xref: /linux/arch/powerpc/perf/imc-pmu.c (revision 9a379e77033f02c4a071891afdf0f0a01eff8ccb)
1 /*
2  * In-Memory Collection (IMC) Performance Monitor counter support.
3  *
4  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
6  *           (C) 2017 Hemant K Shaw, IBM Corporation.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or later version.
12  */
13 #include <linux/perf_event.h>
14 #include <linux/slab.h>
15 #include <asm/opal.h>
16 #include <asm/imc-pmu.h>
17 #include <asm/cputhreads.h>
18 #include <asm/smp.h>
19 #include <linux/string.h>
20 
21 /* Nest IMC data structures and variables */
22 
23 /*
24  * Used to avoid races in counting the nest-pmu units during hotplug
25  * register and unregister
26  */
27 static DEFINE_MUTEX(nest_init_lock);
28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
29 static struct imc_pmu **per_nest_pmu_arr;
30 static cpumask_t nest_imc_cpumask;
31 struct imc_pmu_ref *nest_imc_refc;
32 static int nest_pmus;
33 
34 /* Core IMC data structures and variables */
35 
36 static cpumask_t core_imc_cpumask;
37 struct imc_pmu_ref *core_imc_refc;
38 static struct imc_pmu *core_imc_pmu;
39 
40 /* Thread IMC data structures and variables */
41 
42 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43 static int thread_imc_mem_size;
44 
45 struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
46 {
47 	return container_of(event->pmu, struct imc_pmu, pmu);
48 }
49 
50 PMU_FORMAT_ATTR(event, "config:0-40");
51 PMU_FORMAT_ATTR(offset, "config:0-31");
52 PMU_FORMAT_ATTR(rvalue, "config:32");
53 PMU_FORMAT_ATTR(mode, "config:33-40");
54 static struct attribute *imc_format_attrs[] = {
55 	&format_attr_event.attr,
56 	&format_attr_offset.attr,
57 	&format_attr_rvalue.attr,
58 	&format_attr_mode.attr,
59 	NULL,
60 };
61 
62 static struct attribute_group imc_format_group = {
63 	.name = "format",
64 	.attrs = imc_format_attrs,
65 };
66 
67 /* Get the cpumask printed to a buffer "buf" */
68 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
69 					struct device_attribute *attr,
70 					char *buf)
71 {
72 	struct pmu *pmu = dev_get_drvdata(dev);
73 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
74 	cpumask_t *active_mask;
75 
76 	switch(imc_pmu->domain){
77 	case IMC_DOMAIN_NEST:
78 		active_mask = &nest_imc_cpumask;
79 		break;
80 	case IMC_DOMAIN_CORE:
81 		active_mask = &core_imc_cpumask;
82 		break;
83 	default:
84 		return 0;
85 	}
86 
87 	return cpumap_print_to_pagebuf(true, buf, active_mask);
88 }
89 
90 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
91 
92 static struct attribute *imc_pmu_cpumask_attrs[] = {
93 	&dev_attr_cpumask.attr,
94 	NULL,
95 };
96 
97 static struct attribute_group imc_pmu_cpumask_attr_group = {
98 	.attrs = imc_pmu_cpumask_attrs,
99 };
100 
101 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
102 static struct attribute *device_str_attr_create(const char *name, const char *str)
103 {
104 	struct perf_pmu_events_attr *attr;
105 
106 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
107 	if (!attr)
108 		return NULL;
109 	sysfs_attr_init(&attr->attr.attr);
110 
111 	attr->event_str = str;
112 	attr->attr.attr.name = name;
113 	attr->attr.attr.mode = 0444;
114 	attr->attr.show = perf_event_sysfs_show;
115 
116 	return &attr->attr.attr;
117 }
118 
119 static int imc_parse_event(struct device_node *np, const char *scale,
120 				  const char *unit, const char *prefix,
121 				  u32 base, struct imc_events *event)
122 {
123 	const char *s;
124 	u32 reg;
125 
126 	if (of_property_read_u32(np, "reg", &reg))
127 		goto error;
128 	/* Add the base_reg value to the "reg" */
129 	event->value = base + reg;
130 
131 	if (of_property_read_string(np, "event-name", &s))
132 		goto error;
133 
134 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
135 	if (!event->name)
136 		goto error;
137 
138 	if (of_property_read_string(np, "scale", &s))
139 		s = scale;
140 
141 	if (s) {
142 		event->scale = kstrdup(s, GFP_KERNEL);
143 		if (!event->scale)
144 			goto error;
145 	}
146 
147 	if (of_property_read_string(np, "unit", &s))
148 		s = unit;
149 
150 	if (s) {
151 		event->unit = kstrdup(s, GFP_KERNEL);
152 		if (!event->unit)
153 			goto error;
154 	}
155 
156 	return 0;
157 error:
158 	kfree(event->unit);
159 	kfree(event->scale);
160 	kfree(event->name);
161 	return -EINVAL;
162 }
163 
164 /*
165  * imc_free_events: Function to cleanup the events list, having
166  * 		    "nr_entries".
