xref: /linux/arch/powerpc/perf/imc-pmu.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * In-Memory Collection (IMC) Performance Monitor counter support.
4  *
5  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
7  *           (C) 2017 Hemant K Shaw, IBM Corporation.
8  */
9 #include <linux/of.h>
10 #include <linux/perf_event.h>
11 #include <linux/slab.h>
12 #include <asm/opal.h>
13 #include <asm/imc-pmu.h>
14 #include <asm/cputhreads.h>
15 #include <asm/smp.h>
16 #include <linux/string.h>
17 
18 /* Nest IMC data structures and variables */
19 
20 /*
21  * Used to avoid races in counting the nest-pmu units during hotplug
22  * register and unregister
23  */
24 static DEFINE_MUTEX(nest_init_lock);
25 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
26 static struct imc_pmu **per_nest_pmu_arr;
27 static cpumask_t nest_imc_cpumask;
28 static struct imc_pmu_ref *nest_imc_refc;
29 static int nest_pmus;
30 
31 /* Core IMC data structures and variables */
32 
33 static cpumask_t core_imc_cpumask;
34 static struct imc_pmu_ref *core_imc_refc;
35 static struct imc_pmu *core_imc_pmu;
36 
37 /* Thread IMC data structures and variables */
38 
39 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
40 static struct imc_pmu *thread_imc_pmu;
41 static int thread_imc_mem_size;
42 
43 /* Trace IMC data structures */
44 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
45 static struct imc_pmu_ref *trace_imc_refc;
46 static int trace_imc_mem_size;
47 
48 /*
49  * Global data structure used to avoid races between thread,
50  * core and trace-imc
51  */
52 static struct imc_pmu_ref imc_global_refc = {
53 	.lock = __MUTEX_INITIALIZER(imc_global_refc.lock),
54 	.id = 0,
55 	.refc = 0,
56 };
57 
58 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
59 {
60 	return container_of(event->pmu, struct imc_pmu, pmu);
61 }
62 
63 PMU_FORMAT_ATTR(event, "config:0-61");
64 PMU_FORMAT_ATTR(offset, "config:0-31");
65 PMU_FORMAT_ATTR(rvalue, "config:32");
66 PMU_FORMAT_ATTR(mode, "config:33-40");
67 static struct attribute *imc_format_attrs[] = {
68 	&format_attr_event.attr,
69 	&format_attr_offset.attr,
70 	&format_attr_rvalue.attr,
71 	&format_attr_mode.attr,
72 	NULL,
73 };
74 
75 static const struct attribute_group imc_format_group = {
76 	.name = "format",
77 	.attrs = imc_format_attrs,
78 };
79 
80 /* Format attribute for imc trace-mode */
81 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
82 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
83 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
84 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
85 static struct attribute *trace_imc_format_attrs[] = {
86 	&format_attr_event.attr,
87 	&format_attr_cpmc_reserved.attr,
88 	&format_attr_cpmc_event.attr,
89 	&format_attr_cpmc_samplesel.attr,
90 	&format_attr_cpmc_load.attr,
91 	NULL,
92 };
93 
94 static const struct attribute_group trace_imc_format_group = {
95 .name = "format",
96 .attrs = trace_imc_format_attrs,
97 };
98 
99 /* Get the cpumask printed to a buffer "buf" */
100 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
101 					struct device_attribute *attr,
102 					char *buf)
103 {
104 	struct pmu *pmu = dev_get_drvdata(dev);
105 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
106 	cpumask_t *active_mask;
107 
108 	switch(imc_pmu->domain){
109 	case IMC_DOMAIN_NEST:
110 		active_mask = &nest_imc_cpumask;
111 		break;
112 	case IMC_DOMAIN_CORE:
113 		active_mask = &core_imc_cpumask;
114 		break;
115 	default:
116 		return 0;
117 	}
118 
119 	return cpumap_print_to_pagebuf(true, buf, active_mask);
120 }
121 
122 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
123 
124 static struct attribute *imc_pmu_cpumask_attrs[] = {
125 	&dev_attr_cpumask.attr,
126 	NULL,
127 };
128 
129 static const struct attribute_group imc_pmu_cpumask_attr_group = {
130 	.attrs = imc_pmu_cpumask_attrs,
131 };
132 
133 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
