1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * In-Memory Collection (IMC) Performance Monitor counter support. 4 * 5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 6 * (C) 2017 Anju T Sudhakar, IBM Corporation. 7 * (C) 2017 Hemant K Shaw, IBM Corporation. 8 */ 9 #include <linux/of.h> 10 #include <linux/perf_event.h> 11 #include <linux/slab.h> 12 #include <asm/opal.h> 13 #include <asm/imc-pmu.h> 14 #include <asm/cputhreads.h> 15 #include <asm/smp.h> 16 #include <linux/string.h> 17 18 /* Nest IMC data structures and variables */ 19 20 /* 21 * Used to avoid races in counting the nest-pmu units during hotplug 22 * register and unregister 23 */ 24 static DEFINE_MUTEX(nest_init_lock); 25 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 26 static struct imc_pmu **per_nest_pmu_arr; 27 static cpumask_t nest_imc_cpumask; 28 static struct imc_pmu_ref *nest_imc_refc; 29 static int nest_pmus; 30 31 /* Core IMC data structures and variables */ 32 33 static cpumask_t core_imc_cpumask; 34 static struct imc_pmu_ref *core_imc_refc; 35 static struct imc_pmu *core_imc_pmu; 36 37 /* Thread IMC data structures and variables */ 38 39 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 40 static struct imc_pmu *thread_imc_pmu; 41 static int thread_imc_mem_size; 42 43 /* Trace IMC data structures */ 44 static DEFINE_PER_CPU(u64 *, trace_imc_mem); 45 static struct imc_pmu_ref *trace_imc_refc; 46 static int trace_imc_mem_size; 47 48 /* 49 * Global data structure used to avoid races between thread, 50 * core and trace-imc 51 */ 52 static struct imc_pmu_ref imc_global_refc = { 53 .lock = __MUTEX_INITIALIZER(imc_global_refc.lock), 54 .id = 0, 55 .refc = 0, 56 }; 57 58 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 59 { 60 return container_of(event->pmu, struct imc_pmu, pmu); 61 } 62 63 PMU_FORMAT_ATTR(event, "config:0-61"); 64 PMU_FORMAT_ATTR(offset, "config:0-31"); 65 PMU_FORMAT_ATTR(rvalue, "config:32"); 66 PMU_FORMAT_ATTR(mode, "config:33-40"); 67 static struct attribute *imc_format_attrs[] = { 68 &format_attr_event.attr, 69 &format_attr_offset.attr, 70 &format_attr_rvalue.attr, 71 &format_attr_mode.attr, 72 NULL, 73 }; 74 75 static const struct attribute_group imc_format_group = { 76 .name = "format", 77 .attrs = imc_format_attrs, 78 }; 79 80 /* Format attribute for imc trace-mode */ 81 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19"); 82 PMU_FORMAT_ATTR(cpmc_event, "config:20-27"); 83 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29"); 84 PMU_FORMAT_ATTR(cpmc_load, "config:30-61"); 85 static struct attribute *trace_imc_format_attrs[] = { 86 &format_attr_event.attr, 87 &format_attr_cpmc_reserved.attr, 88 &format_attr_cpmc_event.attr, 89 &format_attr_cpmc_samplesel.attr, 90 &format_attr_cpmc_load.attr, 91 NULL, 92 }; 93 94 static const struct attribute_group trace_imc_format_group = { 95 .name = "format", 96 .attrs = trace_imc_format_attrs, 97 }; 98 99 /* Get the cpumask printed to a buffer "buf" */ 100 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 101 struct device_attribute *attr, 102 char *buf) 103 { 104 struct pmu *pmu = dev_get_drvdata(dev); 105 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 106 cpumask_t *active_mask; 107 108 switch(imc_pmu->domain){ 109 case IMC_DOMAIN_NEST: 110 active_mask = &nest_imc_cpumask; 111 break; 112 case IMC_DOMAIN_CORE: 113 active_mask = &core_imc_cpumask; 114 break; 115 default: 116 return 0; 117 } 118 119 return cpumap_print_to_pagebuf(true, buf, active_mask); 120 } 121 122 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 123 124 static struct attribute *imc_pmu_cpumask_attrs[] = { 125 &dev_attr_cpumask.attr, 126 NULL, 127 }; 128 129 static const struct attribute_group imc_pmu_cpumask_attr_group = { 130 .attrs = imc_pmu_cpumask_attrs, 131 }; 132 133 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 134 static struct attribute *device_str_attr_create(const char *name, const char *str) 135 { 136 struct perf_pmu_events_attr *attr; 137 138 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 139 if (!attr) 140 return NULL; 141 sysfs_attr_init(&attr->attr.attr); 142 143 attr->event_str = str; 144 attr->attr.attr.name = name; 145 attr->attr.attr.mode = 0444; 146 attr->attr.show = perf_event_sysfs_show; 147 148 return &attr->attr.attr; 149 } 150 151 static int imc_parse_event(struct device_node *np, const char *scale, 152 const char *unit, const char *prefix, 153 u32 base, struct imc_events *event) 154 { 155 const char *s; 156 u32 reg; 157 158 if (of_property_read_u32(np, "reg", ®)) 159 goto error; 160 /* Add the base_reg value to the "reg" */ 161 event->value = base + reg; 162 163 if (of_property_read_string(np, "event-name", &s)) 164 goto error; 165 166 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 167 if (!event->name) 168 goto error; 169 170 if (of_property_read_string(np, "scale", &s)) 171 s = scale; 172 173 if (s) { 174 event->scale = kstrdup(s, GFP_KERNEL); 175 if (!event->scale) 176 goto error; 177 } 178 179 if (of_property_read_string(np, "unit", &s)) 180 s = unit; 181 182 if (s) { 183 event->unit = kstrdup(s, GFP_KERNEL); 184 if (!event->unit) 185 goto error; 186 } 187 188 return 0; 189 error: 190 kfree(event->unit); 191 kfree(event->scale); 192 kfree(event->name); 193 return -EINVAL; 194 } 195 196 /* 197 * imc_free_events: Function to cleanup the events list, having 198 * "nr_entries". 199 */ 200 static void imc_free_events(struct imc_events *events, int nr_entries) 201 { 202 int i; 203 204 /* Nothing to clean, return */ 205 if (!events) 206 return; 207 for (i = 0; i < nr_entries; i++) { 208 kfree(events[i].unit); 209 kfree(events[i].scale); 210 kfree(events[i].name); 211 } 212 213 kfree(events); 214 } 215 216 /* 217 * update_events_in_group: Update the "events" information in an attr_group 218 * and assign the attr_group to the pmu "pmu". 