167  */
168 static void imc_free_events(struct imc_events *events, int nr_entries)
169 {
170 	int i;
171 
172 	/* Nothing to clean, return */
173 	if (!events)
174 		return;
175 	for (i = 0; i < nr_entries; i++) {
176 		kfree(events[i].unit);
177 		kfree(events[i].scale);
178 		kfree(events[i].name);
179 	}
180 
181 	kfree(events);
182 }
183 
184 /*
185  * update_events_in_group: Update the "events" information in an attr_group
186  *                         and assign the attr_group to the pmu "pmu".
187  */
188 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
189 {
190 	struct attribute_group *attr_group;
191 	struct attribute **attrs, *dev_str;
192 	struct device_node *np, *pmu_events;
193 	u32 handle, base_reg;
194 	int i = 0, j = 0, ct, ret;
195 	const char *prefix, *g_scale, *g_unit;
196 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
197 
198 	if (!of_property_read_u32(node, "events", &handle))
199 		pmu_events = of_find_node_by_phandle(handle);
200 	else
201 		return 0;
202 
203 	/* Did not find any node with a given phandle */
204 	if (!pmu_events)
205 		return 0;
206 
207 	/* Get a count of number of child nodes */
208 	ct = of_get_child_count(pmu_events);
209 
210 	/* Get the event prefix */
211 	if (of_property_read_string(node, "events-prefix", &prefix))
212 		return 0;
213 
214 	/* Get a global unit and scale data if available */
215 	if (of_property_read_string(node, "scale", &g_scale))
216 		g_scale = NULL;
217 
218 	if (of_property_read_string(node, "unit", &g_unit))
219 		g_unit = NULL;
220 
221 	/* "reg" property gives out the base offset of the counters data */
222 	of_property_read_u32(node, "reg", &base_reg);
223 
224 	/* Allocate memory for the events */
225 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
226 	if (!pmu->events)
227 		return -ENOMEM;
228 
229 	ct = 0;
230 	/* Parse the events and update the struct */
231 	for_each_child_of_node(pmu_events, np) {
232 		ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
233 		if (!ret)
234 			ct++;
235 	}
236 
237 	/* Allocate memory for attribute group */
238 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
239 	if (!attr_group) {
240 		imc_free_events(pmu->events, ct);
241 		return -ENOMEM;
242 	}
243 
244 	/*
245 	 * Allocate memory for attributes.
246 	 * Since we have count of events for this pmu, we also allocate
247 	 * memory for the scale and unit attribute for now.
248 	 * "ct" has the total event structs added from the events-parent node.
249 	 * So allocate three times the "ct" (this includes event, event_scale and
250 	 * event_unit).
251 	 */
252 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
253 	if (!attrs) {
254 		kfree(attr_group);
255 		imc_free_events(pmu->events, ct);
256 		return -ENOMEM;
257 	}
258 
259 	attr_group->name = "events";
260 	attr_group->attrs = attrs;
261 	do {
262 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
263 		dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
264 		if (!dev_str)
265 			continue;
266 
267 		attrs[j++] = dev_str;
268 		if (pmu->events[i].scale) {
269 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
270 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
271 			if (!dev_str)
272 				continue;
273 
274 			attrs[j++] = dev_str;
275 		}
276 
277 		if (pmu->events[i].unit) {
278 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
279 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
280 			if (!dev_str)
281 				continue;
282 
283 			attrs[j++] = dev_str;
284 		}
285 	} while (++i < ct);
286 
287 	/* Save the event attribute */
288 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
289 
290 	return 0;
291 }
292 
293 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
294 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
295 {
296 	return per_cpu(local_nest_imc_refc, cpu);
297 }
298 
299 static void nest_change_cpu_context(int old_cpu, int new_cpu)
300 {
301 	struct imc_pmu **pn = per_nest_pmu_arr;
302 
303 	if (old_cpu < 0 || new_cpu < 0)
304 		return;
305 
306 	while (*pn) {
307 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
308 		pn++;
309 	}
310 }
311 
312 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
313 {
314 	int nid, target = -1;
315 	const struct cpumask *l_cpumask;
316 	struct imc_pmu_ref *ref;
317 
318 	/*
319 	 * Check in the designated list for this cpu. Dont bother
320 	 * if not one of them.
321 	 */
322 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
323 		return 0;
324 
325 	/*
326 	 * Check whether nest_imc is registered. We could end up here if the
327 	 * cpuhotplug callback registration fails. i.e, callback invokes the
328 	 * offline path for all successfully registered nodes. At this stage,
329 	 * nest_imc pmu will not be registered and we should return here.
330 	 *
331 	 * We return with a zero since this is not an offline failure. And
332 	 * cpuhp_setup_state() returns the actual failure reason to the caller,
333 	 * which in turn will call the cleanup routine.
334 	 */
335 	if (!nest_pmus)
336 		return 0;
337 
338 	/*
339 	 * Now that this cpu is one of the designated,
340 	 * find a next cpu a) which is online and b) in same chip.
341 	 */
342 	nid = cpu_to_node(cpu);
343 	l_cpumask = cpumask_of_node(nid);
344 	target = cpumask_any_but(l_cpumask, cpu);
345 
346 	/*
347 	 * Update the cpumask with the target cpu and
348 	 * migrate the context if needed
349 	 */
350 	if (target >= 0 && target < nr_cpu_ids) {
351 		cpumask_set_cpu(target, &nest_imc_cpumask);
352 		nest_change_cpu_context(cpu, target);
353 	} else {
354 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
355 				       get_hard_smp_processor_id(cpu));
356 		/*
357 		 * If this is the last cpu in this chip then, skip the reference
358 		 * count mutex lock and make the reference count on this chip zero.