134 static struct attribute *device_str_attr_create(const char *name, const char *str)
135 {
136 	struct perf_pmu_events_attr *attr;
137 
138 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
139 	if (!attr)
140 		return NULL;
141 	sysfs_attr_init(&attr->attr.attr);
142 
143 	attr->event_str = str;
144 	attr->attr.attr.name = name;
145 	attr->attr.attr.mode = 0444;
146 	attr->attr.show = perf_event_sysfs_show;
147 
148 	return &attr->attr.attr;
149 }
150 
151 static int imc_parse_event(struct device_node *np, const char *scale,
152 				  const char *unit, const char *prefix,
153 				  u32 base, struct imc_events *event)
154 {
155 	const char *s;
156 	u32 reg;
157 
158 	if (of_property_read_u32(np, "reg", &reg))
159 		goto error;
160 	/* Add the base_reg value to the "reg" */
161 	event->value = base + reg;
162 
163 	if (of_property_read_string(np, "event-name", &s))
164 		goto error;
165 
166 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
167 	if (!event->name)
168 		goto error;
169 
170 	if (of_property_read_string(np, "scale", &s))
171 		s = scale;
172 
173 	if (s) {
174 		event->scale = kstrdup(s, GFP_KERNEL);
175 		if (!event->scale)
176 			goto error;
177 	}
178 
179 	if (of_property_read_string(np, "unit", &s))
180 		s = unit;
181 
182 	if (s) {
183 		event->unit = kstrdup(s, GFP_KERNEL);
184 		if (!event->unit)
185 			goto error;
186 	}
187 
188 	return 0;
189 error:
190 	kfree(event->unit);
191 	kfree(event->scale);
192 	kfree(event->name);
193 	return -EINVAL;
194 }
195 
196 /*
197  * imc_free_events: Function to cleanup the events list, having
198  * 		    "nr_entries".
199  */
200 static void imc_free_events(struct imc_events *events, int nr_entries)
201 {
202 	int i;
203 
204 	/* Nothing to clean, return */
205 	if (!events)
206 		return;
207 	for (i = 0; i < nr_entries; i++) {
208 		kfree(events[i].unit);
209 		kfree(events[i].scale);
210 		kfree(events[i].name);
211 	}
212 
213 	kfree(events);
214 }
215 
216 /*
217  * update_events_in_group: Update the "events" information in an attr_group
218  *                         and assign the attr_group to the pmu "pmu".
219  */
220 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
221 {
222 	struct attribute_group *attr_group;
223 	struct attribute **attrs, *dev_str;
224 	struct device_node *np, *pmu_events;
225 	u32 handle, base_reg;
226 	int i = 0, j = 0, ct, ret;
227 	const char *prefix, *g_scale, *g_unit;
228 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
229 
230 	if (!of_property_read_u32(node, "events", &handle))
231 		pmu_events = of_find_node_by_phandle(handle);
232 	else
233 		return 0;
234 
235 	/* Did not find any node with a given phandle */
236 	if (!pmu_events)
237 		return 0;
238 
239 	/* Get a count of number of child nodes */
240 	ct = of_get_child_count(pmu_events);
241 
242 	/* Get the event prefix */
243 	if (of_property_read_string(node, "events-prefix", &prefix))
244 		return 0;
245 
246 	/* Get a global unit and scale data if available */
247 	if (of_property_read_string(node, "scale", &g_scale))
248 		g_scale = NULL;
249 
250 	if (of_property_read_string(node, "unit", &g_unit))
251 		g_unit = NULL;
252 
253 	/* "reg" property gives out the base offset of the counters data */
254 	of_property_read_u32(node, "reg", &base_reg);
255 
256 	/* Allocate memory for the events */
257 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
258 	if (!pmu->events)
259 		return -ENOMEM;
260 
261 	ct = 0;
262 	/* Parse the events and update the struct */
263 	for_each_child_of_node(pmu_events, np) {
264 		ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
265 		if (!ret)
266 			ct++;
267 	}
268 
269 	/* Allocate memory for attribute group */
270 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
271 	if (!attr_group) {
272 		imc_free_events(pmu->events, ct);
273 		return -ENOMEM;
274 	}
275 
276 	/*
277 	 * Allocate memory for attributes.
