1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * In-Memory Collection (IMC) Performance Monitor counter support. 4 * 5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 6 * (C) 2017 Anju T Sudhakar, IBM Corporation. 7 * (C) 2017 Hemant K Shaw, IBM Corporation. 8 */ 9 #include <linux/of.h> 10 #include <linux/perf_event.h> 11 #include <linux/slab.h> 12 #include <asm/opal.h> 13 #include <asm/imc-pmu.h> 14 #include <asm/cputhreads.h> 15 #include <asm/smp.h> 16 #include <linux/string.h> 17 #include <linux/spinlock.h> 18 19 /* Nest IMC data structures and variables */ 20 21 /* 22 * Used to avoid races in counting the nest-pmu units during hotplug 23 * register and unregister 24 */ 25 static DEFINE_MUTEX(nest_init_lock); 26 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 27 static struct imc_pmu **per_nest_pmu_arr; 28 static cpumask_t nest_imc_cpumask; 29 static struct imc_pmu_ref *nest_imc_refc; 30 static int nest_pmus; 31 32 /* Core IMC data structures and variables */ 33 34 static cpumask_t core_imc_cpumask; 35 static struct imc_pmu_ref *core_imc_refc; 36 static struct imc_pmu *core_imc_pmu; 37 38 /* Thread IMC data structures and variables */ 39 40 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 41 static struct imc_pmu *thread_imc_pmu; 42 static int thread_imc_mem_size; 43 44 /* Trace IMC data structures */ 45 static DEFINE_PER_CPU(u64 *, trace_imc_mem); 46 static struct imc_pmu_ref *trace_imc_refc; 47 static int trace_imc_mem_size; 48 49 /* 50 * Global data structure used to avoid races between thread, 51 * core and trace-imc 52 */ 53 static struct imc_pmu_ref imc_global_refc = { 54 .lock = __SPIN_LOCK_INITIALIZER(imc_global_refc.lock), 55 .id = 0, 56 .refc = 0, 57 }; 58 59 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 60 { 61 return container_of(event->pmu, struct imc_pmu, pmu); 62 } 63 64 PMU_FORMAT_ATTR(event, "config:0-61"); 65 PMU_FORMAT_ATTR(offset, "config:0-31"); 66 PMU_FORMAT_ATTR(rvalue, "config:32"); 67 PMU_FORMAT_ATTR(mode, "config:33-40"); 68 static struct attribute *imc_format_attrs[] = { 69 &format_attr_event.attr, 70 &format_attr_offset.attr, 71 &format_attr_rvalue.attr, 72 &format_attr_mode.attr, 73 NULL, 74 }; 75 76 static const struct attribute_group imc_format_group = { 77 .name = "format", 78 .attrs = imc_format_attrs, 79 }; 80 81 /* Format attribute for imc trace-mode */ 82 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19"); 83 PMU_FORMAT_ATTR(cpmc_event, "config:20-27"); 84 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29"); 85 PMU_FORMAT_ATTR(cpmc_load, "config:30-61"); 86 static struct attribute *trace_imc_format_attrs[] = { 87 &format_attr_event.attr, 88 &format_attr_cpmc_reserved.attr, 89 &format_attr_cpmc_event.attr, 90 &format_attr_cpmc_samplesel.attr, 91 &format_attr_cpmc_load.attr, 92 NULL, 93 }; 94 95 static const struct attribute_group trace_imc_format_group = { 96 .name = "format", 97 .attrs = trace_imc_format_attrs, 98 }; 99 100 /* Get the cpumask printed to a buffer "buf" */ 101 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 102 struct device_attribute *attr, 103 char *buf) 104 { 105 struct pmu *pmu = dev_get_drvdata(dev); 106 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 107 cpumask_t *active_mask; 108 109 switch(imc_pmu->domain){ 110 case IMC_DOMAIN_NEST: 111 active_mask = &nest_imc_cpumask; 112 break; 113 case IMC_DOMAIN_CORE: 114 active_mask = &core_imc_cpumask; 115 break; 116 default: 117 return 0; 118 } 119 120 return cpumap_print_to_pagebuf(true, buf, active_mask); 121 } 122 123 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 124 125 static struct attribute *imc_pmu_cpumask_attrs[] = { 126 &dev_attr_cpumask.attr, 127 NULL, 128 }; 129 130 static const struct attribute_group imc_pmu_cpumask_attr_group = { 131 .attrs = imc_pmu_cpumask_attrs, 132 }; 133 134 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 135 static struct attribute *device_str_attr_create(const char *name, const char *str) 136 { 137 struct perf_pmu_events_attr *attr; 138 139 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 140 if (!attr) 141 return NULL; 142 sysfs_attr_init(&attr->attr.attr); 143 144 attr->event_str = str; 145 attr->attr.attr.name = name; 146 attr->attr.attr.mode = 0444; 147 attr->attr.show = perf_event_sysfs_show; 148 149 return &attr->attr.attr; 150 } 151 152 static int imc_parse_event(struct device_node *np, const char *scale, 153 const char *unit, const char *prefix, 154 u32 base, struct imc_events *event) 155 { 156 const char *s; 157 u32 reg; 158 159 if (of_property_read_u32(np, "reg", ®)) 160 goto error; 161 /* Add the base_reg value to the "reg" */ 162 event->value = base + reg; 163 164 if (of_property_read_string(np, "event-name", &s)) 165 goto error; 166 167 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 168 if (!event->name) 169 goto error; 170 171 if (of_property_read_string(np, "scale", &s)) 172 s = scale; 173 174 if (s) { 175 event->scale = kstrdup(s, GFP_KERNEL); 176 if (!event->scale) 177 goto error; 178 } 179 180 if (of_property_read_string(np, "unit", &s)) 181 s = unit; 182 183 if (s) { 184 event->unit = kstrdup(s, GFP_KERNEL); 185 if (!event->unit) 186 goto error; 187 } 188 189 return 0; 190 error: 191 kfree(event->unit); 192 kfree(event->scale); 193 kfree(event->name); 194 return -EINVAL; 195 } 196 197 /* 198 * imc_free_events: Function to cleanup the events list, having 199 * "nr_entries". 200 */ 201 static void imc_free_events(struct imc_events *events, int nr_entries) 202 { 203 int i; 204 205 /* Nothing to clean, return */ 206 if (!events) 207 return; 208 for (i = 0; i < nr_entries; i++) { 209 kfree(events[i].unit); 210 kfree(events[i].scale); 211 kfree(events[i].name); 212 } 213 214 kfree(events); 215 } 216 217 /* 218 * update_events_in_group: Update the "events" information in an attr_group 219 * and assign the attr_group to the pmu "pmu". 