219 */ 220 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 221 { 222 struct attribute_group *attr_group; 223 struct attribute **attrs, *dev_str; 224 struct device_node *np, *pmu_events; 225 u32 handle, base_reg; 226 int i = 0, j = 0, ct, ret; 227 const char *prefix, *g_scale, *g_unit; 228 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 229 230 if (!of_property_read_u32(node, "events", &handle)) 231 pmu_events = of_find_node_by_phandle(handle); 232 else 233 return 0; 234 235 /* Did not find any node with a given phandle */ 236 if (!pmu_events) 237 return 0; 238 239 /* Get a count of number of child nodes */ 240 ct = of_get_child_count(pmu_events); 241 242 /* Get the event prefix */ 243 if (of_property_read_string(node, "events-prefix", &prefix)) { 244 of_node_put(pmu_events); 245 return 0; 246 } 247 248 /* Get a global unit and scale data if available */ 249 if (of_property_read_string(node, "scale", &g_scale)) 250 g_scale = NULL; 251 252 if (of_property_read_string(node, "unit", &g_unit)) 253 g_unit = NULL; 254 255 /* "reg" property gives out the base offset of the counters data */ 256 of_property_read_u32(node, "reg", &base_reg); 257 258 /* Allocate memory for the events */ 259 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 260 if (!pmu->events) { 261 of_node_put(pmu_events); 262 return -ENOMEM; 263 } 264 265 ct = 0; 266 /* Parse the events and update the struct */ 267 for_each_child_of_node(pmu_events, np) { 268 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]); 269 if (!ret) 270 ct++; 271 } 272 273 of_node_put(pmu_events); 274 275 /* Allocate memory for attribute group */ 276 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 277 if (!attr_group) { 278 imc_free_events(pmu->events, ct); 279 return -ENOMEM; 280 } 281 282 /* 283 * Allocate memory for attributes. 284 * Since we have count of events for this pmu, we also allocate 285 * memory for the scale and unit attribute for now. 286 * "ct" has the total event structs added from the events-parent node. 287 * So allocate three times the "ct" (this includes event, event_scale and 288 * event_unit). 289 */ 290 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 291 if (!attrs) { 292 kfree(attr_group); 293 imc_free_events(pmu->events, ct); 294 return -ENOMEM; 295 } 296 297 attr_group->name = "events"; 298 attr_group->attrs = attrs; 299 do { 300 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value); 301 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str); 302 if (!dev_str) 303 continue; 304 305 attrs[j++] = dev_str; 306 if (pmu->events[i].scale) { 307 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name); 308 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale); 309 if (!dev_str) 310 continue; 311 312 attrs[j++] = dev_str; 313 } 314 315 if (pmu->events[i].unit) { 316 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name); 317 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit); 318 if (!dev_str) 319 continue; 320 321 attrs[j++] = dev_str; 322 } 323 } while (++i < ct); 324 325 /* Save the event attribute */ 326 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 327 328 return 0; 329 } 330 331 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 332 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 333 { 334 return per_cpu(local_nest_imc_refc, cpu); 335 } 336 337 static void nest_change_cpu_context(int old_cpu, int new_cpu) 338 { 339 struct imc_pmu **pn = per_nest_pmu_arr; 340 341 if (old_cpu < 0 || new_cpu < 0) 342 return; 343 344 while (*pn) { 345 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 346 pn++; 347 } 348 } 349 350 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 351 { 352 int nid, target = -1; 353 const struct cpumask *l_cpumask; 354 struct imc_pmu_ref *ref; 355 356 /* 357 * Check in the designated list for this cpu. Dont bother 358 * if not one of them. 359 */ 360 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 361 return 0; 362 363 /* 364 * Check whether nest_imc is registered. We could end up here if the 365 * cpuhotplug callback registration fails. i.e, callback invokes the 366 * offline path for all successfully registered nodes. At this stage, 367 * nest_imc pmu will not be registered and we should return here. 368 * 369 * We return with a zero since this is not an offline failure. And 370 * cpuhp_setup_state() returns the actual failure reason to the caller, 371 * which in turn will call the cleanup routine. 372 */ 373 if (!nest_pmus) 374 return 0; 375 376 /* 377 * Now that this cpu is one of the designated, 378 * find a next cpu a) which is online and b) in same chip. 379 */ 380 nid = cpu_to_node(cpu); 381 l_cpumask = cpumask_of_node(nid); 382 target = cpumask_last(l_cpumask); 383 384 /* 385 * If this(target) is the last cpu in the cpumask for this chip, 386 * check for any possible online cpu in the chip. 387 */ 388 if (unlikely(target == cpu)) 389 target = cpumask_any_but(l_cpumask, cpu); 390 391 /* 392 * Update the cpumask with the target cpu and 393 * migrate the context if needed 394 */ 395 if (target >= 0 && target < nr_cpu_ids) { 396 cpumask_set_cpu(target, &nest_imc_cpumask); 397 nest_change_cpu_context(cpu, target); 398 } else { 399 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 400 get_hard_smp_processor_id(cpu)); 401 /* 402 * If this is the last cpu in this chip then, skip the reference 403 * count mutex lock and make the reference count on this chip zero. 404 */ 405 ref = get_nest_pmu_ref(cpu); 406 if (!ref) 407 return -EINVAL; 408 409 ref->refc = 0; 410 } 411 return 0; 412 } 413 414 static int ppc_nest_imc_cpu_online(unsigned int cpu) 415 { 416 const struct cpumask *l_cpumask; 417 static struct cpumask tmp_mask; 418 int res; 419 420 /* Get the cpumask of this node */ 421 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 422 423 /* 424 * If this is not the first online CPU on this node, then 425 * just return. 426 */ 427 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 428 return 0; 429 430 /* 431 * If this is the first online cpu on this node 432 * disable the nest counters by making an OPAL call. 433 */ 434 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 435 get_hard_smp_processor_id(cpu)); 436 if (res) 437 return res; 438 439 /* Make this CPU the designated target for counter collection */ 440 cpumask_set_cpu(cpu, &nest_imc_cpumask); 441 return 0; 442 } 443 444 static int nest_pmu_cpumask_init(void) 445 { 446 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 447 "perf/powerpc/imc:online", 448 ppc_nest_imc_cpu_online, 449 ppc_nest_imc_cpu_offline); 450 } 451 452 static void nest_imc_counters_release(struct perf_event *event) 453 { 454 int rc, node_id; 455 struct imc_pmu_ref *ref; 456 457 if (event->cpu < 0) 458 return; 459 460 node_id = cpu_to_node(event->cpu); 461 462 /* 463 * See if we need to disable the nest PMU. 464 * If no events are currently in use, then we have to take a 465 * mutex to ensure that we don't race with another task doing 466 * enable or disable the nest counters. 