278 	 * Since we have count of events for this pmu, we also allocate
279 	 * memory for the scale and unit attribute for now.
280 	 * "ct" has the total event structs added from the events-parent node.
281 	 * So allocate three times the "ct" (this includes event, event_scale and
282 	 * event_unit).
283 	 */
284 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
285 	if (!attrs) {
286 		kfree(attr_group);
287 		imc_free_events(pmu->events, ct);
288 		return -ENOMEM;
289 	}
290 
291 	attr_group->name = "events";
292 	attr_group->attrs = attrs;
293 	do {
294 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
295 		dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
296 		if (!dev_str)
297 			continue;
298 
299 		attrs[j++] = dev_str;
300 		if (pmu->events[i].scale) {
301 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
302 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
303 			if (!dev_str)
304 				continue;
305 
306 			attrs[j++] = dev_str;
307 		}
308 
309 		if (pmu->events[i].unit) {
310 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
311 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
312 			if (!dev_str)
313 				continue;
314 
315 			attrs[j++] = dev_str;
316 		}
317 	} while (++i < ct);
318 
319 	/* Save the event attribute */
320 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
321 
322 	return 0;
323 }
324 
325 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
326 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
327 {
328 	return per_cpu(local_nest_imc_refc, cpu);
329 }
330 
331 static void nest_change_cpu_context(int old_cpu, int new_cpu)
332 {
333 	struct imc_pmu **pn = per_nest_pmu_arr;
334 
335 	if (old_cpu < 0 || new_cpu < 0)
336 		return;
337 
338 	while (*pn) {
339 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
340 		pn++;
341 	}
342 }
343 
344 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
345 {
346 	int nid, target = -1;
347 	const struct cpumask *l_cpumask;
348 	struct imc_pmu_ref *ref;
349 
350 	/*
351 	 * Check in the designated list for this cpu. Dont bother
352 	 * if not one of them.
353 	 */
354 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
355 		return 0;
356 
357 	/*
358 	 * Check whether nest_imc is registered. We could end up here if the
359 	 * cpuhotplug callback registration fails. i.e, callback invokes the
360 	 * offline path for all successfully registered nodes. At this stage,
361 	 * nest_imc pmu will not be registered and we should return here.
362 	 *
363 	 * We return with a zero since this is not an offline failure. And
364 	 * cpuhp_setup_state() returns the actual failure reason to the caller,
365 	 * which in turn will call the cleanup routine.
366 	 */
367 	if (!nest_pmus)
368 		return 0;
369 
370 	/*
371 	 * Now that this cpu is one of the designated,
372 	 * find a next cpu a) which is online and b) in same chip.
373 	 */
374 	nid = cpu_to_node(cpu);
375 	l_cpumask = cpumask_of_node(nid);
376 	target = cpumask_last(l_cpumask);
377 
378 	/*
379 	 * If this(target) is the last cpu in the cpumask for this chip,
380 	 * check for any possible online cpu in the chip.
381 	 */
382 	if (unlikely(target == cpu))
383 		target = cpumask_any_but(l_cpumask, cpu);
384 
385 	/*
386 	 * Update the cpumask with the target cpu and
387 	 * migrate the context if needed
388 	 */
389 	if (target >= 0 && target < nr_cpu_ids) {
390 		cpumask_set_cpu(target, &nest_imc_cpumask);
391 		nest_change_cpu_context(cpu, target);
392 	} else {
393 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
394 				       get_hard_smp_processor_id(cpu));
395 		/*
396 		 * If this is the last cpu in this chip then, skip the reference
397 		 * count mutex lock and make the reference count on this chip zero.