220 */ 221 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 222 { 223 struct attribute_group *attr_group; 224 struct attribute **attrs, *dev_str; 225 struct device_node *np, *pmu_events; 226 u32 handle, base_reg; 227 int i = 0, j = 0, ct, ret; 228 const char *prefix, *g_scale, *g_unit; 229 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 230 231 if (!of_property_read_u32(node, "events", &handle)) 232 pmu_events = of_find_node_by_phandle(handle); 233 else 234 return 0; 235 236 /* Did not find any node with a given phandle */ 237 if (!pmu_events) 238 return 0; 239 240 /* Get a count of number of child nodes */ 241 ct = of_get_child_count(pmu_events); 242 243 /* Get the event prefix */ 244 if (of_property_read_string(node, "events-prefix", &prefix)) { 245 of_node_put(pmu_events); 246 return 0; 247 } 248 249 /* Get a global unit and scale data if available */ 250 if (of_property_read_string(node, "scale", &g_scale)) 251 g_scale = NULL; 252 253 if (of_property_read_string(node, "unit", &g_unit)) 254 g_unit = NULL; 255 256 /* "reg" property gives out the base offset of the counters data */ 257 of_property_read_u32(node, "reg", &base_reg); 258 259 /* Allocate memory for the events */ 260 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 261 if (!pmu->events) { 262 of_node_put(pmu_events); 263 return -ENOMEM; 264 } 265 266 ct = 0; 267 /* Parse the events and update the struct */ 268 for_each_child_of_node(pmu_events, np) { 269 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]); 270 if (!ret) 271 ct++; 272 } 273 274 of_node_put(pmu_events); 275 276 /* Allocate memory for attribute group */ 277 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 278 if (!attr_group) { 279 imc_free_events(pmu->events, ct); 280 return -ENOMEM; 281 } 282 283 /* 284 * Allocate memory for attributes. 285 * Since we have count of events for this pmu, we also allocate 286 * memory for the scale and unit attribute for now. 287 * "ct" has the total event structs added from the events-parent node. 288 * So allocate three times the "ct" (this includes event, event_scale and 289 * event_unit). 290 */ 291 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 292 if (!attrs) { 293 kfree(attr_group); 294 imc_free_events(pmu->events, ct); 295 return -ENOMEM; 296 } 297 298 attr_group->name = "events"; 299 attr_group->attrs = attrs; 300 do { 301 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value); 302 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str); 303 if (!dev_str) 304 continue; 305 306 attrs[j++] = dev_str; 307 if (pmu->events[i].scale) { 308 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name); 309 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale); 310 if (!dev_str) 311 continue; 312 313 attrs[j++] = dev_str; 314 } 315 316 if (pmu->events[i].unit) { 317 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name); 318 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit); 319 if (!dev_str) 320 continue; 321 322 attrs[j++] = dev_str; 323 } 324 } while (++i < ct); 325 326 /* Save the event attribute */ 327 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 328 329 return 0; 330 } 331 332 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 333 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 334 { 335 return per_cpu(local_nest_imc_refc, cpu); 336 } 337 338 static void nest_change_cpu_context(int old_cpu, int new_cpu) 339 { 340 struct imc_pmu **pn = per_nest_pmu_arr; 341 342 if (old_cpu < 0 || new_cpu < 0) 343 return; 344 345 while (*pn) { 346 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 347 pn++; 348 } 349 } 350 351 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 352 { 353 int nid, target = -1; 354 const struct cpumask *l_cpumask; 355 struct imc_pmu_ref *ref; 356 357 /* 358 * Check in the designated list for this cpu. Dont bother 359 * if not one of them. 360 */ 361 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 362 return 0; 363 364 /* 365 * Check whether nest_imc is registered. We could end up here if the 366 * cpuhotplug callback registration fails. i.e, callback invokes the 367 * offline path for all successfully registered nodes. At this stage, 368 * nest_imc pmu will not be registered and we should return here. 369 * 370 * We return with a zero since this is not an offline failure. And 371 * cpuhp_setup_state() returns the actual failure reason to the caller, 372 * which in turn will call the cleanup routine. 373 */ 374 if (!nest_pmus) 375 return 0; 376 377 /* 378 * Now that this cpu is one of the designated, 379 * find a next cpu a) which is online and b) in same chip. 380 */ 381 nid = cpu_to_node(cpu); 382 l_cpumask = cpumask_of_node(nid); 383 target = cpumask_last(l_cpumask); 384 385 /* 386 * If this(target) is the last cpu in the cpumask for this chip, 387 * check for any possible online cpu in the chip. 388 */ 389 if (unlikely(target == cpu)) 390 target = cpumask_any_but(l_cpumask, cpu); 391 392 /* 393 * Update the cpumask with the target cpu and 394 * migrate the context if needed 395 */ 396 if (target >= 0 && target < nr_cpu_ids) { 397 cpumask_set_cpu(target, &nest_imc_cpumask); 398 nest_change_cpu_context(cpu, target); 399 } else { 400 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 401 get_hard_smp_processor_id(cpu)); 402 /* 403 * If this is the last cpu in this chip then, skip the reference 404 * count lock and make the reference count on this chip zero. 405 */ 406 ref = get_nest_pmu_ref(cpu); 407 if (!ref) 408 return -EINVAL; 409 410 ref->refc = 0; 411 } 412 return 0; 413 } 414 415 static int ppc_nest_imc_cpu_online(unsigned int cpu) 416 { 417 const struct cpumask *l_cpumask; 418 static struct cpumask tmp_mask; 419 int res; 420 421 /* Get the cpumask of this node */ 422 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 423 424 /* 425 * If this is not the first online CPU on this node, then 426 * just return. 427 */ 428 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 429 return 0; 430 431 /* 432 * If this is the first online cpu on this node 433 * disable the nest counters by making an OPAL call. 434 */ 435 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 436 get_hard_smp_processor_id(cpu)); 437 if (res) 438 return res; 439 440 /* Make this CPU the designated target for counter collection */ 441 cpumask_set_cpu(cpu, &nest_imc_cpumask); 442 return 0; 443 } 444 445 static int nest_pmu_cpumask_init(void) 446 { 447 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 448 "perf/powerpc/imc:online", 449 ppc_nest_imc_cpu_online, 450 ppc_nest_imc_cpu_offline); 451 } 452 453 static void nest_imc_counters_release(struct perf_event *event) 454 { 455 int rc, node_id; 456 struct imc_pmu_ref *ref; 457 458 if (event->cpu < 0) 459 return; 460 461 node_id = cpu_to_node(event->cpu); 462 463 /* 464 * See if we need to disable the nest PMU. 465 * If no events are currently in use, then we have to take a 466 * lock to ensure that we don't race with another task doing 467 * enable or disable the nest counters. 