1 /* 2 * In-Memory Collection (IMC) Performance Monitor counter support. 3 * 4 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. 5 * (C) 2017 Anju T Sudhakar, IBM Corporation. 6 * (C) 2017 Hemant K Shaw, IBM Corporation. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or later version. 12 */ 13 #include <linux/perf_event.h> 14 #include <linux/slab.h> 15 #include <asm/opal.h> 16 #include <asm/imc-pmu.h> 17 #include <asm/cputhreads.h> 18 #include <asm/smp.h> 19 #include <linux/string.h> 20 21 /* Nest IMC data structures and variables */ 22 23 /* 24 * Used to avoid races in counting the nest-pmu units during hotplug 25 * register and unregister 26 */ 27 static DEFINE_MUTEX(nest_init_lock); 28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); 29 static struct imc_pmu **per_nest_pmu_arr; 30 static cpumask_t nest_imc_cpumask; 31 struct imc_pmu_ref *nest_imc_refc; 32 static int nest_pmus; 33 34 /* Core IMC data structures and variables */ 35 36 static cpumask_t core_imc_cpumask; 37 struct imc_pmu_ref *core_imc_refc; 38 static struct imc_pmu *core_imc_pmu; 39 40 /* Thread IMC data structures and variables */ 41 42 static DEFINE_PER_CPU(u64 *, thread_imc_mem); 43 static int thread_imc_mem_size; 44 45 struct imc_pmu *imc_event_to_pmu(struct perf_event *event) 46 { 47 return container_of(event->pmu, struct imc_pmu, pmu); 48 } 49 50 PMU_FORMAT_ATTR(event, "config:0-40"); 51 PMU_FORMAT_ATTR(offset, "config:0-31"); 52 PMU_FORMAT_ATTR(rvalue, "config:32"); 53 PMU_FORMAT_ATTR(mode, "config:33-40"); 54 static struct attribute *imc_format_attrs[] = { 55 &format_attr_event.attr, 56 &format_attr_offset.attr, 57 &format_attr_rvalue.attr, 58 &format_attr_mode.attr, 59 NULL, 60 }; 61 62 static struct attribute_group imc_format_group = { 63 .name = "format", 64 .attrs = imc_format_attrs, 65 }; 66 67 /* Get the cpumask printed to a buffer "buf" */ 68 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, 69 struct device_attribute *attr, 70 char *buf) 71 { 72 struct pmu *pmu = dev_get_drvdata(dev); 73 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); 74 cpumask_t *active_mask; 75 76 switch(imc_pmu->domain){ 77 case IMC_DOMAIN_NEST: 78 active_mask = &nest_imc_cpumask; 79 break; 80 case IMC_DOMAIN_CORE: 81 active_mask = &core_imc_cpumask; 82 break; 83 default: 84 return 0; 85 } 86 87 return cpumap_print_to_pagebuf(true, buf, active_mask); 88 } 89 90 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); 91 92 static struct attribute *imc_pmu_cpumask_attrs[] = { 93 &dev_attr_cpumask.attr, 94 NULL, 95 }; 96 97 static struct attribute_group imc_pmu_cpumask_attr_group = { 98 .attrs = imc_pmu_cpumask_attrs, 99 }; 100 101 /* device_str_attr_create : Populate event "name" and string "str" in attribute */ 102 static struct attribute *device_str_attr_create(const char *name, const char *str) 103 { 104 struct perf_pmu_events_attr *attr; 105 106 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 107 if (!attr) 108 return NULL; 109 sysfs_attr_init(&attr->attr.attr); 110 111 attr->event_str = str; 112 attr->attr.attr.name = name; 113 attr->attr.attr.mode = 0444; 114 attr->attr.show = perf_event_sysfs_show; 115 116 return &attr->attr.attr; 117 } 118 119 static int imc_parse_event(struct device_node *np, const char *scale, 120 const char *unit, const char *prefix, 121 u32 base, struct imc_events *event) 122 { 123 const char *s; 124 u32 reg; 125 126 if (of_property_read_u32(np, "reg", ®)) 127 goto error; 128 /* Add the base_reg value to the "reg" */ 129 event->value = base + reg; 130 131 if (of_property_read_string(np, "event-name", &s)) 132 goto error; 133 134 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); 135 if (!event->name) 136 goto error; 137 138 if (of_property_read_string(np, "scale", &s)) 139 s = scale; 140 141 if (s) { 142 event->scale = kstrdup(s, GFP_KERNEL); 143 if (!event->scale) 144 goto error; 145 } 146 147 if (of_property_read_string(np, "unit", &s)) 148 s = unit; 149 150 if (s) { 151 event->unit = kstrdup(s, GFP_KERNEL); 152 if (!event->unit) 153 goto error; 154 } 155 156 return 0; 157 error: 158 kfree(event->unit); 159 kfree(event->scale); 160 kfree(event->name); 161 return -EINVAL; 162 } 163 164 /* 165 * imc_free_events: Function to cleanup the events list, having 166 * "nr_entries". 167 */ 168 static void imc_free_events(struct imc_events *events, int nr_entries) 169 { 170 int i; 171 172 /* Nothing to clean, return */ 173 if (!events) 174 return; 175 for (i = 0; i < nr_entries; i++) { 176 kfree(events[i].unit); 177 kfree(events[i].scale); 178 kfree(events[i].name); 179 } 180 181 kfree(events); 182 } 183 184 /* 185 * update_events_in_group: Update the "events" information in an attr_group 186 * and assign the attr_group to the pmu "pmu". 