398 		 */
399 		ref = get_nest_pmu_ref(cpu);
400 		if (!ref)
401 			return -EINVAL;
402 
403 		ref->refc = 0;
404 	}
405 	return 0;
406 }
407 
408 static int ppc_nest_imc_cpu_online(unsigned int cpu)
409 {
410 	const struct cpumask *l_cpumask;
411 	static struct cpumask tmp_mask;
412 	int res;
413 
414 	/* Get the cpumask of this node */
415 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
416 
417 	/*
418 	 * If this is not the first online CPU on this node, then
419 	 * just return.
420 	 */
421 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
422 		return 0;
423 
424 	/*
425 	 * If this is the first online cpu on this node
426 	 * disable the nest counters by making an OPAL call.
427 	 */
428 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
429 				     get_hard_smp_processor_id(cpu));
430 	if (res)
431 		return res;
432 
433 	/* Make this CPU the designated target for counter collection */
434 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
435 	return 0;
436 }
437 
438 static int nest_pmu_cpumask_init(void)
439 {
440 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
441 				 "perf/powerpc/imc:online",
442 				 ppc_nest_imc_cpu_online,
443 				 ppc_nest_imc_cpu_offline);
444 }
445 
446 static void nest_imc_counters_release(struct perf_event *event)
447 {
448 	int rc, node_id;
449 	struct imc_pmu_ref *ref;
450 
451 	if (event->cpu < 0)
452 		return;
453 
454 	node_id = cpu_to_node(event->cpu);
455 
456 	/*
457 	 * See if we need to disable the nest PMU.
458 	 * If no events are currently in use, then we have to take a
459 	 * mutex to ensure that we don't race with another task doing
460 	 * enable or disable the nest counters.
461 	 */
462 	ref = get_nest_pmu_ref(event->cpu);
463 	if (!ref)
464 		return;
465 
466 	/* Take the mutex lock for this node and then decrement the reference count */
467 	mutex_lock(&ref->lock);
468 	if (ref->refc == 0) {
469 		/*
470 		 * The scenario where this is true is, when perf session is
471 		 * started, followed by offlining of all cpus in a given node.
472 		 *
473 		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
474 		 * function set the ref->count to zero, if the cpu which is
475 		 * about to offline is the last cpu in a given node and make
476 		 * an OPAL call to disable the engine in that node.
477 		 *
478 		 */
479 		mutex_unlock(&ref->lock);
480 		return;
481 	}
482 	ref->refc--;
483 	if (ref->refc == 0) {
484 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
485 					    get_hard_smp_processor_id(event->cpu));
486 		if (rc) {
487 			mutex_unlock(&ref->lock);
488 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
489 			return;
490 		}
491 	} else if (ref->refc < 0) {
492 		WARN(1, "nest-imc: Invalid event reference count\n");
493 		ref->refc = 0;
494 	}
495 	mutex_unlock(&ref->lock);
496 }
497 
498 static int nest_imc_event_init(struct perf_event *event)
499 {
500 	int chip_id, rc, node_id;
501 	u32 l_config, config = event->attr.config;
502 	struct imc_mem_info *pcni;
503 	struct imc_pmu *pmu;
504 	struct imc_pmu_ref *ref;
505 	bool flag = false;
506 
507 	if (event->attr.type != event->pmu->type)
508 		return -ENOENT;
509 
510 	/* Sampling not supported */
511 	if (event->hw.sample_period)
512 		return -EINVAL;
513 
514 	if (event->cpu < 0)
515 		return -EINVAL;
516 
517 	pmu = imc_event_to_pmu(event);
518 
519 	/* Sanity check for config (event offset) */
520 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
521 		return -EINVAL;
522 
523 	/*
524 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
525 	 * Get the base memory address for this cpu.