468 */ 469 ref = get_nest_pmu_ref(event->cpu); 470 if (!ref) 471 return; 472 473 /* Take the lock for this node and then decrement the reference count */ 474 spin_lock(&ref->lock); 475 if (ref->refc == 0) { 476 /* 477 * The scenario where this is true is, when perf session is 478 * started, followed by offlining of all cpus in a given node. 479 * 480 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 481 * function set the ref->count to zero, if the cpu which is 482 * about to offline is the last cpu in a given node and make 483 * an OPAL call to disable the engine in that node. 484 * 485 */ 486 spin_unlock(&ref->lock); 487 return; 488 } 489 ref->refc--; 490 if (ref->refc == 0) { 491 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 492 get_hard_smp_processor_id(event->cpu)); 493 if (rc) { 494 spin_unlock(&ref->lock); 495 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 496 return; 497 } 498 } else if (ref->refc < 0) { 499 WARN(1, "nest-imc: Invalid event reference count\n"); 500 ref->refc = 0; 501 } 502 spin_unlock(&ref->lock); 503 } 504 505 static int nest_imc_event_init(struct perf_event *event) 506 { 507 int chip_id, rc, node_id; 508 u32 l_config, config = event->attr.config; 509 struct imc_mem_info *pcni; 510 struct imc_pmu *pmu; 511 struct imc_pmu_ref *ref; 512 bool flag = false; 513 514 if (event->attr.type != event->pmu->type) 515 return -ENOENT; 516 517 /* Sampling not supported */ 518 if (event->hw.sample_period) 519 return -EINVAL; 520 521 if (event->cpu < 0) 522 return -EINVAL; 523 524 pmu = imc_event_to_pmu(event); 525 526 /* Sanity check for config (event offset) */ 527 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 528 return -EINVAL; 529 530 /* 531 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 532 * Get the base memory address for this cpu. 533 */ 534 chip_id = cpu_to_chip_id(event->cpu); 535 536 /* Return, if chip_id is not valid */ 537 if (chip_id < 0) 538 return -ENODEV; 539 540 pcni = pmu->mem_info; 541 do { 542 if (pcni->id == chip_id) { 543 flag = true; 544 break; 545 } 546 pcni++; 547 } while (pcni->vbase != 0); 548 549 if (!flag) 550 return -ENODEV; 551 552 /* 553 * Add the event offset to the base address. 554 */ 555 l_config = config & IMC_EVENT_OFFSET_MASK; 556 event->hw.event_base = (u64)pcni->vbase + l_config; 557 node_id = cpu_to_node(event->cpu); 558 559 /* 560 * Get the imc_pmu_ref struct for this node. 561 * Take the lock and then increment the count of nest pmu events inited. 562 */ 563 ref = get_nest_pmu_ref(event->cpu); 564 if (!ref) 565 return -EINVAL; 566 567 spin_lock(&ref->lock); 568 if (ref->refc == 0) { 569 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 570 get_hard_smp_processor_id(event->cpu)); 571 if (rc) { 572 spin_unlock(&ref->lock); 573 pr_err("nest-imc: Unable to start the counters for node %d\n", 574 node_id); 575 return rc; 576 } 577 } 578 ++ref->refc; 579 spin_unlock(&ref->lock); 580 581 event->destroy = nest_imc_counters_release; 582 return 0; 583 } 584 585 /* 586 * core_imc_mem_init : Initializes memory for the current core. 587 * 588 * Uses alloc_pages_node() and uses the returned address as an argument to 589 * an opal call to configure the pdbar. The address sent as an argument is 590 * converted to physical address before the opal call is made. This is the 591 * base address at which the core imc counters are populated. 592 */ 593 static int core_imc_mem_init(int cpu, int size) 594 { 595 int nid, rc = 0, core_id = (cpu / threads_per_core); 596 struct imc_mem_info *mem_info; 597 struct page *page; 598 599 /* 600 * alloc_pages_node() will allocate memory for core in the 601 * local node only. 602 */ 603 nid = cpu_to_node(cpu); 604 mem_info = &core_imc_pmu->mem_info[core_id]; 605 mem_info->id = core_id; 606 607 /* We need only vbase for core counters */ 608 page = alloc_pages_node(nid, 609 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 610 __GFP_NOWARN, get_order(size)); 611 if (!page) 612 return -ENOMEM; 613 mem_info->vbase = page_address(page); 614 615 core_imc_refc[core_id].id = core_id; 616 spin_lock_init(&core_imc_refc[core_id].lock); 617 618 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 619 __pa((void *)mem_info->vbase), 620 get_hard_smp_processor_id(cpu)); 621 if (rc) { 622 free_pages((u64)mem_info->vbase, get_order(size)); 623 mem_info->vbase = NULL; 624 } 625 626 return rc; 627 } 628 629 static bool is_core_imc_mem_inited(int cpu) 630 { 631 struct imc_mem_info *mem_info; 632 int core_id = (cpu / threads_per_core); 633 634 mem_info = &core_imc_pmu->mem_info[core_id]; 635 if (!mem_info->vbase) 636 return false; 637 638 return true; 639 } 640 641 static int ppc_core_imc_cpu_online(unsigned int cpu) 642 { 643 const struct cpumask *l_cpumask; 644 static struct cpumask tmp_mask; 645 int ret = 0; 646 647 /* Get the cpumask for this core */ 648 l_cpumask = cpu_sibling_mask(cpu); 649 650 /* If a cpu for this core is already set, then, don't do anything */ 651 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 652 return 0; 653 654 if (!is_core_imc_mem_inited(cpu)) { 655 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 656 if (ret) { 657 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 658 return ret; 659 } 660 } 661 662 /* set the cpu in the mask */ 663 cpumask_set_cpu(cpu, &core_imc_cpumask); 664 return 0; 665 } 666 667 static int ppc_core_imc_cpu_offline(unsigned int cpu) 668 { 669 unsigned int core_id; 670 int ncpu; 671 struct imc_pmu_ref *ref; 672 673 /* 674 * clear this cpu out of the mask, if not present in the mask, 675 * don't bother doing anything. 676 */ 677 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 678 return 0; 679 680 /* 681 * Check whether core_imc is registered. We could end up here 682 * if the cpuhotplug callback registration fails. i.e, callback 683 * invokes the offline path for all successfully registered cpus. 684 * At this stage, core_imc pmu will not be registered and we 685 * should return here. 686 * 687 * We return with a zero since this is not an offline failure. 688 * And cpuhp_setup_state() returns the actual failure reason 689 * to the caller, which inturn will call the cleanup routine. 