187 */ 188 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) 189 { 190 struct attribute_group *attr_group; 191 struct attribute **attrs, *dev_str; 192 struct device_node *np, *pmu_events; 193 u32 handle, base_reg; 194 int i = 0, j = 0, ct, ret; 195 const char *prefix, *g_scale, *g_unit; 196 const char *ev_val_str, *ev_scale_str, *ev_unit_str; 197 198 if (!of_property_read_u32(node, "events", &handle)) 199 pmu_events = of_find_node_by_phandle(handle); 200 else 201 return 0; 202 203 /* Did not find any node with a given phandle */ 204 if (!pmu_events) 205 return 0; 206 207 /* Get a count of number of child nodes */ 208 ct = of_get_child_count(pmu_events); 209 210 /* Get the event prefix */ 211 if (of_property_read_string(node, "events-prefix", &prefix)) 212 return 0; 213 214 /* Get a global unit and scale data if available */ 215 if (of_property_read_string(node, "scale", &g_scale)) 216 g_scale = NULL; 217 218 if (of_property_read_string(node, "unit", &g_unit)) 219 g_unit = NULL; 220 221 /* "reg" property gives out the base offset of the counters data */ 222 of_property_read_u32(node, "reg", &base_reg); 223 224 /* Allocate memory for the events */ 225 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); 226 if (!pmu->events) 227 return -ENOMEM; 228 229 ct = 0; 230 /* Parse the events and update the struct */ 231 for_each_child_of_node(pmu_events, np) { 232 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]); 233 if (!ret) 234 ct++; 235 } 236 237 /* Allocate memory for attribute group */ 238 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); 239 if (!attr_group) { 240 imc_free_events(pmu->events, ct); 241 return -ENOMEM; 242 } 243 244 /* 245 * Allocate memory for attributes. 246 * Since we have count of events for this pmu, we also allocate 247 * memory for the scale and unit attribute for now. 248 * "ct" has the total event structs added from the events-parent node. 249 * So allocate three times the "ct" (this includes event, event_scale and 250 * event_unit). 251 */ 252 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); 253 if (!attrs) { 254 kfree(attr_group); 255 imc_free_events(pmu->events, ct); 256 return -ENOMEM; 257 } 258 259 attr_group->name = "events"; 260 attr_group->attrs = attrs; 261 do { 262 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value); 263 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str); 264 if (!dev_str) 265 continue; 266 267 attrs[j++] = dev_str; 268 if (pmu->events[i].scale) { 269 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name); 270 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale); 271 if (!dev_str) 272 continue; 273 274 attrs[j++] = dev_str; 275 } 276 277 if (pmu->events[i].unit) { 278 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name); 279 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit); 280 if (!dev_str) 281 continue; 282 283 attrs[j++] = dev_str; 284 } 285 } while (++i < ct); 286 287 /* Save the event attribute */ 288 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; 289 290 return 0; 291 } 292 293 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ 294 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) 295 { 296 return per_cpu(local_nest_imc_refc, cpu); 297 } 298 299 static void nest_change_cpu_context(int old_cpu, int new_cpu) 300 { 301 struct imc_pmu **pn = per_nest_pmu_arr; 302 303 if (old_cpu < 0 || new_cpu < 0) 304 return; 305 306 while (*pn) { 307 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); 308 pn++; 309 } 310 } 311 312 static int ppc_nest_imc_cpu_offline(unsigned int cpu) 313 { 314 int nid, target = -1; 315 const struct cpumask *l_cpumask; 316 struct imc_pmu_ref *ref; 317 318 /* 319 * Check in the designated list for this cpu. Dont bother 320 * if not one of them. 321 */ 322 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) 323 return 0; 324 325 /* 326 * Check whether nest_imc is registered. We could end up here if the 327 * cpuhotplug callback registration fails. i.e, callback invokes the 328 * offline path for all successfully registered nodes. At this stage, 329 * nest_imc pmu will not be registered and we should return here. 330 * 331 * We return with a zero since this is not an offline failure. And 332 * cpuhp_setup_state() returns the actual failure reason to the caller, 333 * which in turn will call the cleanup routine. 