467 */ 468 ref = get_nest_pmu_ref(event->cpu); 469 if (!ref) 470 return; 471 472 /* Take the mutex lock for this node and then decrement the reference count */ 473 mutex_lock(&ref->lock); 474 if (ref->refc == 0) { 475 /* 476 * The scenario where this is true is, when perf session is 477 * started, followed by offlining of all cpus in a given node. 478 * 479 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 480 * function set the ref->count to zero, if the cpu which is 481 * about to offline is the last cpu in a given node and make 482 * an OPAL call to disable the engine in that node. 483 * 484 */ 485 mutex_unlock(&ref->lock); 486 return; 487 } 488 ref->refc--; 489 if (ref->refc == 0) { 490 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 491 get_hard_smp_processor_id(event->cpu)); 492 if (rc) { 493 mutex_unlock(&ref->lock); 494 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 495 return; 496 } 497 } else if (ref->refc < 0) { 498 WARN(1, "nest-imc: Invalid event reference count\n"); 499 ref->refc = 0; 500 } 501 mutex_unlock(&ref->lock); 502 } 503 504 static int nest_imc_event_init(struct perf_event *event) 505 { 506 int chip_id, rc, node_id; 507 u32 l_config, config = event->attr.config; 508 struct imc_mem_info *pcni; 509 struct imc_pmu *pmu; 510 struct imc_pmu_ref *ref; 511 bool flag = false; 512 513 if (event->attr.type != event->pmu->type) 514 return -ENOENT; 515 516 /* Sampling not supported */ 517 if (event->hw.sample_period) 518 return -EINVAL; 519 520 if (event->cpu < 0) 521 return -EINVAL; 522 523 pmu = imc_event_to_pmu(event); 524 525 /* Sanity check for config (event offset) */ 526 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 527 return -EINVAL; 528 529 /* 530 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 531 * Get the base memory address for this cpu. 532 */ 533 chip_id = cpu_to_chip_id(event->cpu); 534 535 /* Return, if chip_id is not valid */ 536 if (chip_id < 0) 537 return -ENODEV; 538 539 pcni = pmu->mem_info; 540 do { 541 if (pcni->id == chip_id) { 542 flag = true; 543 break; 544 } 545 pcni++; 546 } while (pcni->vbase != 0); 547 548 if (!flag) 549 return -ENODEV; 550 551 /* 552 * Add the event offset to the base address. 553 */ 554 l_config = config & IMC_EVENT_OFFSET_MASK; 555 event->hw.event_base = (u64)pcni->vbase + l_config; 556 node_id = cpu_to_node(event->cpu); 557 558 /* 559 * Get the imc_pmu_ref struct for this node. 560 * Take the mutex lock and then increment the count of nest pmu events 561 * inited. 562 */ 563 ref = get_nest_pmu_ref(event->cpu); 564 if (!ref) 565 return -EINVAL; 566 567 mutex_lock(&ref->lock); 568 if (ref->refc == 0) { 569 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 570 get_hard_smp_processor_id(event->cpu)); 571 if (rc) { 572 mutex_unlock(&ref->lock); 573 pr_err("nest-imc: Unable to start the counters for node %d\n", 574 node_id); 575 return rc; 576 } 577 } 578 ++ref->refc; 579 mutex_unlock(&ref->lock); 580 581 event->destroy = nest_imc_counters_release; 582 return 0; 583 } 584 585 /* 586 * core_imc_mem_init : Initializes memory for the current core. 587 * 588 * Uses alloc_pages_node() and uses the returned address as an argument to 589 * an opal call to configure the pdbar. The address sent as an argument is 590 * converted to physical address before the opal call is made. This is the 591 * base address at which the core imc counters are populated. 592 */ 593 static int core_imc_mem_init(int cpu, int size) 594 { 595 int nid, rc = 0, core_id = (cpu / threads_per_core); 596 struct imc_mem_info *mem_info; 597 struct page *page; 598 599 /* 600 * alloc_pages_node() will allocate memory for core in the 601 * local node only. 602 */ 603 nid = cpu_to_node(cpu); 604 mem_info = &core_imc_pmu->mem_info[core_id]; 605 mem_info->id = core_id; 606 607 /* We need only vbase for core counters */ 608 page = alloc_pages_node(nid, 609 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 610 __GFP_NOWARN, get_order(size)); 611 if (!page) 612 return -ENOMEM; 613 mem_info->vbase = page_address(page); 614 615 /* Init the mutex */ 616 core_imc_refc[core_id].id = core_id; 617 mutex_init(&core_imc_refc[core_id].lock); 618 619 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 620 __pa((void *)mem_info->vbase), 621 get_hard_smp_processor_id(cpu)); 622 if (rc) { 623 free_pages((u64)mem_info->vbase, get_order(size)); 624 mem_info->vbase = NULL; 625 } 626 627 return rc; 628 } 629 630 static bool is_core_imc_mem_inited(int cpu) 631 { 632 struct imc_mem_info *mem_info; 633 int core_id = (cpu / threads_per_core); 634 635 mem_info = &core_imc_pmu->mem_info[core_id]; 636 if (!mem_info->vbase) 637 return false; 638 639 return true; 640 } 641 642 static int ppc_core_imc_cpu_online(unsigned int cpu) 643 { 644 const struct cpumask *l_cpumask; 645 static struct cpumask tmp_mask; 646 int ret = 0; 647 648 /* Get the cpumask for this core */ 649 l_cpumask = cpu_sibling_mask(cpu); 650 651 /* If a cpu for this core is already set, then, don't do anything */ 652 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 653 return 0; 654 655 if (!is_core_imc_mem_inited(cpu)) { 656 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 657 if (ret) { 658 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 659 return ret; 660 } 661 } 662 663 /* set the cpu in the mask */ 664 cpumask_set_cpu(cpu, &core_imc_cpumask); 665 return 0; 666 } 667 668 static int ppc_core_imc_cpu_offline(unsigned int cpu) 669 { 670 unsigned int core_id; 671 int ncpu; 672 struct imc_pmu_ref *ref; 673 674 /* 675 * clear this cpu out of the mask, if not present in the mask, 676 * don't bother doing anything. 677 */ 678 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 679 return 0; 680 681 /* 682 * Check whether core_imc is registered. We could end up here 683 * if the cpuhotplug callback registration fails. i.e, callback 684 * invokes the offline path for all successfully registered cpus. 685 * At this stage, core_imc pmu will not be registered and we 686 * should return here. 687 * 688 * We return with a zero since this is not an offline failure. 689 * And cpuhp_setup_state() returns the actual failure reason 690 * to the caller, which inturn will call the cleanup routine. 