690 */ 691 if (!core_imc_pmu->pmu.event_init) 692 return 0; 693 694 /* Find any online cpu in that core except the current "cpu" */ 695 ncpu = cpumask_last(cpu_sibling_mask(cpu)); 696 697 if (unlikely(ncpu == cpu)) 698 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 699 700 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 701 cpumask_set_cpu(ncpu, &core_imc_cpumask); 702 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 703 } else { 704 /* 705 * If this is the last cpu in this core then skip taking reference 706 * count lock for this core and directly zero "refc" for this core. 707 */ 708 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 709 get_hard_smp_processor_id(cpu)); 710 core_id = cpu / threads_per_core; 711 ref = &core_imc_refc[core_id]; 712 if (!ref) 713 return -EINVAL; 714 715 ref->refc = 0; 716 /* 717 * Reduce the global reference count, if this is the 718 * last cpu in this core and core-imc event running 719 * in this cpu. 720 */ 721 spin_lock(&imc_global_refc.lock); 722 if (imc_global_refc.id == IMC_DOMAIN_CORE) 723 imc_global_refc.refc--; 724 725 spin_unlock(&imc_global_refc.lock); 726 } 727 return 0; 728 } 729 730 static int core_imc_pmu_cpumask_init(void) 731 { 732 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 733 "perf/powerpc/imc_core:online", 734 ppc_core_imc_cpu_online, 735 ppc_core_imc_cpu_offline); 736 } 737 738 static void reset_global_refc(struct perf_event *event) 739 { 740 spin_lock(&imc_global_refc.lock); 741 imc_global_refc.refc--; 742 743 /* 744 * If no other thread is running any 745 * event for this domain(thread/core/trace), 746 * set the global id to zero. 747 */ 748 if (imc_global_refc.refc <= 0) { 749 imc_global_refc.refc = 0; 750 imc_global_refc.id = 0; 751 } 752 spin_unlock(&imc_global_refc.lock); 753 } 754 755 static void core_imc_counters_release(struct perf_event *event) 756 { 757 int rc, core_id; 758 struct imc_pmu_ref *ref; 759 760 if (event->cpu < 0) 761 return; 762 /* 763 * See if we need to disable the IMC PMU. 764 * If no events are currently in use, then we have to take a 765 * lock to ensure that we don't race with another task doing 766 * enable or disable the core counters. 767 */ 768 core_id = event->cpu / threads_per_core; 769 770 /* Take the lock and decrement the refernce count for this core */ 771 ref = &core_imc_refc[core_id]; 772 if (!ref) 773 return; 774 775 spin_lock(&ref->lock); 776 if (ref->refc == 0) { 777 /* 778 * The scenario where this is true is, when perf session is 779 * started, followed by offlining of all cpus in a given core. 780 * 781 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 782 * function set the ref->count to zero, if the cpu which is 783 * about to offline is the last cpu in a given core and make 784 * an OPAL call to disable the engine in that core. 785 * 786 */ 787 spin_unlock(&ref->lock); 788 return; 789 } 790 ref->refc--; 791 if (ref->refc == 0) { 792 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 793 get_hard_smp_processor_id(event->cpu)); 794 if (rc) { 795 spin_unlock(&ref->lock); 796 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 797 return; 798 } 799 } else if (ref->refc < 0) { 800 WARN(1, "core-imc: Invalid event reference count\n"); 801 ref->refc = 0; 802 } 803 spin_unlock(&ref->lock); 804 805 reset_global_refc(event); 806 } 807 808 static int core_imc_event_init(struct perf_event *event) 809 { 810 int core_id, rc; 811 u64 config = event->attr.config; 812 struct imc_mem_info *pcmi; 813 struct imc_pmu *pmu; 814 struct imc_pmu_ref *ref; 815 816 if (event->attr.type != event->pmu->type) 817 return -ENOENT; 818 819 /* Sampling not supported */ 820 if (event->hw.sample_period) 821 return -EINVAL; 822 823 if (event->cpu < 0) 824 return -EINVAL; 825 826 event->hw.idx = -1; 827 pmu = imc_event_to_pmu(event); 828 829 /* Sanity check for config (event offset) */ 830 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 831 return -EINVAL; 832 833 if (!is_core_imc_mem_inited(event->cpu)) 834 return -ENODEV; 835 836 core_id = event->cpu / threads_per_core; 837 pcmi = &core_imc_pmu->mem_info[core_id]; 838 if ((!pcmi->vbase)) 839 return -ENODEV; 840 841 ref = &core_imc_refc[core_id]; 842 if (!ref) 843 return -EINVAL; 844 845 /* 846 * Core pmu units are enabled only when it is used. 847 * See if this is triggered for the first time. 848 * If yes, take the lock and enable the core counters. 849 * If not, just increment the count in core_imc_refc struct. 850 */ 851 spin_lock(&ref->lock); 852 if (ref->refc == 0) { 853 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 854 get_hard_smp_processor_id(event->cpu)); 855 if (rc) { 856 spin_unlock(&ref->lock); 857 pr_err("core-imc: Unable to start the counters for core %d\n", 858 core_id); 859 return rc; 860 } 861 } 862 ++ref->refc; 863 spin_unlock(&ref->lock); 864 865 /* 866 * Since the system can run either in accumulation or trace-mode 867 * of IMC at a time, core-imc events are allowed only if no other 868 * trace/thread imc events are enabled/monitored. 869 * 870 * Take the global lock, and check the refc.id 871 * to know whether any other trace/thread imc 872 * events are running. 873 */ 874 spin_lock(&imc_global_refc.lock); 875 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) { 876 /* 877 * No other trace/thread imc events are running in 878 * the system, so set the refc.id to core-imc. 879 */ 880 imc_global_refc.id = IMC_DOMAIN_CORE; 881 imc_global_refc.refc++; 882 } else { 883 spin_unlock(&imc_global_refc.lock); 884 return -EBUSY; 885 } 886 spin_unlock(&imc_global_refc.lock); 887 888 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 889 event->destroy = core_imc_counters_release; 890 return 0; 891 } 892 893 /* 894 * Allocates a page of memory for each of the online cpus, and load 895 * LDBAR with 0. 896 * The physical base address of the page allocated for a cpu will be 897 * written to the LDBAR for that cpu, when the thread-imc event 898 * is added. 899 * 900 * LDBAR Register Layout: 901 * 902 * 0 4 8 12 16 20 24 28 903 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 904 * | | [ ] [ Counter Address [8:50] 905 * | * Mode | 906 * | * PB Scope 907 * * Enable/Disable 908 * 909 * 32 36 40 44 48 52 56 60 910 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 911 * Counter Address [8:50] ] 912 * 913 */ 914 static int thread_imc_mem_alloc(int cpu_id, int size) 915 { 916 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id); 917 int nid = cpu_to_node(cpu_id); 918 919 if (!local_mem) { 920 struct page *page; 921 /* 922 * This case could happen only once at start, since we dont 923 * free the memory in cpu offline path. 924 */ 925 page = alloc_pages_node(nid, 926 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 927 __GFP_NOWARN, get_order(size)); 928 if (!page) 929 return -ENOMEM; 930 local_mem = page_address(page); 931 932 per_cpu(thread_imc_mem, cpu_id) = local_mem; 933 } 934 935 mtspr(SPRN_LDBAR, 0); 936 return 0; 937 } 938 939 static int ppc_thread_imc_cpu_online(unsigned int cpu) 940 { 941 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 942 } 943 944 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 945 { 946 /* 947 * Set the bit 0 of LDBAR to zero. 948 * 949 * If bit 0 of LDBAR is unset, it will stop posting 950 * the counter data to memory. 