359 		 */
360 		ref = get_nest_pmu_ref(cpu);
361 		if (!ref)
362 			return -EINVAL;
363 
364 		ref->refc = 0;
365 	}
366 	return 0;
367 }
368 
369 static int ppc_nest_imc_cpu_online(unsigned int cpu)
370 {
371 	const struct cpumask *l_cpumask;
372 	static struct cpumask tmp_mask;
373 	int res;
374 
375 	/* Get the cpumask of this node */
376 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
377 
378 	/*
379 	 * If this is not the first online CPU on this node, then
380 	 * just return.
381 	 */
382 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
383 		return 0;
384 
385 	/*
386 	 * If this is the first online cpu on this node
387 	 * disable the nest counters by making an OPAL call.
388 	 */
389 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
390 				     get_hard_smp_processor_id(cpu));
391 	if (res)
392 		return res;
393 
394 	/* Make this CPU the designated target for counter collection */
395 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
396 	return 0;
397 }
398 
399 static int nest_pmu_cpumask_init(void)
400 {
401 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
402 				 "perf/powerpc/imc:online",
403 				 ppc_nest_imc_cpu_online,
404 				 ppc_nest_imc_cpu_offline);
405 }
406 
407 static void nest_imc_counters_release(struct perf_event *event)
408 {
409 	int rc, node_id;
410 	struct imc_pmu_ref *ref;
411 
412 	if (event->cpu < 0)
413 		return;
414 
415 	node_id = cpu_to_node(event->cpu);
416 
417 	/*
418 	 * See if we need to disable the nest PMU.
419 	 * If no events are currently in use, then we have to take a
420 	 * mutex to ensure that we don't race with another task doing
421 	 * enable or disable the nest counters.
422 	 */
423 	ref = get_nest_pmu_ref(event->cpu);
424 	if (!ref)
425 		return;
426 
427 	/* Take the mutex lock for this node and then decrement the reference count */
428 	mutex_lock(&ref->lock);
429 	if (ref->refc == 0) {
430 		/*
431 		 * The scenario where this is true is, when perf session is
432 		 * started, followed by offlining of all cpus in a given node.
433 		 *
434 		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
435 		 * function set the ref->count to zero, if the cpu which is
436 		 * about to offline is the last cpu in a given node and make
437 		 * an OPAL call to disable the engine in that node.
438 		 *
439 		 */
440 		mutex_unlock(&ref->lock);
441 		return;
442 	}
443 	ref->refc--;
444 	if (ref->refc == 0) {
445 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
446 					    get_hard_smp_processor_id(event->cpu));
447 		if (rc) {
448 			mutex_unlock(&ref->lock);
449 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
450 			return;
451 		}
452 	} else if (ref->refc < 0) {
453 		WARN(1, "nest-imc: Invalid event reference count\n");
454 		ref->refc = 0;
455 	}
456 	mutex_unlock(&ref->lock);
457 }
458 
459 static int nest_imc_event_init(struct perf_event *event)
460 {
461 	int chip_id, rc, node_id;
462 	u32 l_config, config = event->attr.config;
463 	struct imc_mem_info *pcni;
464 	struct imc_pmu *pmu;
465 	struct imc_pmu_ref *ref;
466 	bool flag = false;
467 
468 	if (event->attr.type != event->pmu->type)
469 		return -ENOENT;
470 
471 	/* Sampling not supported */
472 	if (event->hw.sample_period)
473 		return -EINVAL;
474 
475 	/* unsupported modes and filters */
476 	if (event->attr.exclude_user   ||
477 	    event->attr.exclude_kernel ||
478 	    event->attr.exclude_hv     ||
479 	    event->attr.exclude_idle   ||
480 	    event->attr.exclude_host   ||
481 	    event->attr.exclude_guest)
482 		return -EINVAL;
483 
484 	if (event->cpu < 0)
485 		return -EINVAL;
486 
487 	pmu = imc_event_to_pmu(event);
488 
489 	/* Sanity check for config (event offset) */
490 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
491 		return -EINVAL;
492 
493 	/*
494 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
495 	 * Get the base memory addresss for this cpu.
496 	 */
497 	chip_id = cpu_to_chip_id(event->cpu);
498 	pcni = pmu->mem_info;
499 	do {
500 		if (pcni->id == chip_id) {
501 			flag = true;
502 			break;
503 		}
504 		pcni++;
505 	} while (pcni);
506 
507 	if (!flag)
508 		return -ENODEV;
509 
510 	/*
511 	 * Add the event offset to the base address.
512 	 */
513 	l_config = config & IMC_EVENT_OFFSET_MASK;
514 	event->hw.event_base = (u64)pcni->vbase + l_config;
515 	node_id = cpu_to_node(event->cpu);
516 
517 	/*
518 	 * Get the imc_pmu_ref struct for this node.
519 	 * Take the mutex lock and then increment the count of nest pmu events
520 	 * inited.