691 */ 692 if (!core_imc_pmu->pmu.event_init) 693 return 0; 694 695 /* Find any online cpu in that core except the current "cpu" */ 696 ncpu = cpumask_last(cpu_sibling_mask(cpu)); 697 698 if (unlikely(ncpu == cpu)) 699 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 700 701 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 702 cpumask_set_cpu(ncpu, &core_imc_cpumask); 703 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 704 } else { 705 /* 706 * If this is the last cpu in this core then, skip taking refernce 707 * count mutex lock for this core and directly zero "refc" for 708 * this core. 709 */ 710 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 711 get_hard_smp_processor_id(cpu)); 712 core_id = cpu / threads_per_core; 713 ref = &core_imc_refc[core_id]; 714 if (!ref) 715 return -EINVAL; 716 717 ref->refc = 0; 718 /* 719 * Reduce the global reference count, if this is the 720 * last cpu in this core and core-imc event running 721 * in this cpu. 722 */ 723 mutex_lock(&imc_global_refc.lock); 724 if (imc_global_refc.id == IMC_DOMAIN_CORE) 725 imc_global_refc.refc--; 726 727 mutex_unlock(&imc_global_refc.lock); 728 } 729 return 0; 730 } 731 732 static int core_imc_pmu_cpumask_init(void) 733 { 734 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 735 "perf/powerpc/imc_core:online", 736 ppc_core_imc_cpu_online, 737 ppc_core_imc_cpu_offline); 738 } 739 740 static void reset_global_refc(struct perf_event *event) 741 { 742 mutex_lock(&imc_global_refc.lock); 743 imc_global_refc.refc--; 744 745 /* 746 * If no other thread is running any 747 * event for this domain(thread/core/trace), 748 * set the global id to zero. 749 */ 750 if (imc_global_refc.refc <= 0) { 751 imc_global_refc.refc = 0; 752 imc_global_refc.id = 0; 753 } 754 mutex_unlock(&imc_global_refc.lock); 755 } 756 757 static void core_imc_counters_release(struct perf_event *event) 758 { 759 int rc, core_id; 760 struct imc_pmu_ref *ref; 761 762 if (event->cpu < 0) 763 return; 764 /* 765 * See if we need to disable the IMC PMU. 766 * If no events are currently in use, then we have to take a 767 * mutex to ensure that we don't race with another task doing 768 * enable or disable the core counters. 769 */ 770 core_id = event->cpu / threads_per_core; 771 772 /* Take the mutex lock and decrement the refernce count for this core */ 773 ref = &core_imc_refc[core_id]; 774 if (!ref) 775 return; 776 777 mutex_lock(&ref->lock); 778 if (ref->refc == 0) { 779 /* 780 * The scenario where this is true is, when perf session is 781 * started, followed by offlining of all cpus in a given core. 782 * 783 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 784 * function set the ref->count to zero, if the cpu which is 785 * about to offline is the last cpu in a given core and make 786 * an OPAL call to disable the engine in that core. 787 * 788 */ 789 mutex_unlock(&ref->lock); 790 return; 791 } 792 ref->refc--; 793 if (ref->refc == 0) { 794 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 795 get_hard_smp_processor_id(event->cpu)); 796 if (rc) { 797 mutex_unlock(&ref->lock); 798 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 799 return; 800 } 801 } else if (ref->refc < 0) { 802 WARN(1, "core-imc: Invalid event reference count\n"); 803 ref->refc = 0; 804 } 805 mutex_unlock(&ref->lock); 806 807 reset_global_refc(event); 808 } 809 810 static int core_imc_event_init(struct perf_event *event) 811 { 812 int core_id, rc; 813 u64 config = event->attr.config; 814 struct imc_mem_info *pcmi; 815 struct imc_pmu *pmu; 816 struct imc_pmu_ref *ref; 817 818 if (event->attr.type != event->pmu->type) 819 return -ENOENT; 820 821 /* Sampling not supported */ 822 if (event->hw.sample_period) 823 return -EINVAL; 824 825 if (event->cpu < 0) 826 return -EINVAL; 827 828 event->hw.idx = -1; 829 pmu = imc_event_to_pmu(event); 830 831 /* Sanity check for config (event offset) */ 832 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 833 return -EINVAL; 834 835 if (!is_core_imc_mem_inited(event->cpu)) 836 return -ENODEV; 837 838 core_id = event->cpu / threads_per_core; 839 pcmi = &core_imc_pmu->mem_info[core_id]; 840 if ((!pcmi->vbase)) 841 return -ENODEV; 842 843 /* Get the core_imc mutex for this core */ 844 ref = &core_imc_refc[core_id]; 845 if (!ref) 846 return -EINVAL; 847 848 /* 849 * Core pmu units are enabled only when it is used. 850 * See if this is triggered for the first time. 851 * If yes, take the mutex lock and enable the core counters. 852 * If not, just increment the count in core_imc_refc struct. 853 */ 854 mutex_lock(&ref->lock); 855 if (ref->refc == 0) { 856 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 857 get_hard_smp_processor_id(event->cpu)); 858 if (rc) { 859 mutex_unlock(&ref->lock); 860 pr_err("core-imc: Unable to start the counters for core %d\n", 861 core_id); 862 return rc; 863 } 864 } 865 ++ref->refc; 866 mutex_unlock(&ref->lock); 867 868 /* 869 * Since the system can run either in accumulation or trace-mode 870 * of IMC at a time, core-imc events are allowed only if no other 871 * trace/thread imc events are enabled/monitored. 872 * 873 * Take the global lock, and check the refc.id 874 * to know whether any other trace/thread imc 875 * events are running. 876 */ 877 mutex_lock(&imc_global_refc.lock); 878 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) { 879 /* 880 * No other trace/thread imc events are running in 881 * the system, so set the refc.id to core-imc. 882 */ 883 imc_global_refc.id = IMC_DOMAIN_CORE; 884 imc_global_refc.refc++; 885 } else { 886 mutex_unlock(&imc_global_refc.lock); 887 return -EBUSY; 888 } 889 mutex_unlock(&imc_global_refc.lock); 890 891 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 892 event->destroy = core_imc_counters_release; 893 return 0; 894 } 895 896 /* 897 * Allocates a page of memory for each of the online cpus, and load 898 * LDBAR with 0. 899 * The physical base address of the page allocated for a cpu will be 900 * written to the LDBAR for that cpu, when the thread-imc event 901 * is added. 902 * 903 * LDBAR Register Layout: 904 * 905 * 0 4 8 12 16 20 24 28 906 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 907 * | | [ ] [ Counter Address [8:50] 908 * | * Mode | 909 * | * PB Scope 910 * * Enable/Disable 911 * 912 * 32 36 40 44 48 52 56 60 913 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 914 * Counter Address [8:50] ] 915 * 916 */ 917 static int thread_imc_mem_alloc(int cpu_id, int size) 918 { 919 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id); 920 int nid = cpu_to_node(cpu_id); 921 922 if (!local_mem) { 923 struct page *page; 924 /* 925 * This case could happen only once at start, since we dont 926 * free the memory in cpu offline path. 927 */ 928 page = alloc_pages_node(nid, 929 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 930 __GFP_NOWARN, get_order(size)); 931 if (!page) 932 return -ENOMEM; 933 local_mem = page_address(page); 934 935 per_cpu(thread_imc_mem, cpu_id) = local_mem; 936 } 937 938 mtspr(SPRN_LDBAR, 0); 939 return 0; 940 } 941 942 static int ppc_thread_imc_cpu_online(unsigned int cpu) 943 { 944 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 945 } 946 947 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 948 { 949 /* 950 * Set the bit 0 of LDBAR to zero. 951 * 952 * If bit 0 of LDBAR is unset, it will stop posting 953 * the counter data to memory. 