,
361 	.take_timebase	= smp_generic_take_timebase,
362 #endif
363 };
364 
365 #ifdef CONFIG_KEXEC_CORE
366 #ifdef CONFIG_PPC32
367 atomic_t kexec_down_cpus = ATOMIC_INIT(0);
368 
369 static void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
370 {
371 	local_irq_disable();
372 
373 	if (secondary) {
374 		cur_cpu_spec->cpu_down_flush();
375 		atomic_inc(&kexec_down_cpus);
376 		/* loop forever */
377 		while (1);
378 	}
379 }
380 
381 static void mpc85xx_smp_kexec_down(void *arg)
382 {
383 	if (ppc_md.kexec_cpu_down)
384 		ppc_md.kexec_cpu_down(0,1);
385 }
386 #else
387 static void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
388 {
389 	int cpu = smp_processor_id();
390 	int sibling = cpu_last_thread_sibling(cpu);
391 	bool notified = false;
392 	int disable_cpu;
393 	int disable_threadbit = 0;
394 	long start = mftb();
395 	long now;
396 
397 	local_irq_disable();
398 	hard_irq_disable();
399 	mpic_teardown_this_cpu(secondary);
400 
401 	if (cpu == crashing_cpu && cpu_thread_in_core(cpu) != 0) {
402 		/*
403 		 * We enter the crash kernel on whatever cpu crashed,
404 		 * even if it's a secondary thread.  If that's the case,
405 		 * disable the corresponding primary thread.
406 		 */
407 		disable_threadbit = 1;
408 		disable_cpu = cpu_first_thread_sibling(cpu);
409 	} else if (sibling != crashing_cpu &&
410 		   cpu_thread_in_core(cpu) == 0 &&
411 		   cpu_thread_in_core(sibling) != 0) {
412 		disable_threadbit = 2;
413 		disable_cpu = sibling;
414 	}
415 
416 	if (disable_threadbit) {
417 		while (paca_ptrs[disable_cpu]->kexec_state < KEXEC_STATE_REAL_MODE) {
418 			barrier();
419 			now = mftb();
420 			if (!notified && now - start > 1000000) {
421 				pr_info("%s/%d: waiting for cpu %d to enter KEXEC_STATE_REAL_MODE (%d)\n",
422 					__func__, smp_processor_id(),
423 					disable_cpu,
424 					paca_ptrs[disable_cpu]->kexec_state);
425 				notified = true;
426 			}
427 		}
428 
429 		if (notified) {
430 			pr_info("%s: cpu %d done waiting\n",
431 				__func__, disable_cpu);
432 		}
433 
434 		mtspr(SPRN_TENC, disable_threadbit);
435 		while (mfspr(SPRN_TENSR) & disable_threadbit)
436 			cpu_relax();
437 	}
438 }
439 #endif
440 
441 static void mpc85xx_smp_machine_kexec(struct kimage *image)
442 {
443 #ifdef CONFIG_PPC32
444 	int timeout = INT_MAX;
445 	int i, num_cpus = num_present_cpus();
446 
447 	if (image->type == KEXEC_TYPE_DEFAULT)
448 		smp_call_function(mpc85xx_smp_kexec_down, NULL, 0);
449 
450 	while ( (atomic_read(&kexec_down_cpus) != (num_cpus - 1)) &&
451 		( timeout > 0 ) )
452 	{
453 		timeout--;
454 	}
455 
456 	if ( !timeout )
457 		printk(KERN_ERR "Unable to bring down secondary cpu(s)");
458 
459 	for_each_online_cpu(i)
460 	{
461 		if ( i == smp_processor_id() ) continue;
462 		mpic_reset_core(i);
463 	}
464 #endif
465 
466 	default_machine_kexec(image);
467 }
468 #endif /* CONFIG_KEXEC_CORE */
469 
470 static void smp_85xx_setup_cpu(int cpu_nr)
471 {
472 	mpic_setup_this_cpu();
473 }
474 
475 void __init mpc85xx_smp_init(void)
476 {
477 	struct device_node *np;
478 
479 
480 	np = of_find_node_by_type(NULL, "open-pic");
481 	if (np) {
482 		smp_85xx_ops.probe = smp_mpic_probe;
483 		smp_85xx_ops.setup_cpu = smp_85xx_setup_cpu;
484 		smp_85xx_ops.message_pass = smp_mpic_message_pass;
485 	} else
486 		smp_85xx_ops.setup_cpu = NULL;
487 
488 	if (cpu_has_feature(CPU_FTR_DBELL)) {
489 		/*
490 		 * If left NULL, .message_pass defaults to
491 		 * smp_muxed_ipi_message_pass
492 		 */
493 		smp_85xx_ops.message_pass = NULL;
494 		smp_85xx_ops.cause_ipi = doorbell_global_ipi;
495 		smp_85xx_ops.probe = NULL;
496 	}
497 
498 #ifdef CONFIG_FSL_CORENET_RCPM
499 	/* Assign a value to qoriq_pm_ops on PPC_E500MC */
500 	fsl_rcpm_init();
501 #else
502 	/* Assign a value to qoriq_pm_ops on !PPC_E500MC */
503 	mpc85xx_setup_pmc();
504 #endif
505 	if (qoriq_pm_ops) {
506 		smp_85xx_ops.give_timebase = mpc85xx_give_timebase;
507 		smp_85xx_ops.take_timebase = mpc85xx_take_timebase;
508 #ifdef CONFIG_HOTPLUG_CPU
509 		smp_85xx_ops.cpu_offline_self = smp_85xx_cpu_offline_self;
510 		smp_85xx_ops.cpu_die = qoriq_cpu_kill;
511 #endif
512 	}
513 	smp_ops = &smp_85xx_ops;
514 
515 #ifdef CONFIG_KEXEC_CORE
516 	ppc_md.kexec_cpu_down = mpc85xx_smp_kexec_cpu_down;
517 	ppc_md.machine_kexec = mpc85xx_smp_machine_kexec;
518 #endif
519 }
520