521 	 */
522 	ref = get_nest_pmu_ref(event->cpu);
523 	if (!ref)
524 		return -EINVAL;
525 
526 	mutex_lock(&ref->lock);
527 	if (ref->refc == 0) {
528 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
529 					     get_hard_smp_processor_id(event->cpu));
530 		if (rc) {
531 			mutex_unlock(&ref->lock);
532 			pr_err("nest-imc: Unable to start the counters for node %d\n",
533 									node_id);
534 			return rc;
535 		}
536 	}
537 	++ref->refc;
538 	mutex_unlock(&ref->lock);
539 
540 	event->destroy = nest_imc_counters_release;
541 	return 0;
542 }
543 
544 /*
545  * core_imc_mem_init : Initializes memory for the current core.
546  *
547  * Uses alloc_pages_node() and uses the returned address as an argument to
548  * an opal call to configure the pdbar. The address sent as an argument is
549  * converted to physical address before the opal call is made. This is the
550  * base address at which the core imc counters are populated.
551  */
552 static int core_imc_mem_init(int cpu, int size)
553 {
554 	int nid, rc = 0, core_id = (cpu / threads_per_core);
555 	struct imc_mem_info *mem_info;
556 
557 	/*
558 	 * alloc_pages_node() will allocate memory for core in the
559 	 * local node only.
560 	 */
561 	nid = cpu_to_node(cpu);
562 	mem_info = &core_imc_pmu->mem_info[core_id];
563 	mem_info->id = core_id;
564 
565 	/* We need only vbase for core counters */
566 	mem_info->vbase = page_address(alloc_pages_node(nid,
567 					  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
568 					  __GFP_NOWARN, get_order(size)));
569 	if (!mem_info->vbase)
570 		return -ENOMEM;
571 
572 	/* Init the mutex */
573 	core_imc_refc[core_id].id = core_id;
574 	mutex_init(&core_imc_refc[core_id].lock);
575 
576 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
577 				__pa((void *)mem_info->vbase),
578 				get_hard_smp_processor_id(cpu));
579 	if (rc) {
580 		free_pages((u64)mem_info->vbase, get_order(size));
581 		mem_info->vbase = NULL;
582 	}
583 
584 	return rc;
585 }
586 
587 static bool is_core_imc_mem_inited(int cpu)
588 {
589 	struct imc_mem_info *mem_info;
590 	int core_id = (cpu / threads_per_core);
591 
592 	mem_info = &core_imc_pmu->mem_info[core_id];
593 	if (!mem_info->vbase)
594 		return false;
595 
596 	return true;
597 }
598 
599 static int ppc_core_imc_cpu_online(unsigned int cpu)
600 {
601 	const struct cpumask *l_cpumask;
602 	static struct cpumask tmp_mask;
603 	int ret = 0;
604 
605 	/* Get the cpumask for this core */
606 	l_cpumask = cpu_sibling_mask(cpu);
607 
608 	/* If a cpu for this core is already set, then, don't do anything */
609 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
610 		return 0;
611 
612 	if (!is_core_imc_mem_inited(cpu)) {
613 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
614 		if (ret) {
615 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
616 			return ret;
617 		}
618 	}
619 
620 	/* set the cpu in the mask */
621 	cpumask_set_cpu(cpu, &core_imc_cpumask);
622 	return 0;
623 }
624 
625 static int ppc_core_imc_cpu_offline(unsigned int cpu)
626 {
627 	unsigned int core_id;
628 	int ncpu;
629 	struct imc_pmu_ref *ref;
630 
631 	/*
632 	 * clear this cpu out of the mask, if not present in the mask,
633 	 * don't bother doing anything.
634 	 */
635 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
636 		return 0;
637 
638 	/*
639 	 * Check whether core_imc is registered. We could end up here
640 	 * if the cpuhotplug callback registration fails. i.e, callback
641 	 * invokes the offline path for all sucessfully registered cpus.
642 	 * At this stage, core_imc pmu will not be registered and we
643 	 * should return here.
644 	 *
645 	 * We return with a zero since this is not an offline failure.
646 	 * And cpuhp_setup_state() returns the actual failure reason
647 	 * to the caller, which inturn will call the cleanup routine.
648 	 */
649 	if (!core_imc_pmu->pmu.event_init)
650 		return 0;
651 
652 	/* Find any online cpu in that core except the current "cpu" */
653 	ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
654 
655 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
656 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
657 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
658 	} else {
659 		/*
660 		 * If this is the last cpu in this core then, skip taking refernce
661 		 * count mutex lock for this core and directly zero "refc" for
662 		 * this core.
663 		 */
664 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
665 				       get_hard_smp_processor_id(cpu));
666 		core_id = cpu / threads_per_core;
667 		ref = &core_imc_refc[core_id];
668 		if (!ref)
669 			return -EINVAL;
670 
671 		ref->refc = 0;
672 	}
673 	return 0;
674 }
675 
676 static int core_imc_pmu_cpumask_init(void)
677 {
678 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
679 				 "perf/powerpc/imc_core:online",
680 				 ppc_core_imc_cpu_online,
681 				 ppc_core_imc_cpu_offline);
682 }
683 
684 static void core_imc_counters_release(struct perf_event *event)
685 {
686 	int rc, core_id;
687 	struct imc_pmu_ref *ref;
688 
689 	if (event->cpu < 0)
690 		return;
691 	/*
692 	 * See if we need to disable the IMC PMU.