334 */ 335 if (!nest_pmus) 336 return 0; 337 338 /* 339 * Now that this cpu is one of the designated, 340 * find a next cpu a) which is online and b) in same chip. 341 */ 342 nid = cpu_to_node(cpu); 343 l_cpumask = cpumask_of_node(nid); 344 target = cpumask_any_but(l_cpumask, cpu); 345 346 /* 347 * Update the cpumask with the target cpu and 348 * migrate the context if needed 349 */ 350 if (target >= 0 && target < nr_cpu_ids) { 351 cpumask_set_cpu(target, &nest_imc_cpumask); 352 nest_change_cpu_context(cpu, target); 353 } else { 354 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 355 get_hard_smp_processor_id(cpu)); 356 /* 357 * If this is the last cpu in this chip then, skip the reference 358 * count mutex lock and make the reference count on this chip zero. 359 */ 360 ref = get_nest_pmu_ref(cpu); 361 if (!ref) 362 return -EINVAL; 363 364 ref->refc = 0; 365 } 366 return 0; 367 } 368 369 static int ppc_nest_imc_cpu_online(unsigned int cpu) 370 { 371 const struct cpumask *l_cpumask; 372 static struct cpumask tmp_mask; 373 int res; 374 375 /* Get the cpumask of this node */ 376 l_cpumask = cpumask_of_node(cpu_to_node(cpu)); 377 378 /* 379 * If this is not the first online CPU on this node, then 380 * just return. 381 */ 382 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) 383 return 0; 384 385 /* 386 * If this is the first online cpu on this node 387 * disable the nest counters by making an OPAL call. 388 */ 389 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 390 get_hard_smp_processor_id(cpu)); 391 if (res) 392 return res; 393 394 /* Make this CPU the designated target for counter collection */ 395 cpumask_set_cpu(cpu, &nest_imc_cpumask); 396 return 0; 397 } 398 399 static int nest_pmu_cpumask_init(void) 400 { 401 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, 402 "perf/powerpc/imc:online", 403 ppc_nest_imc_cpu_online, 404 ppc_nest_imc_cpu_offline); 405 } 406 407 static void nest_imc_counters_release(struct perf_event *event) 408 { 409 int rc, node_id; 410 struct imc_pmu_ref *ref; 411 412 if (event->cpu < 0) 413 return; 414 415 node_id = cpu_to_node(event->cpu); 416 417 /* 418 * See if we need to disable the nest PMU. 419 * If no events are currently in use, then we have to take a 420 * mutex to ensure that we don't race with another task doing 421 * enable or disable the nest counters. 422 */ 423 ref = get_nest_pmu_ref(event->cpu); 424 if (!ref) 425 return; 426 427 /* Take the mutex lock for this node and then decrement the reference count */ 428 mutex_lock(&ref->lock); 429 if (ref->refc == 0) { 430 /* 431 * The scenario where this is true is, when perf session is 432 * started, followed by offlining of all cpus in a given node. 433 * 434 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() 435 * function set the ref->count to zero, if the cpu which is 436 * about to offline is the last cpu in a given node and make 437 * an OPAL call to disable the engine in that node. 438 * 439 */ 440 mutex_unlock(&ref->lock); 441 return; 442 } 443 ref->refc--; 444 if (ref->refc == 0) { 445 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, 446 get_hard_smp_processor_id(event->cpu)); 447 if (rc) { 448 mutex_unlock(&ref->lock); 449 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); 450 return; 451 } 452 } else if (ref->refc < 0) { 453 WARN(1, "nest-imc: Invalid event reference count\n"); 454 ref->refc = 0; 455 } 456 mutex_unlock(&ref->lock); 457 } 458 459 static int nest_imc_event_init(struct perf_event *event) 460 { 461 int chip_id, rc, node_id; 462 u32 l_config, config = event->attr.config; 463 struct imc_mem_info *pcni; 464 struct imc_pmu *pmu; 465 struct imc_pmu_ref *ref; 466 bool flag = false; 467 468 if (event->attr.type != event->pmu->type) 469 return -ENOENT; 470 471 /* Sampling not supported */ 472 if (event->hw.sample_period) 473 return -EINVAL; 474 475 /* unsupported modes and filters */ 476 if (event->attr.exclude_user || 477 event->attr.exclude_kernel || 478 event->attr.exclude_hv || 479 event->attr.exclude_idle || 480 event->attr.exclude_host || 481 event->attr.exclude_guest) 482 return -EINVAL; 483 484 if (event->cpu < 0) 485 return -EINVAL; 486 487 pmu = imc_event_to_pmu(event); 488 489 /* Sanity check for config (event offset) */ 490 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) 491 return -EINVAL; 492 493 /* 494 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). 495 * Get the base memory addresss for this cpu. 496 */ 497 chip_id = cpu_to_chip_id(event->cpu); 498 pcni = pmu->mem_info; 499 do { 500 if (pcni->id == chip_id) { 501 flag = true; 502 break; 503 } 504 pcni++; 505 } while (pcni); 506 507 if (!flag) 508 return -ENODEV; 509 510 /* 511 * Add the event offset to the base address. 512 */ 513 l_config = config & IMC_EVENT_OFFSET_MASK; 514 event->hw.event_base = (u64)pcni->vbase + l_config; 515 node_id = cpu_to_node(event->cpu); 516 517 /* 518 * Get the imc_pmu_ref struct for this node. 519 * Take the mutex lock and then increment the count of nest pmu events 520 * inited. 