954 * For thread-imc, bit 0 of LDBAR will be set to 1 in the 955 * event_add function. So reset this bit here, to stop the updates 956 * to memory in the cpu_offline path. 957 */ 958 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 959 960 /* Reduce the refc if thread-imc event running on this cpu */ 961 mutex_lock(&imc_global_refc.lock); 962 if (imc_global_refc.id == IMC_DOMAIN_THREAD) 963 imc_global_refc.refc--; 964 mutex_unlock(&imc_global_refc.lock); 965 966 return 0; 967 } 968 969 static int thread_imc_cpu_init(void) 970 { 971 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 972 "perf/powerpc/imc_thread:online", 973 ppc_thread_imc_cpu_online, 974 ppc_thread_imc_cpu_offline); 975 } 976 977 static int thread_imc_event_init(struct perf_event *event) 978 { 979 u32 config = event->attr.config; 980 struct task_struct *target; 981 struct imc_pmu *pmu; 982 983 if (event->attr.type != event->pmu->type) 984 return -ENOENT; 985 986 if (!perfmon_capable()) 987 return -EACCES; 988 989 /* Sampling not supported */ 990 if (event->hw.sample_period) 991 return -EINVAL; 992 993 event->hw.idx = -1; 994 pmu = imc_event_to_pmu(event); 995 996 /* Sanity check for config offset */ 997 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 998 return -EINVAL; 999 1000 target = event->hw.target; 1001 if (!target) 1002 return -EINVAL; 1003 1004 mutex_lock(&imc_global_refc.lock); 1005 /* 1006 * Check if any other trace/core imc events are running in the 1007 * system, if not set the global id to thread-imc. 1008 */ 1009 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) { 1010 imc_global_refc.id = IMC_DOMAIN_THREAD; 1011 imc_global_refc.refc++; 1012 } else { 1013 mutex_unlock(&imc_global_refc.lock); 1014 return -EBUSY; 1015 } 1016 mutex_unlock(&imc_global_refc.lock); 1017 1018 event->pmu->task_ctx_nr = perf_sw_context; 1019 event->destroy = reset_global_refc; 1020 return 0; 1021 } 1022 1023 static bool is_thread_imc_pmu(struct perf_event *event) 1024 { 1025 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 1026 return true; 1027 1028 return false; 1029 } 1030 1031 static u64 * get_event_base_addr(struct perf_event *event) 1032 { 1033 u64 addr; 1034 1035 if (is_thread_imc_pmu(event)) { 1036 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 1037 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 1038 } 1039 1040 return (u64 *)event->hw.event_base; 1041 } 1042 1043 static void thread_imc_pmu_start_txn(struct pmu *pmu, 1044 unsigned int txn_flags) 1045 { 1046 if (txn_flags & ~PERF_PMU_TXN_ADD) 1047 return; 1048 perf_pmu_disable(pmu); 1049 } 1050 1051 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 1052 { 1053 perf_pmu_enable(pmu); 1054 } 1055 1056 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 1057 { 1058 perf_pmu_enable(pmu); 1059 return 0; 1060 } 1061 1062 static u64 imc_read_counter(struct perf_event *event) 1063 { 1064 u64 *addr, data; 1065 1066 /* 1067 * In-Memory Collection (IMC) counters are free flowing counters. 1068 * So we take a snapshot of the counter value on enable and save it 1069 * to calculate the delta at later stage to present the event counter 1070 * value. 1071 */ 1072 addr = get_event_base_addr(event); 1073 data = be64_to_cpu(READ_ONCE(*addr)); 1074 local64_set(&event->hw.prev_count, data); 1075 1076 return data; 1077 } 1078 1079 static void imc_event_update(struct perf_event *event) 1080 { 1081 u64 counter_prev, counter_new, final_count; 1082 1083 counter_prev = local64_read(&event->hw.prev_count); 1084 counter_new = imc_read_counter(event); 1085 final_count = counter_new - counter_prev; 1086 1087 /* Update the delta to the event count */ 1088 local64_add(final_count, &event->count); 1089 } 1090 1091 static void imc_event_start(struct perf_event *event, int flags) 1092 { 1093 /* 1094 * In Memory Counters are free flowing counters. HW or the microcode 1095 * keeps adding to the counter offset in memory. To get event 1096 * counter value, we snapshot the value here and we calculate 1097 * delta at later point. 1098 */ 1099 imc_read_counter(event); 1100 } 1101 1102 static void imc_event_stop(struct perf_event *event, int flags) 1103 { 1104 /* 1105 * Take a snapshot and calculate the delta and update 1106 * the event counter values. 1107 */ 1108 imc_event_update(event); 1109 } 1110 1111 static int imc_event_add(struct perf_event *event, int flags) 1112 { 1113 if (flags & PERF_EF_START) 1114 imc_event_start(event, flags); 1115 1116 return 0; 1117 } 1118 1119 static int thread_imc_event_add(struct perf_event *event, int flags) 1120 { 1121 int core_id; 1122 struct imc_pmu_ref *ref; 1123 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id()); 1124 1125 if (flags & PERF_EF_START) 1126 imc_event_start(event, flags); 1127 1128 if (!is_core_imc_mem_inited(smp_processor_id())) 1129 return -EINVAL; 1130 1131 core_id = smp_processor_id() / threads_per_core; 1132 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 1133 mtspr(SPRN_LDBAR, ldbar_value); 1134 1135 /* 1136 * imc pmus are enabled only when it is used. 1137 * See if this is triggered for the first time. 1138 * If yes, take the mutex lock and enable the counters. 1139 * If not, just increment the count in ref count struct. 1140 */ 1141 ref = &core_imc_refc[core_id]; 1142 if (!ref) 1143 return -EINVAL; 1144 1145 mutex_lock(&ref->lock); 1146 if (ref->refc == 0) { 1147 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 1148 get_hard_smp_processor_id(smp_processor_id()))) { 1149 mutex_unlock(&ref->lock); 1150 pr_err("thread-imc: Unable to start the counter\ 1151 for core %d\n", core_id); 1152 return -EINVAL; 1153 } 1154 } 1155 ++ref->refc; 1156 mutex_unlock(&ref->lock); 1157 return 0; 1158 } 1159 1160 static void thread_imc_event_del(struct perf_event *event, int flags) 1161 { 1162 1163 int core_id; 1164 struct imc_pmu_ref *ref; 1165 1166 core_id = smp_processor_id() / threads_per_core; 1167 ref = &core_imc_refc[core_id]; 1168 if (!ref) { 1169 pr_debug("imc: Failed to get event reference count\n"); 1170 return; 1171 } 1172 1173 mutex_lock(&ref->lock); 1174 ref->refc--; 1175 if (ref->refc == 0) { 1176 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 1177 get_hard_smp_processor_id(smp_processor_id()))) { 1178 mutex_unlock(&ref->lock); 1179 pr_err("thread-imc: Unable to stop the counters\ 1180 for core %d\n", core_id); 1181 return; 1182 } 1183 } else if (ref->refc < 0) { 1184 ref->refc = 0; 1185 } 1186 mutex_unlock(&ref->lock); 1187 1188 /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */ 1189 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 1190 1191 /* 1192 * Take a snapshot and calculate the delta and update 1193 * the event counter values. 