526 	 */
527 	chip_id = cpu_to_chip_id(event->cpu);
528 
529 	/* Return, if chip_id is not valid */
530 	if (chip_id < 0)
531 		return -ENODEV;
532 
533 	pcni = pmu->mem_info;
534 	do {
535 		if (pcni->id == chip_id) {
536 			flag = true;
537 			break;
538 		}
539 		pcni++;
540 	} while (pcni->vbase != 0);
541 
542 	if (!flag)
543 		return -ENODEV;
544 
545 	/*
546 	 * Add the event offset to the base address.
547 	 */
548 	l_config = config & IMC_EVENT_OFFSET_MASK;
549 	event->hw.event_base = (u64)pcni->vbase + l_config;
550 	node_id = cpu_to_node(event->cpu);
551 
552 	/*
553 	 * Get the imc_pmu_ref struct for this node.
554 	 * Take the mutex lock and then increment the count of nest pmu events
555 	 * inited.
556 	 */
557 	ref = get_nest_pmu_ref(event->cpu);
558 	if (!ref)
559 		return -EINVAL;
560 
561 	mutex_lock(&ref->lock);
562 	if (ref->refc == 0) {
563 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
564 					     get_hard_smp_processor_id(event->cpu));
565 		if (rc) {
566 			mutex_unlock(&ref->lock);
567 			pr_err("nest-imc: Unable to start the counters for node %d\n",
568 									node_id);
569 			return rc;
570 		}
571 	}
572 	++ref->refc;
573 	mutex_unlock(&ref->lock);
574 
575 	event->destroy = nest_imc_counters_release;
576 	return 0;
577 }
578 
579 /*
580  * core_imc_mem_init : Initializes memory for the current core.
581  *
582  * Uses alloc_pages_node() and uses the returned address as an argument to
583  * an opal call to configure the pdbar. The address sent as an argument is
584  * converted to physical address before the opal call is made. This is the
585  * base address at which the core imc counters are populated.
586  */
587 static int core_imc_mem_init(int cpu, int size)
588 {
589 	int nid, rc = 0, core_id = (cpu / threads_per_core);
590 	struct imc_mem_info *mem_info;
591 	struct page *page;
592 
593 	/*
594 	 * alloc_pages_node() will allocate memory for core in the
595 	 * local node only.
596 	 */
597 	nid = cpu_to_node(cpu);
598 	mem_info = &core_imc_pmu->mem_info[core_id];
599 	mem_info->id = core_id;
600 
601 	/* We need only vbase for core counters */
602 	page = alloc_pages_node(nid,
603 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
604 				__GFP_NOWARN, get_order(size));
605 	if (!page)
606 		return -ENOMEM;
607 	mem_info->vbase = page_address(page);
608 
609 	/* Init the mutex */
610 	core_imc_refc[core_id].id = core_id;
611 	mutex_init(&core_imc_refc[core_id].lock);
612 
613 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
614 				__pa((void *)mem_info->vbase),
615 				get_hard_smp_processor_id(cpu));
616 	if (rc) {
617 		free_pages((u64)mem_info->vbase, get_order(size));
618 		mem_info->vbase = NULL;
619 	}
620 
621 	return rc;
622 }
623 
624 static bool is_core_imc_mem_inited(int cpu)
625 {
626 	struct imc_mem_info *mem_info;
627 	int core_id = (cpu / threads_per_core);
628 
629 	mem_info = &core_imc_pmu->mem_info[core_id];
630 	if (!mem_info->vbase)
631 		return false;
632 
633 	return true;
634 }
635 
636 static int ppc_core_imc_cpu_online(unsigned int cpu)
637 {
638 	const struct cpumask *l_cpumask;
639 	static struct cpumask tmp_mask;
640 	int ret = 0;
641 
642 	/* Get the cpumask for this core */
643 	l_cpumask = cpu_sibling_mask(cpu);
644 
645 	/* If a cpu for this core is already set, then, don't do anything */
646 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
647 		return 0;
648 
649 	if (!is_core_imc_mem_inited(cpu)) {
650 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
651 		if (ret) {
652 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
653 			return ret;
654 		}
655 	}
656 
657 	/* set the cpu in the mask */
658 	cpumask_set_cpu(cpu, &core_imc_cpumask);
659 	return 0;
660 }
661 
662 static int ppc_core_imc_cpu_offline(unsigned int cpu)
663 {
664 	unsigned int core_id;
665 	int ncpu;
666 	struct imc_pmu_ref *ref;
667 
668 	/*
669 	 * clear this cpu out of the mask, if not present in the mask,
670 	 * don't bother doing anything.