521 */ 522 ref = get_nest_pmu_ref(event->cpu); 523 if (!ref) 524 return -EINVAL; 525 526 mutex_lock(&ref->lock); 527 if (ref->refc == 0) { 528 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, 529 get_hard_smp_processor_id(event->cpu)); 530 if (rc) { 531 mutex_unlock(&ref->lock); 532 pr_err("nest-imc: Unable to start the counters for node %d\n", 533 node_id); 534 return rc; 535 } 536 } 537 ++ref->refc; 538 mutex_unlock(&ref->lock); 539 540 event->destroy = nest_imc_counters_release; 541 return 0; 542 } 543 544 /* 545 * core_imc_mem_init : Initializes memory for the current core. 546 * 547 * Uses alloc_pages_node() and uses the returned address as an argument to 548 * an opal call to configure the pdbar. The address sent as an argument is 549 * converted to physical address before the opal call is made. This is the 550 * base address at which the core imc counters are populated. 551 */ 552 static int core_imc_mem_init(int cpu, int size) 553 { 554 int nid, rc = 0, core_id = (cpu / threads_per_core); 555 struct imc_mem_info *mem_info; 556 557 /* 558 * alloc_pages_node() will allocate memory for core in the 559 * local node only. 560 */ 561 nid = cpu_to_node(cpu); 562 mem_info = &core_imc_pmu->mem_info[core_id]; 563 mem_info->id = core_id; 564 565 /* We need only vbase for core counters */ 566 mem_info->vbase = page_address(alloc_pages_node(nid, 567 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 568 __GFP_NOWARN, get_order(size))); 569 if (!mem_info->vbase) 570 return -ENOMEM; 571 572 /* Init the mutex */ 573 core_imc_refc[core_id].id = core_id; 574 mutex_init(&core_imc_refc[core_id].lock); 575 576 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, 577 __pa((void *)mem_info->vbase), 578 get_hard_smp_processor_id(cpu)); 579 if (rc) { 580 free_pages((u64)mem_info->vbase, get_order(size)); 581 mem_info->vbase = NULL; 582 } 583 584 return rc; 585 } 586 587 static bool is_core_imc_mem_inited(int cpu) 588 { 589 struct imc_mem_info *mem_info; 590 int core_id = (cpu / threads_per_core); 591 592 mem_info = &core_imc_pmu->mem_info[core_id]; 593 if (!mem_info->vbase) 594 return false; 595 596 return true; 597 } 598 599 static int ppc_core_imc_cpu_online(unsigned int cpu) 600 { 601 const struct cpumask *l_cpumask; 602 static struct cpumask tmp_mask; 603 int ret = 0; 604 605 /* Get the cpumask for this core */ 606 l_cpumask = cpu_sibling_mask(cpu); 607 608 /* If a cpu for this core is already set, then, don't do anything */ 609 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) 610 return 0; 611 612 if (!is_core_imc_mem_inited(cpu)) { 613 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); 614 if (ret) { 615 pr_info("core_imc memory allocation for cpu %d failed\n", cpu); 616 return ret; 617 } 618 } 619 620 /* set the cpu in the mask */ 621 cpumask_set_cpu(cpu, &core_imc_cpumask); 622 return 0; 623 } 624 625 static int ppc_core_imc_cpu_offline(unsigned int cpu) 626 { 627 unsigned int core_id; 628 int ncpu; 629 struct imc_pmu_ref *ref; 630 631 /* 632 * clear this cpu out of the mask, if not present in the mask, 633 * don't bother doing anything. 634 */ 635 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) 636 return 0; 637 638 /* 639 * Check whether core_imc is registered. We could end up here 640 * if the cpuhotplug callback registration fails. i.e, callback 641 * invokes the offline path for all sucessfully registered cpus. 642 * At this stage, core_imc pmu will not be registered and we 643 * should return here. 644 * 645 * We return with a zero since this is not an offline failure. 646 * And cpuhp_setup_state() returns the actual failure reason 647 * to the caller, which inturn will call the cleanup routine. 648 */ 649 if (!core_imc_pmu->pmu.event_init) 650 return 0; 651 652 /* Find any online cpu in that core except the current "cpu" */ 653 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); 654 655 if (ncpu >= 0 && ncpu < nr_cpu_ids) { 656 cpumask_set_cpu(ncpu, &core_imc_cpumask); 657 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); 658 } else { 659 /* 660 * If this is the last cpu in this core then, skip taking refernce 661 * count mutex lock for this core and directly zero "refc" for 662 * this core. 663 */ 664 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 665 get_hard_smp_processor_id(cpu)); 666 core_id = cpu / threads_per_core; 667 ref = &core_imc_refc[core_id]; 668 if (!ref) 669 return -EINVAL; 670 671 ref->refc = 0; 672 } 673 return 0; 674 } 675 676 static int core_imc_pmu_cpumask_init(void) 677 { 678 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, 679 "perf/powerpc/imc_core:online", 680 ppc_core_imc_cpu_online, 681 ppc_core_imc_cpu_offline); 682 } 683 684 static void core_imc_counters_release(struct perf_event *event) 685 { 686 int rc, core_id; 687 struct imc_pmu_ref *ref; 688 689 if (event->cpu < 0) 690 return; 691 /* 692 * See if we need to disable the IMC PMU. 693 * If no events are currently in use, then we have to take a 694 * mutex to ensure that we don't race with another task doing 695 * enable or disable the core counters. 