1194 */ 1195 imc_event_update(event); 1196 } 1197 1198 /* 1199 * Allocate a page of memory for each cpu, and load LDBAR with 0. 1200 */ 1201 static int trace_imc_mem_alloc(int cpu_id, int size) 1202 { 1203 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id); 1204 int phys_id = cpu_to_node(cpu_id), rc = 0; 1205 int core_id = (cpu_id / threads_per_core); 1206 1207 if (!local_mem) { 1208 struct page *page; 1209 1210 page = alloc_pages_node(phys_id, 1211 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 1212 __GFP_NOWARN, get_order(size)); 1213 if (!page) 1214 return -ENOMEM; 1215 local_mem = page_address(page); 1216 per_cpu(trace_imc_mem, cpu_id) = local_mem; 1217 1218 /* Initialise the counters for trace mode */ 1219 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem), 1220 get_hard_smp_processor_id(cpu_id)); 1221 if (rc) { 1222 pr_info("IMC:opal init failed for trace imc\n"); 1223 return rc; 1224 } 1225 } 1226 1227 /* Init the mutex, if not already */ 1228 trace_imc_refc[core_id].id = core_id; 1229 mutex_init(&trace_imc_refc[core_id].lock); 1230 1231 mtspr(SPRN_LDBAR, 0); 1232 return 0; 1233 } 1234 1235 static int ppc_trace_imc_cpu_online(unsigned int cpu) 1236 { 1237 return trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1238 } 1239 1240 static int ppc_trace_imc_cpu_offline(unsigned int cpu) 1241 { 1242 /* 1243 * No need to set bit 0 of LDBAR to zero, as 1244 * it is set to zero for imc trace-mode 1245 * 1246 * Reduce the refc if any trace-imc event running 1247 * on this cpu. 1248 */ 1249 mutex_lock(&imc_global_refc.lock); 1250 if (imc_global_refc.id == IMC_DOMAIN_TRACE) 1251 imc_global_refc.refc--; 1252 mutex_unlock(&imc_global_refc.lock); 1253 1254 return 0; 1255 } 1256 1257 static int trace_imc_cpu_init(void) 1258 { 1259 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE, 1260 "perf/powerpc/imc_trace:online", 1261 ppc_trace_imc_cpu_online, 1262 ppc_trace_imc_cpu_offline); 1263 } 1264 1265 static u64 get_trace_imc_event_base_addr(void) 1266 { 1267 return (u64)per_cpu(trace_imc_mem, smp_processor_id()); 1268 } 1269 1270 /* 1271 * Function to parse trace-imc data obtained 1272 * and to prepare the perf sample. 1273 */ 1274 static int trace_imc_prepare_sample(struct trace_imc_data *mem, 1275 struct perf_sample_data *data, 1276 u64 *prev_tb, 1277 struct perf_event_header *header, 1278 struct perf_event *event) 1279 { 1280 /* Sanity checks for a valid record */ 1281 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb) 1282 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1)); 1283 else 1284 return -EINVAL; 1285 1286 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) != 1287 be64_to_cpu(READ_ONCE(mem->tb2))) 1288 return -EINVAL; 1289 1290 /* Prepare perf sample */ 1291 data->ip = be64_to_cpu(READ_ONCE(mem->ip)); 1292 data->period = event->hw.last_period; 1293 1294 header->type = PERF_RECORD_SAMPLE; 1295 header->size = sizeof(*header) + event->header_size; 1296 header->misc = 0; 1297 1298 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 1299 switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) { 1300 case 0:/* when MSR HV and PR not set in the trace-record */ 1301 header->misc |= PERF_RECORD_MISC_GUEST_KERNEL; 1302 break; 1303 case 1: /* MSR HV is 0 and PR is 1 */ 1304 header->misc |= PERF_RECORD_MISC_GUEST_USER; 1305 break; 1306 case 2: /* MSR HV is 1 and PR is 0 */ 1307 header->misc |= PERF_RECORD_MISC_KERNEL; 1308 break; 1309 case 3: /* MSR HV is 1 and PR is 1 */ 1310 header->misc |= PERF_RECORD_MISC_USER; 1311 break; 1312 default: 1313 pr_info("IMC: Unable to set the flag based on MSR bits\n"); 1314 break; 1315 } 1316 } else { 1317 if (is_kernel_addr(data->ip)) 1318 header->misc |= PERF_RECORD_MISC_KERNEL; 1319 else 1320 header->misc |= PERF_RECORD_MISC_USER; 1321 } 1322 perf_event_header__init_id(header, data, event); 1323 1324 return 0; 1325 } 1326 1327 static void dump_trace_imc_data(struct perf_event *event) 1328 { 1329 struct trace_imc_data *mem; 1330 int i, ret; 1331 u64 prev_tb = 0; 1332 1333 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr(); 1334 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data)); 1335 i++, mem++) { 1336 struct perf_sample_data data; 1337 struct perf_event_header header; 1338 1339 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event); 1340 if (ret) /* Exit, if not a valid record */ 1341 break; 1342 else { 1343 /* If this is a valid record, create the sample */ 1344 struct perf_output_handle handle; 1345 1346 if (perf_output_begin(&handle, &data, event, header.size)) 1347 return; 1348 1349 perf_output_sample(&handle, &header, &data, event); 1350 perf_output_end(&handle); 1351 } 1352 } 1353 } 1354 1355 static int trace_imc_event_add(struct perf_event *event, int flags) 1356 { 1357 int core_id = smp_processor_id() / threads_per_core; 1358 struct imc_pmu_ref *ref = NULL; 1359 u64 local_mem, ldbar_value; 1360 1361 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */ 1362 local_mem = get_trace_imc_event_base_addr(); 1363 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE; 1364 1365 /* trace-imc reference count */ 1366 if (trace_imc_refc) 1367 ref = &trace_imc_refc[core_id]; 1368 if (!ref) { 1369 pr_debug("imc: Failed to get the event reference count\n"); 1370 return -EINVAL; 1371 } 1372 1373 mtspr(SPRN_LDBAR, ldbar_value); 1374 mutex_lock(&ref->lock); 1375 if (ref->refc == 0) { 1376 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE, 1377 get_hard_smp_processor_id(smp_processor_id()))) { 1378 mutex_unlock(&ref->lock); 1379 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id); 1380 return -EINVAL; 1381 } 1382 } 1383 ++ref->refc; 1384 mutex_unlock(&ref->lock); 1385 return 0; 1386 } 1387 1388 static void trace_imc_event_read(struct perf_event *event) 1389 { 1390 return; 1391 } 1392 1393 static void trace_imc_event_stop(struct perf_event *event, int flags) 1394 { 1395 u64 local_mem = get_trace_imc_event_base_addr(); 1396 dump_trace_imc_data(event); 1397 memset((void *)local_mem, 0, sizeof(u64)); 1398 } 1399 1400 static void trace_imc_event_start(struct