951 * For thread-imc, bit 0 of LDBAR will be set to 1 in the 952 * event_add function. So reset this bit here, to stop the updates 953 * to memory in the cpu_offline path. 954 */ 955 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 956 957 /* Reduce the refc if thread-imc event running on this cpu */ 958 spin_lock(&imc_global_refc.lock); 959 if (imc_global_refc.id == IMC_DOMAIN_THREAD) 960 imc_global_refc.refc--; 961 spin_unlock(&imc_global_refc.lock); 962 963 return 0; 964 } 965 966 static int thread_imc_cpu_init(void) 967 { 968 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 969 "perf/powerpc/imc_thread:online", 970 ppc_thread_imc_cpu_online, 971 ppc_thread_imc_cpu_offline); 972 } 973 974 static int thread_imc_event_init(struct perf_event *event) 975 { 976 u32 config = event->attr.config; 977 struct task_struct *target; 978 struct imc_pmu *pmu; 979 980 if (event->attr.type != event->pmu->type) 981 return -ENOENT; 982 983 if (!perfmon_capable()) 984 return -EACCES; 985 986 /* Sampling not supported */ 987 if (event->hw.sample_period) 988 return -EINVAL; 989 990 event->hw.idx = -1; 991 pmu = imc_event_to_pmu(event); 992 993 /* Sanity check for config offset */ 994 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 995 return -EINVAL; 996 997 target = event->hw.target; 998 if (!target) 999 return -EINVAL; 1000 1001 spin_lock(&imc_global_refc.lock); 1002 /* 1003 * Check if any other trace/core imc events are running in the 1004 * system, if not set the global id to thread-imc. 1005 */ 1006 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) { 1007 imc_global_refc.id = IMC_DOMAIN_THREAD; 1008 imc_global_refc.refc++; 1009 } else { 1010 spin_unlock(&imc_global_refc.lock); 1011 return -EBUSY; 1012 } 1013 spin_unlock(&imc_global_refc.lock); 1014 1015 event->pmu->task_ctx_nr = perf_sw_context; 1016 event->destroy = reset_global_refc; 1017 return 0; 1018 } 1019 1020 static bool is_thread_imc_pmu(struct perf_event *event) 1021 { 1022 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 1023 return true; 1024 1025 return false; 1026 } 1027 1028 static u64 * get_event_base_addr(struct perf_event *event) 1029 { 1030 u64 addr; 1031 1032 if (is_thread_imc_pmu(event)) { 1033 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 1034 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 1035 } 1036 1037 return (u64 *)event->hw.event_base; 1038 } 1039 1040 static void thread_imc_pmu_start_txn(struct pmu *pmu, 1041 unsigned int txn_flags) 1042 { 1043 if (txn_flags & ~PERF_PMU_TXN_ADD) 1044 return; 1045 perf_pmu_disable(pmu); 1046 } 1047 1048 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 1049 { 1050 perf_pmu_enable(pmu); 1051 } 1052 1053 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 1054 { 1055 perf_pmu_enable(pmu); 1056 return 0; 1057 } 1058 1059 static u64 imc_read_counter(struct perf_event *event) 1060 { 1061 u64 *addr, data; 1062 1063 /* 1064 * In-Memory Collection (IMC) counters are free flowing counters. 1065 * So we take a snapshot of the counter value on enable and save it 1066 * to calculate the delta at later stage to present the event counter 1067 * value. 1068 */ 1069 addr = get_event_base_addr(event); 1070 data = be64_to_cpu(READ_ONCE(*addr)); 1071 local64_set(&event->hw.prev_count, data); 1072 1073 return data; 1074 } 1075 1076 static void imc_event_update(struct perf_event *event) 1077 { 1078 u64 counter_prev, counter_new, final_count; 1079 1080 counter_prev = local64_read(&event->hw.prev_count); 1081 counter_new = imc_read_counter(event); 1082 final_count = counter_new - counter_prev; 1083 1084 /* Update the delta to the event count */ 1085 local64_add(final_count, &event->count); 1086 } 1087 1088 static void imc_event_start(struct perf_event *event, int flags) 1089 { 1090 /* 1091 * In Memory Counters are free flowing counters. HW or the microcode 1092 * keeps adding to the counter offset in memory. To get event 1093 * counter value, we snapshot the value here and we calculate 1094 * delta at later point. 1095 */ 1096 imc_read_counter(event); 1097 } 1098 1099 static void imc_event_stop(struct perf_event *event, int flags) 1100 { 1101 /* 1102 * Take a snapshot and calculate the delta and update 1103 * the event counter values. 1104 */ 1105 imc_event_update(event); 1106 } 1107 1108 static int imc_event_add(struct perf_event *event, int flags) 1109 { 1110 if (flags & PERF_EF_START) 1111 imc_event_start(event, flags); 1112 1113 return 0; 1114 } 1115 1116 static int thread_imc_event_add(struct perf_event *event, int flags) 1117 { 1118 int core_id; 1119 struct imc_pmu_ref *ref; 1120 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id()); 1121 1122 if (flags & PERF_EF_START) 1123 imc_event_start(event, flags); 1124 1125 if (!is_core_imc_mem_inited(smp_processor_id())) 1126 return -EINVAL; 1127 1128 core_id = smp_processor_id() / threads_per_core; 1129 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 1130 mtspr(SPRN_LDBAR, ldbar_value); 1131 1132 /* 1133 * imc pmus are enabled only when it is used. 1134 * See if this is triggered for the first time. 1135 * If yes, take the lock and enable the counters. 1136 * If not, just increment the count in ref count struct. 1137 */ 1138 ref = &core_imc_refc[core_id]; 1139 if (!ref) 1140 return -EINVAL; 1141 1142 spin_lock(&ref->lock); 1143 if (ref->refc == 0) { 1144 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 1145 get_hard_smp_processor_id(smp_processor_id()))) { 1146 spin_unlock(&ref->lock); 1147 pr_err("thread-imc: Unable to start the counter\ 1148 for core %d\n", core_id); 1149 return -EINVAL; 1150 } 1151 } 1152 ++ref->refc; 1153 spin_unlock(&ref->lock); 1154 return 0; 1155 } 1156 1157 static void thread_imc_event_del(struct perf_event *event, int flags) 1158 { 1159 1160 int core_id; 1161 struct imc_pmu_ref *ref; 1162 1163 core_id = smp_processor_id() / threads_per_core; 1164 ref = &core_imc_refc[core_id]; 1165 if (!ref) { 1166 pr_debug("imc: Failed to get event reference count\n"); 1167 return; 1168 } 1169 1170 spin_lock(&ref->lock); 1171 ref->refc--; 1172 if (ref->refc == 0) { 1173 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 1174 get_hard_smp_processor_id(smp_processor_id()))) { 1175 spin_unlock(&ref->lock); 1176 pr_err("thread-imc: Unable to stop the counters\ 1177 for core %d\n", core_id); 1178 return; 1179 } 1180 } else if (ref->refc < 0) { 1181 ref->refc = 0; 1182 } 1183 spin_unlock(&ref->lock); 1184 1185 /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */ 1186 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 1187 1188 /* 1189 * Take a snapshot and calculate the delta and update 1190 * the event counter values. 