696 */ 697 core_id = event->cpu / threads_per_core; 698 699 /* Take the mutex lock and decrement the refernce count for this core */ 700 ref = &core_imc_refc[core_id]; 701 if (!ref) 702 return; 703 704 mutex_lock(&ref->lock); 705 if (ref->refc == 0) { 706 /* 707 * The scenario where this is true is, when perf session is 708 * started, followed by offlining of all cpus in a given core. 709 * 710 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() 711 * function set the ref->count to zero, if the cpu which is 712 * about to offline is the last cpu in a given core and make 713 * an OPAL call to disable the engine in that core. 714 * 715 */ 716 mutex_unlock(&ref->lock); 717 return; 718 } 719 ref->refc--; 720 if (ref->refc == 0) { 721 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 722 get_hard_smp_processor_id(event->cpu)); 723 if (rc) { 724 mutex_unlock(&ref->lock); 725 pr_err("IMC: Unable to stop the counters for core %d\n", core_id); 726 return; 727 } 728 } else if (ref->refc < 0) { 729 WARN(1, "core-imc: Invalid event reference count\n"); 730 ref->refc = 0; 731 } 732 mutex_unlock(&ref->lock); 733 } 734 735 static int core_imc_event_init(struct perf_event *event) 736 { 737 int core_id, rc; 738 u64 config = event->attr.config; 739 struct imc_mem_info *pcmi; 740 struct imc_pmu *pmu; 741 struct imc_pmu_ref *ref; 742 743 if (event->attr.type != event->pmu->type) 744 return -ENOENT; 745 746 /* Sampling not supported */ 747 if (event->hw.sample_period) 748 return -EINVAL; 749 750 /* unsupported modes and filters */ 751 if (event->attr.exclude_user || 752 event->attr.exclude_kernel || 753 event->attr.exclude_hv || 754 event->attr.exclude_idle || 755 event->attr.exclude_host || 756 event->attr.exclude_guest) 757 return -EINVAL; 758 759 if (event->cpu < 0) 760 return -EINVAL; 761 762 event->hw.idx = -1; 763 pmu = imc_event_to_pmu(event); 764 765 /* Sanity check for config (event offset) */ 766 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 767 return -EINVAL; 768 769 if (!is_core_imc_mem_inited(event->cpu)) 770 return -ENODEV; 771 772 core_id = event->cpu / threads_per_core; 773 pcmi = &core_imc_pmu->mem_info[core_id]; 774 if ((!pcmi->vbase)) 775 return -ENODEV; 776 777 /* Get the core_imc mutex for this core */ 778 ref = &core_imc_refc[core_id]; 779 if (!ref) 780 return -EINVAL; 781 782 /* 783 * Core pmu units are enabled only when it is used. 784 * See if this is triggered for the first time. 785 * If yes, take the mutex lock and enable the core counters. 786 * If not, just increment the count in core_imc_refc struct. 787 */ 788 mutex_lock(&ref->lock); 789 if (ref->refc == 0) { 790 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 791 get_hard_smp_processor_id(event->cpu)); 792 if (rc) { 793 mutex_unlock(&ref->lock); 794 pr_err("core-imc: Unable to start the counters for core %d\n", 795 core_id); 796 return rc; 797 } 798 } 799 ++ref->refc; 800 mutex_unlock(&ref->lock); 801 802 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); 803 event->destroy = core_imc_counters_release; 804 return 0; 805 } 806 807 /* 808 * Allocates a page of memory for each of the online cpus, and write the 809 * physical base address of that page to the LDBAR for that cpu. 810 * 811 * LDBAR Register Layout: 812 * 813 * 0 4 8 12 16 20 24 28 814 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 815 * | | [ ] [ Counter Address [8:50] 816 * | * Mode | 817 * | * PB Scope 818 * * Enable/Disable 819 * 820 * 32 36 40 44 48 52 56 60 821 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | 822 * Counter Address [8:50] ] 823 * 824 */ 825 static int thread_imc_mem_alloc(int cpu_id, int size) 826 { 827 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id); 828 int nid = cpu_to_node(cpu_id); 829 830 if (!local_mem) { 831 /* 832 * This case could happen only once at start, since we dont 833 * free the memory in cpu offline path. 834 */ 835 local_mem = page_address(alloc_pages_node(nid, 836 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | 837 __GFP_NOWARN, get_order(size))); 838 if (!local_mem) 839 return -ENOMEM; 840 841 per_cpu(thread_imc_mem, cpu_id) = local_mem; 842 } 843 844 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; 845 846 mtspr(SPRN_LDBAR, ldbar_value); 847 return 0; 848 } 849 850 static int ppc_thread_imc_cpu_online(unsigned int cpu) 851 { 852 return thread_imc_mem_alloc(cpu, thread_imc_mem_size); 853 } 854 855 static int ppc_thread_imc_cpu_offline(unsigned int cpu) 856 { 857 mtspr(SPRN_LDBAR, 0); 858 return 0; 859 } 860 861 static int thread_imc_cpu_init(void) 862 { 863 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, 864 "perf/powerpc/imc_thread:online", 865 ppc_thread_imc_cpu_online, 866 ppc_thread_imc_cpu_offline); 867 } 868 869 void thread_imc_pmu_sched_task(struct perf_event_context *ctx, 870 bool sched_in) 871 { 872 int core_id; 873 struct imc_pmu_ref *ref; 874 875 if (!is_core_imc_mem_inited(smp_processor_id())) 876 return; 877 878 core_id = smp_processor_id() / threads_per_core; 879 /* 880 * imc pmus are enabled only when it is used. 881 * See if this is triggered for the first time. 882 * If yes, take the mutex lock and enable the counters. 