perf_event *event, int flags) 1401 { 1402 return; 1403 } 1404 1405 static void trace_imc_event_del(struct perf_event *event, int flags) 1406 { 1407 int core_id = smp_processor_id() / threads_per_core; 1408 struct imc_pmu_ref *ref = NULL; 1409 1410 if (trace_imc_refc) 1411 ref = &trace_imc_refc[core_id]; 1412 if (!ref) { 1413 pr_debug("imc: Failed to get event reference count\n"); 1414 return; 1415 } 1416 1417 mutex_lock(&ref->lock); 1418 ref->refc--; 1419 if (ref->refc == 0) { 1420 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE, 1421 get_hard_smp_processor_id(smp_processor_id()))) { 1422 mutex_unlock(&ref->lock); 1423 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id); 1424 return; 1425 } 1426 } else if (ref->refc < 0) { 1427 ref->refc = 0; 1428 } 1429 mutex_unlock(&ref->lock); 1430 1431 trace_imc_event_stop(event, flags); 1432 } 1433 1434 static int trace_imc_event_init(struct perf_event *event) 1435 { 1436 if (event->attr.type != event->pmu->type) 1437 return -ENOENT; 1438 1439 if (!perfmon_capable()) 1440 return -EACCES; 1441 1442 /* Return if this is a couting event */ 1443 if (event->attr.sample_period == 0) 1444 return -ENOENT; 1445 1446 /* 1447 * Take the global lock, and make sure 1448 * no other thread is running any core/thread imc 1449 * events 1450 */ 1451 mutex_lock(&imc_global_refc.lock); 1452 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) { 1453 /* 1454 * No core/thread imc events are running in the 1455 * system, so set the refc.id to trace-imc. 1456 */ 1457 imc_global_refc.id = IMC_DOMAIN_TRACE; 1458 imc_global_refc.refc++; 1459 } else { 1460 mutex_unlock(&imc_global_refc.lock); 1461 return -EBUSY; 1462 } 1463 mutex_unlock(&imc_global_refc.lock); 1464 1465 event->hw.idx = -1; 1466 1467 /* 1468 * There can only be a single PMU for perf_hw_context events which is assigned to 1469 * core PMU. Hence use "perf_sw_context" for trace_imc. 1470 */ 1471 event->pmu->task_ctx_nr = perf_sw_context; 1472 event->destroy = reset_global_refc; 1473 return 0; 1474 } 1475 1476 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1477 static int update_pmu_ops(struct imc_pmu *pmu) 1478 { 1479 pmu->pmu.task_ctx_nr = perf_invalid_context; 1480 pmu->pmu.add = imc_event_add; 1481 pmu->pmu.del = imc_event_stop; 1482 pmu->pmu.start = imc_event_start; 1483 pmu->pmu.stop = imc_event_stop; 1484 pmu->pmu.read = imc_event_update; 1485 pmu->pmu.attr_groups = pmu->attr_groups; 1486 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1487 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1488 1489 switch (pmu->domain) { 1490 case IMC_DOMAIN_NEST: 1491 pmu->pmu.event_init = nest_imc_event_init; 1492 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1493 break; 1494 case IMC_DOMAIN_CORE: 1495 pmu->pmu.event_init = core_imc_event_init; 1496 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1497 break; 1498 case IMC_DOMAIN_THREAD: 1499 pmu->pmu.event_init = thread_imc_event_init; 1500 pmu->pmu.add = thread_imc_event_add; 1501 pmu->pmu.del = thread_imc_event_del; 1502 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1503 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1504 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1505 break; 1506 case IMC_DOMAIN_TRACE: 1507 pmu->pmu.event_init = trace_imc_event_init; 1508 pmu->pmu.add = trace_imc_event_add; 1509 pmu->pmu.del = trace_imc_event_del; 1510 pmu->pmu.start = trace_imc_event_start; 1511 pmu->pmu.stop = trace_imc_event_stop; 1512 pmu->pmu.read = trace_imc_event_read; 1513 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group; 1514 break; 1515 default: 1516 break; 1517 } 1518 1519 return 0; 1520 } 1521 1522 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1523 static int init_nest_pmu_ref(void) 1524 { 1525 int nid, i, cpu; 1526 1527 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1528 GFP_KERNEL); 1529 1530 if (!nest_imc_refc) 1531 return -ENOMEM; 1532 1533 i = 0; 1534 for_each_node(nid) { 1535 /* 1536 * Mutex lock to avoid races while tracking the number of 1537 * sessions using the chip's nest pmu units. 1538 */ 1539 mutex_init(&nest_imc_refc[i].lock); 1540 1541 /* 1542 * Loop to init the "id" with the node_id. Variable "i" initialized to 1543 * 0 and will be used as index to the array. "i" will not go off the 1544 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1545 * nodes only. 1546 */ 1547 nest_imc_refc[i++].id = nid; 1548 } 1549 1550 /* 1551 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1552 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1553 */ 1554 for_each_possible_cpu(cpu) { 1555 nid = cpu_to_node(cpu); 1556 for (i = 0; i < num_possible_nodes(); i++) { 1557 if (nest_imc_refc[i].id == nid) { 1558 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1559 break; 1560 } 1561 } 1562 } 1563 return 0; 1564 } 1565 1566 static void cleanup_all_core_imc_memory(void) 1567 { 1568 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1569 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1570 int size = core_imc_pmu->counter_mem_size; 1571 1572 /* mem_info will never be NULL */ 1573 for (i = 0; i < nr_cores; i++) { 1574 if (ptr[i].vbase) 1575 free_pages((u64)ptr[i].vbase, get_order(size)); 1576 } 1577 1578 kfree(ptr); 1579 kfree(core_imc_refc); 1580 } 1581 1582 static void thread_imc_ldbar_disable(void *dummy) 1583 { 1584 /* 1585 * By setting 0th bit of LDBAR to zero, we disable thread-imc 1586 * updates to memory. 1587 */ 1588 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 1589 } 1590 1591 void thread_imc_disable(void) 1592 { 1593 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1594 } 1595 1596 static void cleanup_all_thread_imc_memory(void) 1597 { 1598 int i, order = get_order(thread_imc_mem_size); 1599 1600 for_each_online_cpu(i) { 1601 if (per_cpu(thread_imc_mem, i)) 1602 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1603 1604 } 1605 } 1606 1607 static void cleanup_all_trace_imc_memory(void) 1608 { 1609 int i, order = get_order(trace_imc_mem_size); 1610 1611 for_each_online_cpu(i) { 1612 if (per_cpu(trace_imc_mem, i)) 1613 free_pages((u64)per_cpu(trace_imc_mem, i), order); 1614 1615 } 1616 kfree(trace_imc_refc); 1617 } 1618 1619 /* Function to free the attr_groups which are dynamically allocated */ 1620 static void imc_common_mem_free(struct imc_pmu *pmu_ptr) 1621 { 1622 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1623 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1624 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1625 } 1626 1627 /* 1628 * Common function to unregister cpu hotplug callback and 1629 * free the memory. 