1191 */ 1192 imc_event_update(event); 1193 } 1194 1195 /* 1196 * Allocate a page of memory for each cpu, and load LDBAR with 0. 1197 */ 1198 static int trace_imc_mem_alloc(int cpu_id, int size) 1199 { 1200 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id); 1201 int phys_id = cpu_to_node(cpu_id), rc = 0; 1202 int core_id = (cpu_id / threads_per_core); 1203 1204 if (!local_mem) { 1205 struct page *page; 1206 1207 page = alloc_pages_node(phys_id, 1208 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 1209 __GFP_NOWARN, get_order(size)); 1210 if (!page) 1211 return -ENOMEM; 1212 local_mem = page_address(page); 1213 per_cpu(trace_imc_mem, cpu_id) = local_mem; 1214 1215 /* Initialise the counters for trace mode */ 1216 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem), 1217 get_hard_smp_processor_id(cpu_id)); 1218 if (rc) { 1219 pr_info("IMC:opal init failed for trace imc\n"); 1220 return rc; 1221 } 1222 } 1223 1224 trace_imc_refc[core_id].id = core_id; 1225 spin_lock_init(&trace_imc_refc[core_id].lock); 1226 1227 mtspr(SPRN_LDBAR, 0); 1228 return 0; 1229 } 1230 1231 static int ppc_trace_imc_cpu_online(unsigned int cpu) 1232 { 1233 return trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1234 } 1235 1236 static int ppc_trace_imc_cpu_offline(unsigned int cpu) 1237 { 1238 /* 1239 * No need to set bit 0 of LDBAR to zero, as 1240 * it is set to zero for imc trace-mode 1241 * 1242 * Reduce the refc if any trace-imc event running 1243 * on this cpu. 1244 */ 1245 spin_lock(&imc_global_refc.lock); 1246 if (imc_global_refc.id == IMC_DOMAIN_TRACE) 1247 imc_global_refc.refc--; 1248 spin_unlock(&imc_global_refc.lock); 1249 1250 return 0; 1251 } 1252 1253 static int trace_imc_cpu_init(void) 1254 { 1255 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE, 1256 "perf/powerpc/imc_trace:online", 1257 ppc_trace_imc_cpu_online, 1258 ppc_trace_imc_cpu_offline); 1259 } 1260 1261 static u64 get_trace_imc_event_base_addr(void) 1262 { 1263 return (u64)per_cpu(trace_imc_mem, smp_processor_id()); 1264 } 1265 1266 /* 1267 * Function to parse trace-imc data obtained 1268 * and to prepare the perf sample. 1269 */ 1270 static int trace_imc_prepare_sample(struct trace_imc_data *mem, 1271 struct perf_sample_data *data, 1272 u64 *prev_tb, 1273 struct perf_event_header *header, 1274 struct perf_event *event) 1275 { 1276 /* Sanity checks for a valid record */ 1277 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb) 1278 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1)); 1279 else 1280 return -EINVAL; 1281 1282 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) != 1283 be64_to_cpu(READ_ONCE(mem->tb2))) 1284 return -EINVAL; 1285 1286 /* Prepare perf sample */ 1287 data->ip = be64_to_cpu(READ_ONCE(mem->ip)); 1288 data->period = event->hw.last_period; 1289 1290 header->type = PERF_RECORD_SAMPLE; 1291 header->size = sizeof(*header) + event->header_size; 1292 header->misc = 0; 1293 1294 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 1295 switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) { 1296 case 0:/* when MSR HV and PR not set in the trace-record */ 1297 header->misc |= PERF_RECORD_MISC_GUEST_KERNEL; 1298 break; 1299 case 1: /* MSR HV is 0 and PR is 1 */ 1300 header->misc |= PERF_RECORD_MISC_GUEST_USER; 1301 break; 1302 case 2: /* MSR HV is 1 and PR is 0 */ 1303 header->misc |= PERF_RECORD_MISC_KERNEL; 1304 break; 1305 case 3: /* MSR HV is 1 and PR is 1 */ 1306 header->misc |= PERF_RECORD_MISC_USER; 1307 break; 1308 default: 1309 pr_info("IMC: Unable to set the flag based on MSR bits\n"); 1310 break; 1311 } 1312 } else { 1313 if (is_kernel_addr(data->ip)) 1314 header->misc |= PERF_RECORD_MISC_KERNEL; 1315 else 1316 header->misc |= PERF_RECORD_MISC_USER; 1317 } 1318 perf_event_header__init_id(header, data, event); 1319 1320 return 0; 1321 } 1322 1323 static void dump_trace_imc_data(struct perf_event *event) 1324 { 1325 struct trace_imc_data *mem; 1326 int i, ret; 1327 u64 prev_tb = 0; 1328 1329 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr(); 1330 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data)); 1331 i++, mem++) { 1332 struct perf_sample_data data; 1333 struct perf_event_header header; 1334 1335 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event); 1336 if (ret) /* Exit, if not a valid record */ 1337 break; 1338 else { 1339 /* If this is a valid record, create the sample */ 1340 struct perf_output_handle handle; 1341 1342 if (perf_output_begin(&handle, &data, event, header.size)) 1343 return; 1344 1345 perf_output_sample(&handle, &header, &data, event); 1346 perf_output_end(&handle); 1347 } 1348 } 1349 } 1350 1351 static int trace_imc_event_add(struct perf_event *event, int flags) 1352 { 1353 int core_id = smp_processor_id() / threads_per_core; 1354 struct imc_pmu_ref *ref = NULL; 1355 u64 local_mem, ldbar_value; 1356 1357 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */ 1358 local_mem = get_trace_imc_event_base_addr(); 1359 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE; 1360 1361 /* trace-imc reference count */ 1362 if (trace_imc_refc) 1363 ref = &trace_imc_refc[core_id]; 1364 if (!ref) { 1365 pr_debug("imc: Failed to get the event reference count\n"); 1366 return -EINVAL; 1367 } 1368 1369 mtspr(SPRN_LDBAR, ldbar_value); 1370 spin_lock(&ref->lock); 1371 if (ref->refc == 0) { 1372 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE, 1373 get_hard_smp_processor_id(smp_processor_id()))) { 1374 spin_unlock(&ref->lock); 1375 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id); 1376 return -EINVAL; 1377 } 1378 } 1379 ++ref->refc; 1380 spin_unlock(&ref->lock); 1381 return 0; 1382 } 1383 1384 static void trace_imc_event_read(struct perf_event *event) 1385 { 1386 return; 1387 } 1388 1389 static void trace_imc_event_stop(struct perf_event *event, int flags) 1390 { 1391 u64 local_mem = get_trace_imc_event_base_addr(); 1392 dump_trace_imc_data(event); 1393 memset((void *)local_mem, 0, sizeof(u64)); 1394 } 1395 1396 static void trace_imc_event_start(struct perf_event *event, int flags) 1397 { 1398 