883 * If not, just increment the count in ref count struct. 884 */ 885 ref = &core_imc_refc[core_id]; 886 if (!ref) 887 return; 888 889 if (sched_in) { 890 mutex_lock(&ref->lock); 891 if (ref->refc == 0) { 892 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, 893 get_hard_smp_processor_id(smp_processor_id()))) { 894 mutex_unlock(&ref->lock); 895 pr_err("thread-imc: Unable to start the counter\ 896 for core %d\n", core_id); 897 return; 898 } 899 } 900 ++ref->refc; 901 mutex_unlock(&ref->lock); 902 } else { 903 mutex_lock(&ref->lock); 904 ref->refc--; 905 if (ref->refc == 0) { 906 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, 907 get_hard_smp_processor_id(smp_processor_id()))) { 908 mutex_unlock(&ref->lock); 909 pr_err("thread-imc: Unable to stop the counters\ 910 for core %d\n", core_id); 911 return; 912 } 913 } else if (ref->refc < 0) { 914 ref->refc = 0; 915 } 916 mutex_unlock(&ref->lock); 917 } 918 919 return; 920 } 921 922 static int thread_imc_event_init(struct perf_event *event) 923 { 924 u32 config = event->attr.config; 925 struct task_struct *target; 926 struct imc_pmu *pmu; 927 928 if (event->attr.type != event->pmu->type) 929 return -ENOENT; 930 931 /* Sampling not supported */ 932 if (event->hw.sample_period) 933 return -EINVAL; 934 935 event->hw.idx = -1; 936 pmu = imc_event_to_pmu(event); 937 938 /* Sanity check for config offset */ 939 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) 940 return -EINVAL; 941 942 target = event->hw.target; 943 if (!target) 944 return -EINVAL; 945 946 event->pmu->task_ctx_nr = perf_sw_context; 947 return 0; 948 } 949 950 static bool is_thread_imc_pmu(struct perf_event *event) 951 { 952 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) 953 return true; 954 955 return false; 956 } 957 958 static u64 * get_event_base_addr(struct perf_event *event) 959 { 960 u64 addr; 961 962 if (is_thread_imc_pmu(event)) { 963 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); 964 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); 965 } 966 967 return (u64 *)event->hw.event_base; 968 } 969 970 static void thread_imc_pmu_start_txn(struct pmu *pmu, 971 unsigned int txn_flags) 972 { 973 if (txn_flags & ~PERF_PMU_TXN_ADD) 974 return; 975 perf_pmu_disable(pmu); 976 } 977 978 static void thread_imc_pmu_cancel_txn(struct pmu *pmu) 979 { 980 perf_pmu_enable(pmu); 981 } 982 983 static int thread_imc_pmu_commit_txn(struct pmu *pmu) 984 { 985 perf_pmu_enable(pmu); 986 return 0; 987 } 988 989 static u64 imc_read_counter(struct perf_event *event) 990 { 991 u64 *addr, data; 992 993 /* 994 * In-Memory Collection (IMC) counters are free flowing counters. 995 * So we take a snapshot of the counter value on enable and save it 996 * to calculate the delta at later stage to present the event counter 997 * value. 998 */ 999 addr = get_event_base_addr(event); 1000 data = be64_to_cpu(READ_ONCE(*addr)); 1001 local64_set(&event->hw.prev_count, data); 1002 1003 return data; 1004 } 1005 1006 static void imc_event_update(struct perf_event *event) 1007 { 1008 u64 counter_prev, counter_new, final_count; 1009 1010 counter_prev = local64_read(&event->hw.prev_count); 1011 counter_new = imc_read_counter(event); 1012 final_count = counter_new - counter_prev; 1013 1014 /* Update the delta to the event count */ 1015 local64_add(final_count, &event->count); 1016 } 1017 1018 static void imc_event_start(struct perf_event *event, int flags) 1019 { 1020 /* 1021 * In Memory Counters are free flowing counters. HW or the microcode 1022 * keeps adding to the counter offset in memory. To get event 1023 * counter value, we snapshot the value here and we calculate 1024 * delta at later point. 1025 */ 1026 imc_read_counter(event); 1027 } 1028 1029 static void imc_event_stop(struct perf_event *event, int flags) 1030 { 1031 /* 1032 * Take a snapshot and calculate the delta and update 1033 * the event counter values. 