693 	 * If no events are currently in use, then we have to take a
694 	 * mutex to ensure that we don't race with another task doing
695 	 * enable or disable the core counters.
696 	 */
697 	core_id = event->cpu / threads_per_core;
698 
699 	/* Take the mutex lock and decrement the refernce count for this core */
700 	ref = &core_imc_refc[core_id];
701 	if (!ref)
702 		return;
703 
704 	mutex_lock(&ref->lock);
705 	if (ref->refc == 0) {
706 		/*
707 		 * The scenario where this is true is, when perf session is
708 		 * started, followed by offlining of all cpus in a given core.
709 		 *
710 		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
711 		 * function set the ref->count to zero, if the cpu which is
712 		 * about to offline is the last cpu in a given core and make
713 		 * an OPAL call to disable the engine in that core.
714 		 *
715 		 */
716 		mutex_unlock(&ref->lock);
717 		return;
718 	}
719 	ref->refc--;
720 	if (ref->refc == 0) {
721 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
722 					    get_hard_smp_processor_id(event->cpu));
723 		if (rc) {
724 			mutex_unlock(&ref->lock);
725 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
726 			return;
727 		}
728 	} else if (ref->refc < 0) {
729 		WARN(1, "core-imc: Invalid event reference count\n");
730 		ref->refc = 0;
731 	}
732 	mutex_unlock(&ref->lock);
733 }
734 
735 static int core_imc_event_init(struct perf_event *event)
736 {
737 	int core_id, rc;
738 	u64 config = event->attr.config;
739 	struct imc_mem_info *pcmi;
740 	struct imc_pmu *pmu;
741 	struct imc_pmu_ref *ref;
742 
743 	if (event->attr.type != event->pmu->type)
744 		return -ENOENT;
745 
746 	/* Sampling not supported */
747 	if (event->hw.sample_period)
748 		return -EINVAL;
749 
750 	/* unsupported modes and filters */
751 	if (event->attr.exclude_user   ||
752 	    event->attr.exclude_kernel ||
753 	    event->attr.exclude_hv     ||
754 	    event->attr.exclude_idle   ||
755 	    event->attr.exclude_host   ||
756 	    event->attr.exclude_guest)
757 		return -EINVAL;
758 
759 	if (event->cpu < 0)
760 		return -EINVAL;
761 
762 	event->hw.idx = -1;
763 	pmu = imc_event_to_pmu(event);
764 
765 	/* Sanity check for config (event offset) */
766 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
767 		return -EINVAL;
768 
769 	if (!is_core_imc_mem_inited(event->cpu))
770 		return -ENODEV;
771 
772 	core_id = event->cpu / threads_per_core;
773 	pcmi = &core_imc_pmu->mem_info[core_id];
774 	if ((!pcmi->vbase))
775 		return -ENODEV;
776 
777 	/* Get the core_imc mutex for this core */
778 	ref = &core_imc_refc[core_id];
779 	if (!ref)
780 		return -EINVAL;
781 
782 	/*
783 	 * Core pmu units are enabled only when it is used.
784 	 * See if this is triggered for the first time.
785 	 * If yes, take the mutex lock and enable the core counters.
786 	 * If not, just increment the count in core_imc_refc struct.
787 	 */
788 	mutex_lock(&ref->lock);
789 	if (ref->refc == 0) {
790 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
791 					     get_hard_smp_processor_id(event->cpu));
792 		if (rc) {
793 			mutex_unlock(&ref->lock);
794 			pr_err("core-imc: Unable to start the counters for core %d\n",
795 									core_id);
796 			return rc;
797 		}
798 	}
799 	++ref->refc;
800 	mutex_unlock(&ref->lock);
801 
802 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
803 	event->destroy = core_imc_counters_release;
804 	return 0;
805 }
806 
807 /*
808  * Allocates a page of memory for each of the online cpus, and write the
809  * physical base address of that page to the LDBAR for that cpu.
810  *
811  * LDBAR Register Layout:
812  *
813  *  0          4         8         12        16        20        24        28
814  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
815  *   | |       [   ]    [                   Counter Address [8:50]
816  *   | * Mode    |
817  *   |           * PB Scope
818  *   * Enable/Disable
819  *
820  *  32        36        40        44        48        52        56        60
821  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
822  *           Counter Address [8:50]              ]
823  *
824  */
825 static int thread_imc_mem_alloc(int cpu_id, int size)
826 {
827 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
828 	int nid = cpu_to_node(cpu_id);
829 
830 	if (!local_mem) {
831 		/*
832 		 * This case could happen only once at start, since we dont
833 		 * free the memory in cpu offline path.
834 		 */
835 		local_mem = page_address(alloc_pages_node(nid,
836 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
837 				  __GFP_NOWARN, get_order(size)));
838 		if (!local_mem)
839 			return -ENOMEM;
840 
841 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
842 	}
843 
844 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
845 
846 	mtspr(SPRN_LDBAR, ldbar_value);
847 	return 0;
848 }
849 
850 static int ppc_thread_imc_cpu_online(unsigned int cpu)
851 {
852 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
853 }
854 
855 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
856 {
857 	mtspr(SPRN_LDBAR, 0);
858 	return 0;
859 }
860 
861 static int thread_imc_cpu_init(void)
862 {
863 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
864 			  "perf/powerpc/imc_thread:online",
865 			  ppc_thread_imc_cpu_online,
866 			  ppc_thread_imc_cpu_offline);
867 }
868 
869 void thread_imc_pmu_sched_task(struct perf_event_context *ctx,
870 				      bool sched_in)
871 {
872 	int core_id;
873 	struct imc_pmu_ref *ref;
874 
875 	if (!is_core_imc_mem_inited(smp_processor_id()))
876 		return;
877 
878 	core_id = smp_processor_id() / threads_per_core;
879 	/*
880 	 * imc pmus are enabled only when it is used.