return; 1399 } 1400 1401 static void trace_imc_event_del(struct perf_event *event, int flags) 1402 { 1403 int core_id = smp_processor_id() / threads_per_core; 1404 struct imc_pmu_ref *ref = NULL; 1405 1406 if (trace_imc_refc) 1407 ref = &trace_imc_refc[core_id]; 1408 if (!ref) { 1409 pr_debug("imc: Failed to get event reference count\n"); 1410 return; 1411 } 1412 1413 spin_lock(&ref->lock); 1414 ref->refc--; 1415 if (ref->refc == 0) { 1416 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE, 1417 get_hard_smp_processor_id(smp_processor_id()))) { 1418 spin_unlock(&ref->lock); 1419 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id); 1420 return; 1421 } 1422 } else if (ref->refc < 0) { 1423 ref->refc = 0; 1424 } 1425 spin_unlock(&ref->lock); 1426 1427 trace_imc_event_stop(event, flags); 1428 } 1429 1430 static int trace_imc_event_init(struct perf_event *event) 1431 { 1432 if (event->attr.type != event->pmu->type) 1433 return -ENOENT; 1434 1435 if (!perfmon_capable()) 1436 return -EACCES; 1437 1438 /* Return if this is a couting event */ 1439 if (event->attr.sample_period == 0) 1440 return -ENOENT; 1441 1442 /* 1443 * Take the global lock, and make sure 1444 * no other thread is running any core/thread imc 1445 * events 1446 */ 1447 spin_lock(&imc_global_refc.lock); 1448 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) { 1449 /* 1450 * No core/thread imc events are running in the 1451 * system, so set the refc.id to trace-imc. 1452 */ 1453 imc_global_refc.id = IMC_DOMAIN_TRACE; 1454 imc_global_refc.refc++; 1455 } else { 1456 spin_unlock(&imc_global_refc.lock); 1457 return -EBUSY; 1458 } 1459 spin_unlock(&imc_global_refc.lock); 1460 1461 event->hw.idx = -1; 1462 1463 /* 1464 * There can only be a single PMU for perf_hw_context events which is assigned to 1465 * core PMU. Hence use "perf_sw_context" for trace_imc. 1466 */ 1467 event->pmu->task_ctx_nr = perf_sw_context; 1468 event->destroy = reset_global_refc; 1469 return 0; 1470 } 1471 1472 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1473 static int update_pmu_ops(struct imc_pmu *pmu) 1474 { 1475 pmu->pmu.task_ctx_nr = perf_invalid_context; 1476 pmu->pmu.add = imc_event_add; 1477 pmu->pmu.del = imc_event_stop; 1478 pmu->pmu.start = imc_event_start; 1479 pmu->pmu.stop = imc_event_stop; 1480 pmu->pmu.read = imc_event_update; 1481 pmu->pmu.attr_groups = pmu->attr_groups; 1482 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; 1483 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1484 1485 switch (pmu->domain) { 1486 case IMC_DOMAIN_NEST: 1487 pmu->pmu.event_init = nest_imc_event_init; 1488 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1489 break; 1490 case IMC_DOMAIN_CORE: 1491 pmu->pmu.event_init = core_imc_event_init; 1492 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1493 break; 1494 case IMC_DOMAIN_THREAD: 1495 pmu->pmu.event_init = thread_imc_event_init; 1496 pmu->pmu.add = thread_imc_event_add; 1497 pmu->pmu.del = thread_imc_event_del; 1498 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1499 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1500 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1501 break; 1502 case IMC_DOMAIN_TRACE: 1503 pmu->pmu.event_init = trace_imc_event_init; 1504 pmu->pmu.add = trace_imc_event_add; 1505 pmu->pmu.del = trace_imc_event_del; 1506 pmu->pmu.start = trace_imc_event_start; 1507 pmu->pmu.stop = trace_imc_event_stop; 1508 pmu->pmu.read = trace_imc_event_read; 1509 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group; 1510 break; 1511 default: 1512 break; 1513 } 1514 1515 return 0; 1516 } 1517 1518 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1519 static int init_nest_pmu_ref(void) 1520 { 1521 int nid, i, cpu; 1522 1523 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1524 GFP_KERNEL); 1525 1526 if (!nest_imc_refc) 1527 return -ENOMEM; 1528 1529 i = 0; 1530 for_each_node(nid) { 1531 /* 1532 * Take the lock to avoid races while tracking the number of 1533 * sessions using the chip's nest pmu units. 1534 */ 1535 spin_lock_init(&nest_imc_refc[i].lock); 1536 1537 /* 1538 * Loop to init the "id" with the node_id. Variable "i" initialized to 1539 * 0 and will be used as index to the array. "i" will not go off the 1540 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1541 * nodes only. 1542 */ 1543 nest_imc_refc[i++].id = nid; 1544 } 1545 1546 /* 1547 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1548 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1549 */ 1550 for_each_possible_cpu(cpu) { 1551 nid = cpu_to_node(cpu); 1552 for (i = 0; i < num_possible_nodes(); i++) { 1553 if (nest_imc_refc[i].id == nid) { 1554 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1555 break; 1556 } 1557 } 1558 } 1559 return 0; 1560 } 1561 1562 static void cleanup_all_core_imc_memory(void) 1563 { 1564 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1565 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1566 int size = core_imc_pmu->counter_mem_size; 1567 1568 /* mem_info will never be NULL */ 1569 for (i = 0; i < nr_cores; i++) { 1570 if (ptr[i].vbase) 1571 free_pages((u64)ptr[i].vbase, get_order(size)); 1572 } 1573 1574 kfree(ptr); 1575 kfree(core_imc_refc); 1576 } 1577 1578 static void thread_imc_ldbar_disable(void *dummy) 1579 { 1580 /* 1581 * By setting 0th bit of LDBAR to zero, we disable thread-imc 1582 * updates to memory. 1583 */ 1584 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); 1585 } 1586 1587 void thread_imc_disable(void) 1588 { 1589 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1590 } 1591 1592 static void cleanup_all_thread_imc_memory(void) 1593 { 1594 int i, order = get_order(thread_imc_mem_size); 1595 1596 for_each_online_cpu(i) { 1597 if (per_cpu(thread_imc_mem, i)) 1598 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1599 1600 } 1601 } 1602 1603 static void cleanup_all_trace_imc_memory(void) 1604 { 1605 int i, order = get_order(trace_imc_mem_size); 1606 1607 for_each_online_cpu(i) { 1608 if (per_cpu(trace_imc_mem, i)) 1609 free_pages((u64)per_cpu(trace_imc_mem, i), order); 1610 1611 } 1612 kfree(trace_imc_refc); 1613 } 1614 1615 /* Function to free the attr_groups which are dynamically allocated */ 1616 static void imc_common_mem_free(struct imc_pmu *pmu_ptr) 1617 { 1618 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1619 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1620 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1621 } 1622 1623 /* 1624 * Common function to unregister cpu hotplug callback and 1625 * free the memory. 