1034 */ 1035 imc_event_update(event); 1036 } 1037 1038 static int imc_event_add(struct perf_event *event, int flags) 1039 { 1040 if (flags & PERF_EF_START) 1041 imc_event_start(event, flags); 1042 1043 return 0; 1044 } 1045 1046 static int thread_imc_event_add(struct perf_event *event, int flags) 1047 { 1048 if (flags & PERF_EF_START) 1049 imc_event_start(event, flags); 1050 1051 /* Enable the sched_task to start the engine */ 1052 perf_sched_cb_inc(event->ctx->pmu); 1053 return 0; 1054 } 1055 1056 static void thread_imc_event_del(struct perf_event *event, int flags) 1057 { 1058 /* 1059 * Take a snapshot and calculate the delta and update 1060 * the event counter values. 1061 */ 1062 imc_event_update(event); 1063 perf_sched_cb_dec(event->ctx->pmu); 1064 } 1065 1066 /* update_pmu_ops : Populate the appropriate operations for "pmu" */ 1067 static int update_pmu_ops(struct imc_pmu *pmu) 1068 { 1069 pmu->pmu.task_ctx_nr = perf_invalid_context; 1070 pmu->pmu.add = imc_event_add; 1071 pmu->pmu.del = imc_event_stop; 1072 pmu->pmu.start = imc_event_start; 1073 pmu->pmu.stop = imc_event_stop; 1074 pmu->pmu.read = imc_event_update; 1075 pmu->pmu.attr_groups = pmu->attr_groups; 1076 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; 1077 1078 switch (pmu->domain) { 1079 case IMC_DOMAIN_NEST: 1080 pmu->pmu.event_init = nest_imc_event_init; 1081 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1082 break; 1083 case IMC_DOMAIN_CORE: 1084 pmu->pmu.event_init = core_imc_event_init; 1085 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; 1086 break; 1087 case IMC_DOMAIN_THREAD: 1088 pmu->pmu.event_init = thread_imc_event_init; 1089 pmu->pmu.sched_task = thread_imc_pmu_sched_task; 1090 pmu->pmu.add = thread_imc_event_add; 1091 pmu->pmu.del = thread_imc_event_del; 1092 pmu->pmu.start_txn = thread_imc_pmu_start_txn; 1093 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; 1094 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; 1095 break; 1096 default: 1097 break; 1098 } 1099 1100 return 0; 1101 } 1102 1103 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ 1104 static int init_nest_pmu_ref(void) 1105 { 1106 int nid, i, cpu; 1107 1108 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), 1109 GFP_KERNEL); 1110 1111 if (!nest_imc_refc) 1112 return -ENOMEM; 1113 1114 i = 0; 1115 for_each_node(nid) { 1116 /* 1117 * Mutex lock to avoid races while tracking the number of 1118 * sessions using the chip's nest pmu units. 1119 */ 1120 mutex_init(&nest_imc_refc[i].lock); 1121 1122 /* 1123 * Loop to init the "id" with the node_id. Variable "i" initialized to 1124 * 0 and will be used as index to the array. "i" will not go off the 1125 * end of the array since the "for_each_node" loops for "N_POSSIBLE" 1126 * nodes only. 1127 */ 1128 nest_imc_refc[i++].id = nid; 1129 } 1130 1131 /* 1132 * Loop to init the per_cpu "local_nest_imc_refc" with the proper 1133 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. 1134 */ 1135 for_each_possible_cpu(cpu) { 1136 nid = cpu_to_node(cpu); 1137 for (i = 0; i < num_possible_nodes(); i++) { 1138 if (nest_imc_refc[i].id == nid) { 1139 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; 1140 break; 1141 } 1142 } 1143 } 1144 return 0; 1145 } 1146 1147 static void cleanup_all_core_imc_memory(void) 1148 { 1149 int i, nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core); 1150 struct imc_mem_info *ptr = core_imc_pmu->mem_info; 1151 int size = core_imc_pmu->counter_mem_size; 1152 1153 /* mem_info will never be NULL */ 1154 for (i = 0; i < nr_cores; i++) { 1155 if (ptr[i].vbase) 1156 free_pages((u64)ptr->vbase, get_order(size)); 1157 } 1158 1159 kfree(ptr); 1160 kfree(core_imc_refc); 1161 } 1162 1163 static void thread_imc_ldbar_disable(void *dummy) 1164 { 1165 /* 1166 * By Zeroing LDBAR, we disable thread-imc 1167 * updates. 1168 */ 1169 mtspr(SPRN_LDBAR, 0); 1170 } 1171 1172 void thread_imc_disable(void) 1173 { 1174 on_each_cpu(thread_imc_ldbar_disable, NULL, 1); 1175 } 1176 1177 static void cleanup_all_thread_imc_memory(void) 1178 { 1179 int i, order = get_order(thread_imc_mem_size); 1180 1181 for_each_online_cpu(i) { 1182 if (per_cpu(thread_imc_mem, i)) 1183 free_pages((u64)per_cpu(thread_imc_mem, i), order); 1184 1185 } 1186 } 1187 1188 /* Function to free the attr_groups which are dynamically allocated */ 1189 static void imc_common_mem_free(struct imc_pmu *pmu_ptr) 1190 { 1191 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) 1192 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); 1193 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); 1194 kfree(pmu_ptr); 1195 } 1196 1197 /* 1198 * Common function to unregister cpu hotplug callback and 1199 * free the memory. 1200 * TODO: Need to handle pmu unregistering, which will be 1201 * done in followup series. 