881 	 * See if this is triggered for the first time.
882 	 * If yes, take the mutex lock and enable the counters.
883 	 * If not, just increment the count in ref count struct.
884 	 */
885 	ref = &core_imc_refc[core_id];
886 	if (!ref)
887 		return;
888 
889 	if (sched_in) {
890 		mutex_lock(&ref->lock);
891 		if (ref->refc == 0) {
892 			if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
893 			     get_hard_smp_processor_id(smp_processor_id()))) {
894 				mutex_unlock(&ref->lock);
895 				pr_err("thread-imc: Unable to start the counter\
896 							for core %d\n", core_id);
897 				return;
898 			}
899 		}
900 		++ref->refc;
901 		mutex_unlock(&ref->lock);
902 	} else {
903 		mutex_lock(&ref->lock);
904 		ref->refc--;
905 		if (ref->refc == 0) {
906 			if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
907 			    get_hard_smp_processor_id(smp_processor_id()))) {
908 				mutex_unlock(&ref->lock);
909 				pr_err("thread-imc: Unable to stop the counters\
910 							for core %d\n", core_id);
911 				return;
912 			}
913 		} else if (ref->refc < 0) {
914 			ref->refc = 0;
915 		}
916 		mutex_unlock(&ref->lock);
917 	}
918 
919 	return;
920 }
921 
922 static int thread_imc_event_init(struct perf_event *event)
923 {
924 	u32 config = event->attr.config;
925 	struct task_struct *target;
926 	struct imc_pmu *pmu;
927 
928 	if (event->attr.type != event->pmu->type)
929 		return -ENOENT;
930 
931 	/* Sampling not supported */
932 	if (event->hw.sample_period)
933 		return -EINVAL;
934 
935 	event->hw.idx = -1;
936 	pmu = imc_event_to_pmu(event);
937 
938 	/* Sanity check for config offset */
939 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
940 		return -EINVAL;
941 
942 	target = event->hw.target;
943 	if (!target)
944 		return -EINVAL;
945 
946 	event->pmu->task_ctx_nr = perf_sw_context;
947 	return 0;
948 }
949 
950 static bool is_thread_imc_pmu(struct perf_event *event)
951 {
952 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
953 		return true;
954 
955 	return false;
956 }
957 
958 static u64 * get_event_base_addr(struct perf_event *event)
959 {
960 	u64 addr;
961 
962 	if (is_thread_imc_pmu(event)) {
963 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
964 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
965 	}
966 
967 	return (u64 *)event->hw.event_base;
968 }
969 
970 static void thread_imc_pmu_start_txn(struct pmu *pmu,
971 				     unsigned int txn_flags)
972 {
973 	if (txn_flags & ~PERF_PMU_TXN_ADD)
974 		return;
975 	perf_pmu_disable(pmu);
976 }
977 
978 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
979 {
980 	perf_pmu_enable(pmu);
981 }
982 
983 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
984 {
985 	perf_pmu_enable(pmu);
986 	return 0;
987 }
988 
989 static u64 imc_read_counter(struct perf_event *event)
990 {
991 	u64 *addr, data;
992 
993 	/*
994 	 * In-Memory Collection (IMC) counters are free flowing counters.
995 	 * So we take a snapshot of the counter value on enable and save it
996 	 * to calculate the delta at later stage to present the event counter
997 	 * value.
998 	 */
999 	addr = get_event_base_addr(event);
1000 	data = be64_to_cpu(READ_ONCE(*addr));
1001 	local64_set(&event->hw.prev_count, data);
1002 
1003 	return data;
1004 }
1005 
1006 static void imc_event_update(struct perf_event *event)
1007 {
1008 	u64 counter_prev, counter_new, final_count;
1009 
1010 	counter_prev = local64_read(&event->hw.prev_count);
1011 	counter_new = imc_read_counter(event);
1012 	final_count = counter_new - counter_prev;
1013 
1014 	/* Update the delta to the event count */
1015 	local64_add(final_count, &event->count);
1016 }
1017 
1018 static void imc_event_start(struct perf_event *event, int flags)
1019 {
1020 	/*
1021 	 * In Memory Counters are free flowing counters. HW or the microcode
1022 	 * keeps adding to the counter offset in memory. To get event
1023 	 * counter value, we snapshot the value here and we calculate
1024 	 * delta at later point.
1025 	 */
1026 	imc_read_counter(event);
1027 }
1028 
1029 static void imc_event_stop(struct perf_event *event, int flags)
1030 {
1031 	/*
1032 	 * Take a snapshot and calculate the delta and update
1033 	 * the event counter values.