1626 * TODO: Need to handle pmu unregistering, which will be 1627 * done in followup series. 1628 */ 1629 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1630 { 1631 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1632 mutex_lock(&nest_init_lock); 1633 if (nest_pmus == 1) { 1634 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1635 kfree(nest_imc_refc); 1636 kfree(per_nest_pmu_arr); 1637 per_nest_pmu_arr = NULL; 1638 } 1639 1640 if (nest_pmus > 0) 1641 nest_pmus--; 1642 mutex_unlock(&nest_init_lock); 1643 } 1644 1645 /* Free core_imc memory */ 1646 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1647 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1648 cleanup_all_core_imc_memory(); 1649 } 1650 1651 /* Free thread_imc memory */ 1652 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1653 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1654 cleanup_all_thread_imc_memory(); 1655 } 1656 1657 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) { 1658 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE); 1659 cleanup_all_trace_imc_memory(); 1660 } 1661 } 1662 1663 /* 1664 * Function to unregister thread-imc if core-imc 1665 * is not registered. 1666 */ 1667 void unregister_thread_imc(void) 1668 { 1669 imc_common_cpuhp_mem_free(thread_imc_pmu); 1670 imc_common_mem_free(thread_imc_pmu); 1671 perf_pmu_unregister(&thread_imc_pmu->pmu); 1672 } 1673 1674 /* 1675 * imc_mem_init : Function to support memory allocation for core imc. 1676 */ 1677 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1678 int pmu_index) 1679 { 1680 const char *s; 1681 int nr_cores, cpu, res = -ENOMEM; 1682 1683 if (of_property_read_string(parent, "name", &s)) 1684 return -ENODEV; 1685 1686 switch (pmu_ptr->domain) { 1687 case IMC_DOMAIN_NEST: 1688 /* Update the pmu name */ 1689 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1690 if (!pmu_ptr->pmu.name) 1691 goto err; 1692 1693 /* Needed for hotplug/migration */ 1694 if (!per_nest_pmu_arr) { 1695 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1696 sizeof(struct imc_pmu *), 1697 GFP_KERNEL); 1698 if (!per_nest_pmu_arr) 1699 goto err; 1700 } 1701 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1702 break; 1703 case IMC_DOMAIN_CORE: 1704 /* Update the pmu name */ 1705 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1706 if (!pmu_ptr->pmu.name) 1707 goto err; 1708 1709 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1710 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1711 GFP_KERNEL); 1712 1713 if (!pmu_ptr->mem_info) 1714 goto err; 1715 1716 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1717 GFP_KERNEL); 1718 1719 if (!core_imc_refc) { 1720 kfree(pmu_ptr->mem_info); 1721 goto err; 1722 } 1723 1724 core_imc_pmu = pmu_ptr; 1725 break; 1726 case IMC_DOMAIN_THREAD: 1727 /* Update the pmu name */ 1728 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1729 if (!pmu_ptr->pmu.name) 1730 goto err; 1731 1732 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1733 for_each_online_cpu(cpu) { 1734 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1735 if (res) { 1736 cleanup_all_thread_imc_memory(); 1737 goto err; 1738 } 1739 } 1740 1741 thread_imc_pmu = pmu_ptr; 1742 break; 1743 case IMC_DOMAIN_TRACE: 1744 /* Update the pmu name */ 1745 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1746 if (!pmu_ptr->pmu.name) 1747 return -ENOMEM; 1748 1749 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1750 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1751 GFP_KERNEL); 1752 if (!trace_imc_refc) 1753 return -ENOMEM; 1754 1755 trace_imc_mem_size = pmu_ptr->counter_mem_size; 1756 for_each_online_cpu(cpu) { 1757 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size); 1758 if (res) { 1759 cleanup_all_trace_imc_memory(); 1760 goto err; 1761 } 1762 } 1763 break; 1764 default: 1765 return -EINVAL; 1766 } 1767 1768 return 0; 1769 err: 1770 return res; 1771 } 1772 1773 /* 1774 * init_imc_pmu : Setup and register the IMC pmu device. 1775 * 1776 * @parent: Device tree unit node 1777 * @pmu_ptr: memory allocated for this pmu 1778 * @pmu_idx: Count of nest pmc registered 1779 * 1780 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1781 * Handles failure cases and accordingly frees memory. 1782 */ 1783 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1784 { 1785 int ret; 1786 1787 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1788 if (ret) 1789 goto err_free_mem; 1790 1791 switch (pmu_ptr->domain) { 1792 case IMC_DOMAIN_NEST: 1793 /* 1794 * Nest imc pmu need only one cpu per chip, we initialize the 1795 * cpumask for the first nest imc pmu and use the same for the 1796 * rest. To handle the cpuhotplug callback unregister, we track 1797 * the number of nest pmus in "nest_pmus". 1798 */ 1799 mutex_lock(&nest_init_lock); 1800 if (nest_pmus == 0) { 1801 ret = init_nest_pmu_ref(); 1802 if (ret) { 1803 mutex_unlock(&nest_init_lock); 1804 kfree(per_nest_pmu_arr); 1805 per_nest_pmu_arr = NULL; 1806 goto err_free_mem; 1807 } 1808 /* Register for cpu hotplug notification. */ 1809 ret = nest_pmu_cpumask_init(); 1810 if (ret) { 1811 mutex_unlock(&nest_init_lock); 1812 kfree(nest_imc_refc); 1813 kfree(per_nest_pmu_arr); 1814 per_nest_pmu_arr = NULL; 1815 goto err_free_mem; 1816 } 1817 } 1818 nest_pmus++; 1819 mutex_unlock(&nest_init_lock); 1820 break; 1821 case IMC_DOMAIN_CORE: 1822 ret = core_imc_pmu_cpumask_init(); 1823 if (ret) { 1824 cleanup_all_core_imc_memory(); 1825 goto err_free_mem; 1826 } 1827 1828 break; 1829 case IMC_DOMAIN_THREAD: 1830 ret = thread_imc_cpu_init(); 1831 if (ret) { 1832 cleanup_all_thread_imc_memory(); 1833 goto err_free_mem; 1834 } 1835 1836 break; 1837 case IMC_DOMAIN_TRACE: 1838 ret = trace_imc_cpu_init(); 1839 if (ret) { 1840 cleanup_all_trace_imc_memory(); 1841 goto err_free_mem; 1842 } 1843 1844 break; 1845 default: 1846 return -EINVAL; /* Unknown domain */ 1847 } 1848 1849 ret = update_events_in_group(parent, pmu_ptr); 1850 if (ret) 1851 goto err_free_cpuhp_mem; 1852 1853 ret = update_pmu_ops(pmu_ptr); 1854 if (ret) 1855 goto err_free_cpuhp_mem; 1856 1857 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1858 if (ret) 1859 goto err_free_cpuhp_mem; 1860 1861 pr_debug("%s performance monitor hardware support registered\n", 1862 pmu_ptr->pmu.name); 1863 1864 return 0; 1865 1866 err_free_cpuhp_mem: 1867 imc_common_cpuhp_mem_free(pmu_ptr); 1868 err_free_mem: 1869 imc_common_mem_free(pmu_ptr); 1870 return ret; 1871 } 1872