1630 * TODO: Need to handle pmu unregistering, which will be 1631 * done in followup series. 1632 */ 1633 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1634 { 1635 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1636 mutex_lock(&nest_init_lock); 1637 if (nest_pmus == 1) { 1638 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1639 kfree(nest_imc_refc); 1640 kfree(per_nest_pmu_arr); 1641 per_nest_pmu_arr = NULL; 1642 } 1643 1644 if (nest_pmus > 0) 1645 nest_pmus--; 1646 mutex_unlock(&nest_init_lock); 1647 } 1648 1649 /* Free core_imc memory */ 1650 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1651 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1652 cleanup_all_core_imc_memory(); 1653 } 1654 1655 /* Free thread_imc memory */ 1656 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1657 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1658 cleanup_all_thread_imc_memory(); 1659 } 1660 1661 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) { 1662 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE); 1663 cleanup_all_trace_imc_memory(); 1664 } 1665 } 1666 1667 /* 1668 * Function to unregister thread-imc if core-imc 1669 * is not registered. 1670 */ 1671 void unregister_thread_imc(void) 1672 { 1673 imc_common_cpuhp_mem_free(thread_imc_pmu); 1674 imc_common_mem_free(thread_imc_pmu); 1675 perf_pmu_unregister(&thread_imc_pmu->pmu); 1676 } 1677 1678 /* 1679 * imc_mem_init : Function to support memory allocation for core imc. 1680 */ 1681 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1682 int pmu_index) 1683 { 1684 const char *s; 1685 int nr_cores, cpu, res = -ENOMEM; 1686 1687 if (of_property_read_string(parent, "name", &s)) 1688 return -ENODEV; 1689 1690 switch (pmu_ptr->domain) { 1691 case IMC_DOMAIN_NEST: 1692 /* Update the pmu name */ 1693 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1694 if (!pmu_ptr->pmu.name) 1695 goto err; 1696 1697 /* Needed for hotplug/migration */ 1698 if (!per_nest_pmu_arr) { 1699 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1700 sizeof(struct imc_pmu *), 1701 GFP_KERNEL); 1702 if (!per_nest_pmu_arr) 1703 goto err; 1704 } 1705 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1706 break; 1707 case IMC_DOMAIN_CORE: 1708 /* Update the pmu name */ 1709 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1710 if (!pmu_ptr->pmu.name) 1711 goto err; 1712 1713 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1714 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1715 GFP_KERNEL); 1716 1717 if (!pmu_ptr->mem_info) 1718 goto err; 1719 1720 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1721 GFP_KERNEL); 1722 1723 if (!core_imc_refc) { 1724 kfree(pmu_ptr->mem_info); 1725 goto err; 1726 } 1727 1728 core_imc_pmu = pmu_ptr; 1729 break; 1730 case IMC_DOMAIN_THREAD: 1731 /* Update the pmu name */ 1732 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1733 if (!pmu_ptr->pmu.name) 1734 goto err; 1735 1736 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1737 for_each_online_cpu(cpu) { 1738 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1739 if (res) { 1740 cleanup_all_thread_imc_memory(); 1741 goto err; 1742 } 1743 } 1744 1745 thread_imc_pmu = pmu_ptr; 1746 break; 1747 case IMC_DOMAIN_TRACE: 1748 /* Update the pmu name */ 1749 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1750 if (!pmu_ptr->pmu.name) 1751 return -ENOMEM; 1752 1753 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1754 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1755 GFP_KERNEL); 1756 if (!trace_imc_refc) 1757 return -ENOMEM; 1758 1759 trace_imc_mem_size = pmu_ptr->counter_mem_size; 1760 for_each_online_cpu(cpu) { 1761 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1762 if (res) { 1763 cleanup_all_trace_imc_memory(); 1764 goto err; 1765 } 1766 } 1767 break; 1768 default: 1769 return -EINVAL; 1770 } 1771 1772 return 0; 1773 err: 1774 return res; 1775 } 1776 1777 /* 1778 * init_imc_pmu : Setup and register the IMC pmu device. 1779 * 1780 * @parent: Device tree unit node 1781 * @pmu_ptr: memory allocated for this pmu 1782 * @pmu_idx: Count of nest pmc registered 1783 * 1784 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1785 * Handles failure cases and accordingly frees memory. 1786 */ 1787 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1788 { 1789 int ret; 1790 1791 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1792 if (ret) 1793 goto err_free_mem; 1794 1795 switch (pmu_ptr->domain) { 1796 case IMC_DOMAIN_NEST: 1797 /* 1798 * Nest imc pmu need only one cpu per chip, we initialize the 1799 * cpumask for the first nest imc pmu and use the same for the 1800 * rest. To handle the cpuhotplug callback unregister, we track 1801 * the number of nest pmus in "nest_pmus". 1802 */ 1803 mutex_lock(&nest_init_lock); 1804 if (nest_pmus == 0) { 1805 ret = init_nest_pmu_ref(); 1806 if (ret) { 1807 mutex_unlock(&nest_init_lock); 1808 kfree(per_nest_pmu_arr); 1809 per_nest_pmu_arr = NULL; 1810 goto err_free_mem; 1811 } 1812 /* Register for cpu hotplug notification. */ 1813 ret = nest_pmu_cpumask_init(); 1814 if (ret) { 1815 mutex_unlock(&nest_init_lock); 1816 kfree(nest_imc_refc); 1817 kfree(per_nest_pmu_arr); 1818 per_nest_pmu_arr = NULL; 1819 goto err_free_mem; 1820 } 1821 } 1822 nest_pmus++; 1823 mutex_unlock(&nest_init_lock); 1824 break; 1825 case IMC_DOMAIN_CORE: 1826 ret = core_imc_pmu_cpumask_init(); 1827 if (ret) { 1828 cleanup_all_core_imc_memory(); 1829 goto err_free_mem; 1830 } 1831 1832 break; 1833 case IMC_DOMAIN_THREAD: 1834 ret = thread_imc_cpu_init(); 1835 if (ret) { 1836 cleanup_all_thread_imc_memory(); 1837 goto err_free_mem; 1838 } 1839 1840 break; 1841 case IMC_DOMAIN_TRACE: 1842 ret = trace_imc_cpu_init(); 1843 if (ret) { 1844 cleanup_all_trace_imc_memory(); 1845 goto err_free_mem; 1846 } 1847 1848 break; 1849 default: 1850 return -EINVAL; /* Unknown domain */ 1851 } 1852 1853 ret = update_events_in_group(parent, pmu_ptr); 1854 if (ret) 1855 goto err_free_cpuhp_mem; 1856 1857 ret = update_pmu_ops(pmu_ptr); 1858 if (ret) 1859 goto err_free_cpuhp_mem; 1860 1861 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1862 if (ret) 1863 goto err_free_cpuhp_mem; 1864 1865 pr_debug("%s performance monitor hardware support registered\n", 1866 pmu_ptr->pmu.name); 1867 1868 return 0; 1869 1870 err_free_cpuhp_mem: 1871 imc_common_cpuhp_mem_free(pmu_ptr); 1872 err_free_mem: 1873 imc_common_mem_free(pmu_ptr); 1874 return ret; 1875 } 1876