1034 	 */
1035 	imc_event_update(event);
1036 }
1037 
1038 static int imc_event_add(struct perf_event *event, int flags)
1039 {
1040 	if (flags & PERF_EF_START)
1041 		imc_event_start(event, flags);
1042 
1043 	return 0;
1044 }
1045 
1046 static int thread_imc_event_add(struct perf_event *event, int flags)
1047 {
1048 	if (flags & PERF_EF_START)
1049 		imc_event_start(event, flags);
1050 
1051 	/* Enable the sched_task to start the engine */
1052 	perf_sched_cb_inc(event->ctx->pmu);
1053 	return 0;
1054 }
1055 
1056 static void thread_imc_event_del(struct perf_event *event, int flags)
1057 {
1058 	/*
1059 	 * Take a snapshot and calculate the delta and update
1060 	 * the event counter values.
1061 	 */
1062 	imc_event_update(event);
1063 	perf_sched_cb_dec(event->ctx->pmu);
1064 }
1065 
1066 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1067 static int update_pmu_ops(struct imc_pmu *pmu)
1068 {
1069 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1070 	pmu->pmu.add = imc_event_add;
1071 	pmu->pmu.del = imc_event_stop;
1072 	pmu->pmu.start = imc_event_start;
1073 	pmu->pmu.stop = imc_event_stop;
1074 	pmu->pmu.read = imc_event_update;
1075 	pmu->pmu.attr_groups = pmu->attr_groups;
1076 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1077 
1078 	switch (pmu->domain) {
1079 	case IMC_DOMAIN_NEST:
1080 		pmu->pmu.event_init = nest_imc_event_init;
1081 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1082 		break;
1083 	case IMC_DOMAIN_CORE:
1084 		pmu->pmu.event_init = core_imc_event_init;
1085 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1086 		break;
1087 	case IMC_DOMAIN_THREAD:
1088 		pmu->pmu.event_init = thread_imc_event_init;
1089 		pmu->pmu.sched_task = thread_imc_pmu_sched_task;
1090 		pmu->pmu.add = thread_imc_event_add;
1091 		pmu->pmu.del = thread_imc_event_del;
1092 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1093 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1094 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1095 		break;
1096 	default:
1097 		break;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1104 static int init_nest_pmu_ref(void)
1105 {
1106 	int nid, i, cpu;
1107 
1108 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1109 								GFP_KERNEL);
1110 
1111 	if (!nest_imc_refc)
1112 		return -ENOMEM;
1113 
1114 	i = 0;
1115 	for_each_node(nid) {
1116 		/*
1117 		 * Mutex lock to avoid races while tracking the number of
1118 		 * sessions using the chip's nest pmu units.
1119 		 */
1120 		mutex_init(&nest_imc_refc[i].lock);
1121 
1122 		/*
1123 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1124 		 * 0 and will be used as index to the array. "i" will not go off the
1125 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1126 		 * nodes only.
1127 		 */
1128 		nest_imc_refc[i++].id = nid;
1129 	}
1130 
1131 	/*
1132 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1133 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1134 	 */
1135 	for_each_possible_cpu(cpu) {
1136 		nid = cpu_to_node(cpu);
1137 		for (i = 0; i < num_possible_nodes(); i++) {
1138 			if (nest_imc_refc[i].id == nid) {
1139 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1140 				break;
1141 			}
1142 		}
1143 	}
1144 	return 0;
1145 }
1146 
1147 static void cleanup_all_core_imc_memory(void)
1148 {
1149 	int i, nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core);
1150 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1151 	int size = core_imc_pmu->counter_mem_size;
1152 
1153 	/* mem_info will never be NULL */
1154 	for (i = 0; i < nr_cores; i++) {
1155 		if (ptr[i].vbase)
1156 			free_pages((u64)ptr->vbase, get_order(size));
1157 	}
1158 
1159 	kfree(ptr);
1160 	kfree(core_imc_refc);
1161 }
1162 
1163 static void thread_imc_ldbar_disable(void *dummy)
1164 {
1165 	/*
1166 	 * By Zeroing LDBAR, we disable thread-imc
1167 	 * updates.
1168 	 */
1169 	mtspr(SPRN_LDBAR, 0);
1170 }
1171 
1172 void thread_imc_disable(void)
1173 {
1174 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1175 }
1176 
1177 static void cleanup_all_thread_imc_memory(void)
1178 {
1179 	int i, order = get_order(thread_imc_mem_size);
1180 
1181 	for_each_online_cpu(i) {
1182 		if (per_cpu(thread_imc_mem, i))
1183 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1184 
1185 	}
1186 }
1187 
1188 /* Function to free the attr_groups which are dynamically allocated */
1189 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1190 {
1191 	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1192 		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1193 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1194 	kfree(pmu_ptr);
1195 }
1196 
1197 /*
1198  * Common function to unregister cpu hotplug callback and
1199  * free the memory.
1200  * TODO: Need to handle pmu unregistering, which will be
1201  * done in followup series.
1202  */
1203 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1204 {
1205 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1206 		mutex_lock(&nest_init_lock);
1207 		if (nest_pmus == 1) {
1208 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1209 			kfree(nest_imc_refc);
1210 			kfree(per_nest_pmu_arr);
1211 		}
1212 
1213 		if (nest_pmus > 0)
1214 			nest_pmus--;
1215 		mutex_unlock(&nest_init_lock);
1216 	}
1217 
1218 	/* Free core_imc memory */
1219 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1220 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1221 		cleanup_all_core_imc_memory();
1222 	}
1223 
1224 	/* Free thread_imc memory */
1225 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1226 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1227 		cleanup_all_thread_imc_memory();
1228 	}
1229 }
1230 
1231 
1232 /*
1233  * imc_mem_init : Function to support memory allocation for core imc.