1202 */ 1203 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) 1204 { 1205 if (pmu_ptr->domain == IMC_DOMAIN_NEST) { 1206 mutex_lock(&nest_init_lock); 1207 if (nest_pmus == 1) { 1208 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); 1209 kfree(nest_imc_refc); 1210 kfree(per_nest_pmu_arr); 1211 } 1212 1213 if (nest_pmus > 0) 1214 nest_pmus--; 1215 mutex_unlock(&nest_init_lock); 1216 } 1217 1218 /* Free core_imc memory */ 1219 if (pmu_ptr->domain == IMC_DOMAIN_CORE) { 1220 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); 1221 cleanup_all_core_imc_memory(); 1222 } 1223 1224 /* Free thread_imc memory */ 1225 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { 1226 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); 1227 cleanup_all_thread_imc_memory(); 1228 } 1229 } 1230 1231 1232 /* 1233 * imc_mem_init : Function to support memory allocation for core imc. 1234 */ 1235 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, 1236 int pmu_index) 1237 { 1238 const char *s; 1239 int nr_cores, cpu, res; 1240 1241 if (of_property_read_string(parent, "name", &s)) 1242 return -ENODEV; 1243 1244 switch (pmu_ptr->domain) { 1245 case IMC_DOMAIN_NEST: 1246 /* Update the pmu name */ 1247 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); 1248 if (!pmu_ptr->pmu.name) 1249 return -ENOMEM; 1250 1251 /* Needed for hotplug/migration */ 1252 if (!per_nest_pmu_arr) { 1253 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, 1254 sizeof(struct imc_pmu *), 1255 GFP_KERNEL); 1256 if (!per_nest_pmu_arr) 1257 return -ENOMEM; 1258 } 1259 per_nest_pmu_arr[pmu_index] = pmu_ptr; 1260 break; 1261 case IMC_DOMAIN_CORE: 1262 /* Update the pmu name */ 1263 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1264 if (!pmu_ptr->pmu.name) 1265 return -ENOMEM; 1266 1267 nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core); 1268 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), 1269 GFP_KERNEL); 1270 1271 if (!pmu_ptr->mem_info) 1272 return -ENOMEM; 1273 1274 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), 1275 GFP_KERNEL); 1276 1277 if (!core_imc_refc) { 1278 kfree(pmu_ptr->mem_info); 1279 return -ENOMEM; 1280 } 1281 1282 core_imc_pmu = pmu_ptr; 1283 break; 1284 case IMC_DOMAIN_THREAD: 1285 /* Update the pmu name */ 1286 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); 1287 if (!pmu_ptr->pmu.name) 1288 return -ENOMEM; 1289 1290 thread_imc_mem_size = pmu_ptr->counter_mem_size; 1291 for_each_online_cpu(cpu) { 1292 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); 1293 if (res) { 1294 cleanup_all_thread_imc_memory(); 1295 return res; 1296 } 1297 } 1298 1299 break; 1300 default: 1301 return -EINVAL; 1302 } 1303 1304 return 0; 1305 } 1306 1307 /* 1308 * init_imc_pmu : Setup and register the IMC pmu device. 1309 * 1310 * @parent: Device tree unit node 1311 * @pmu_ptr: memory allocated for this pmu 1312 * @pmu_idx: Count of nest pmc registered 1313 * 1314 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. 1315 * Handles failure cases and accordingly frees memory. 1316 */ 1317 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) 1318 { 1319 int ret; 1320 1321 ret = imc_mem_init(pmu_ptr, parent, pmu_idx); 1322 if (ret) { 1323 imc_common_mem_free(pmu_ptr); 1324 return ret; 1325 } 1326 1327 switch (pmu_ptr->domain) { 1328 case IMC_DOMAIN_NEST: 1329 /* 1330 * Nest imc pmu need only one cpu per chip, we initialize the 1331 * cpumask for the first nest imc pmu and use the same for the 1332 * rest. To handle the cpuhotplug callback unregister, we track 1333 * the number of nest pmus in "nest_pmus". 1334 */ 1335 mutex_lock(&nest_init_lock); 1336 if (nest_pmus == 0) { 1337 ret = init_nest_pmu_ref(); 1338 if (ret) { 1339 mutex_unlock(&nest_init_lock); 1340 goto err_free; 1341 } 1342 /* Register for cpu hotplug notification. */ 1343 ret = nest_pmu_cpumask_init(); 1344 if (ret) { 1345 mutex_unlock(&nest_init_lock); 1346 kfree(nest_imc_refc); 1347 kfree(per_nest_pmu_arr); 1348 goto err_free; 1349 } 1350 } 1351 nest_pmus++; 1352 mutex_unlock(&nest_init_lock); 1353 break; 1354 case IMC_DOMAIN_CORE: 1355 ret = core_imc_pmu_cpumask_init(); 1356 if (ret) { 1357 cleanup_all_core_imc_memory(); 1358 return ret; 1359 } 1360 1361 break; 1362 case IMC_DOMAIN_THREAD: 1363 ret = thread_imc_cpu_init(); 1364 if (ret) { 1365 cleanup_all_thread_imc_memory(); 1366 return ret; 1367 } 1368 1369 break; 1370 default: 1371 return -1; /* Unknown domain */ 1372 } 1373 1374 ret = update_events_in_group(parent, pmu_ptr); 1375 if (ret) 1376 goto err_free; 1377 1378 ret = update_pmu_ops(pmu_ptr); 1379 if (ret) 1380 goto err_free; 1381 1382 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); 1383 if (ret) 1384 goto err_free; 1385 1386 pr_info("%s performance monitor hardware support registered\n", 1387 pmu_ptr->pmu.name); 1388 1389 return 0; 1390 1391 err_free: 1392 imc_common_mem_free(pmu_ptr); 1393 imc_common_cpuhp_mem_free(pmu_ptr); 1394 return ret; 1395 } 1396