1234  */
1235 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1236 								int pmu_index)
1237 {
1238 	const char *s;
1239 	int nr_cores, cpu, res;
1240 
1241 	if (of_property_read_string(parent, "name", &s))
1242 		return -ENODEV;
1243 
1244 	switch (pmu_ptr->domain) {
1245 	case IMC_DOMAIN_NEST:
1246 		/* Update the pmu name */
1247 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1248 		if (!pmu_ptr->pmu.name)
1249 			return -ENOMEM;
1250 
1251 		/* Needed for hotplug/migration */
1252 		if (!per_nest_pmu_arr) {
1253 			per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1254 						sizeof(struct imc_pmu *),
1255 						GFP_KERNEL);
1256 			if (!per_nest_pmu_arr)
1257 				return -ENOMEM;
1258 		}
1259 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1260 		break;
1261 	case IMC_DOMAIN_CORE:
1262 		/* Update the pmu name */
1263 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1264 		if (!pmu_ptr->pmu.name)
1265 			return -ENOMEM;
1266 
1267 		nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core);
1268 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1269 								GFP_KERNEL);
1270 
1271 		if (!pmu_ptr->mem_info)
1272 			return -ENOMEM;
1273 
1274 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1275 								GFP_KERNEL);
1276 
1277 		if (!core_imc_refc) {
1278 			kfree(pmu_ptr->mem_info);
1279 			return -ENOMEM;
1280 		}
1281 
1282 		core_imc_pmu = pmu_ptr;
1283 		break;
1284 	case IMC_DOMAIN_THREAD:
1285 		/* Update the pmu name */
1286 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1287 		if (!pmu_ptr->pmu.name)
1288 			return -ENOMEM;
1289 
1290 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1291 		for_each_online_cpu(cpu) {
1292 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1293 			if (res) {
1294 				cleanup_all_thread_imc_memory();
1295 				return res;
1296 			}
1297 		}
1298 
1299 		break;
1300 	default:
1301 		return -EINVAL;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 /*
1308  * init_imc_pmu : Setup and register the IMC pmu device.
1309  *
1310  * @parent:	Device tree unit node
1311  * @pmu_ptr:	memory allocated for this pmu
1312  * @pmu_idx:	Count of nest pmc registered
1313  *
1314  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1315  * Handles failure cases and accordingly frees memory.
1316  */
1317 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1318 {
1319 	int ret;
1320 
1321 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1322 	if (ret) {
1323 		imc_common_mem_free(pmu_ptr);
1324 		return ret;
1325 	}
1326 
1327 	switch (pmu_ptr->domain) {
1328 	case IMC_DOMAIN_NEST:
1329 		/*
1330 		* Nest imc pmu need only one cpu per chip, we initialize the
1331 		* cpumask for the first nest imc pmu and use the same for the
1332 		* rest. To handle the cpuhotplug callback unregister, we track
1333 		* the number of nest pmus in "nest_pmus".
1334 		*/
1335 		mutex_lock(&nest_init_lock);
1336 		if (nest_pmus == 0) {
1337 			ret = init_nest_pmu_ref();
1338 			if (ret) {
1339 				mutex_unlock(&nest_init_lock);
1340 				goto err_free;
1341 			}
1342 			/* Register for cpu hotplug notification. */
1343 			ret = nest_pmu_cpumask_init();
1344 			if (ret) {
1345 				mutex_unlock(&nest_init_lock);
1346 				kfree(nest_imc_refc);
1347 				kfree(per_nest_pmu_arr);
1348 				goto err_free;
1349 			}
1350 		}
1351 		nest_pmus++;
1352 		mutex_unlock(&nest_init_lock);
1353 		break;
1354 	case IMC_DOMAIN_CORE:
1355 		ret = core_imc_pmu_cpumask_init();
1356 		if (ret) {
1357 			cleanup_all_core_imc_memory();
1358 			return ret;
1359 		}
1360 
1361 		break;
1362 	case IMC_DOMAIN_THREAD:
1363 		ret = thread_imc_cpu_init();
1364 		if (ret) {
1365 			cleanup_all_thread_imc_memory();
1366 			return ret;
1367 		}
1368 
1369 		break;
1370 	default:
1371 		return  -1;	/* Unknown domain */
1372 	}
1373 
1374 	ret = update_events_in_group(parent, pmu_ptr);
1375 	if (ret)
1376 		goto err_free;
1377 
1378 	ret = update_pmu_ops(pmu_ptr);
1379 	if (ret)
1380 		goto err_free;
1381 
1382 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1383 	if (ret)
1384 		goto err_free;
1385 
1386 	pr_info("%s performance monitor hardware support registered\n",
1387 							pmu_ptr->pmu.name);
1388 
1389 	return 0;
1390 
1391 err_free:
1392 	imc_common_mem_free(pmu_ptr);
1393 	imc_common_cpuhp_mem_free(pmu_ptr);
1394 	return ret;
1395 }
1396