671 	 */
672 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
673 		return 0;
674 
675 	/*
676 	 * Check whether core_imc is registered. We could end up here
677 	 * if the cpuhotplug callback registration fails. i.e, callback
678 	 * invokes the offline path for all successfully registered cpus.
679 	 * At this stage, core_imc pmu will not be registered and we
680 	 * should return here.
681 	 *
682 	 * We return with a zero since this is not an offline failure.
683 	 * And cpuhp_setup_state() returns the actual failure reason
684 	 * to the caller, which inturn will call the cleanup routine.
685 	 */
686 	if (!core_imc_pmu->pmu.event_init)
687 		return 0;
688 
689 	/* Find any online cpu in that core except the current "cpu" */
690 	ncpu = cpumask_last(cpu_sibling_mask(cpu));
691 
692 	if (unlikely(ncpu == cpu))
693 		ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
694 
695 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
696 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
697 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
698 	} else {
699 		/*
700 		 * If this is the last cpu in this core then, skip taking refernce
701 		 * count mutex lock for this core and directly zero "refc" for
702 		 * this core.
703 		 */
704 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
705 				       get_hard_smp_processor_id(cpu));
706 		core_id = cpu / threads_per_core;
707 		ref = &core_imc_refc[core_id];
708 		if (!ref)
709 			return -EINVAL;
710 
711 		ref->refc = 0;
712 		/*
713 		 * Reduce the global reference count, if this is the
714 		 * last cpu in this core and core-imc event running
715 		 * in this cpu.
716 		 */
717 		mutex_lock(&imc_global_refc.lock);
718 		if (imc_global_refc.id == IMC_DOMAIN_CORE)
719 			imc_global_refc.refc--;
720 
721 		mutex_unlock(&imc_global_refc.lock);
722 	}
723 	return 0;
724 }
725 
726 static int core_imc_pmu_cpumask_init(void)
727 {
728 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
729 				 "perf/powerpc/imc_core:online",
730 				 ppc_core_imc_cpu_online,
731 				 ppc_core_imc_cpu_offline);
732 }
733 
734 static void reset_global_refc(struct perf_event *event)
735 {
736 		mutex_lock(&imc_global_refc.lock);
737 		imc_global_refc.refc--;
738 
739 		/*
740 		 * If no other thread is running any
741 		 * event for this domain(thread/core/trace),
742 		 * set the global id to zero.
743 		 */
744 		if (imc_global_refc.refc <= 0) {
745 			imc_global_refc.refc = 0;
746 			imc_global_refc.id = 0;
747 		}
748 		mutex_unlock(&imc_global_refc.lock);
749 }
750 
751 static void core_imc_counters_release(struct perf_event *event)
752 {
753 	int rc, core_id;
754 	struct imc_pmu_ref *ref;
755 
756 	if (event->cpu < 0)
757 		return;
758 	/*
759 	 * See if we need to disable the IMC PMU.
760 	 * If no events are currently in use, then we have to take a
761 	 * mutex to ensure that we don't race with another task doing
762 	 * enable or disable the core counters.
763 	 */
764 	core_id = event->cpu / threads_per_core;
765 
766 	/* Take the mutex lock and decrement the refernce count for this core */
767 	ref = &core_imc_refc[core_id];
768 	if (!ref)
769 		return;
770 
771 	mutex_lock(&ref->lock);
772 	if (ref->refc == 0) {
773 		/*
774 		 * The scenario where this is true is, when perf session is
775 		 * started, followed by offlining of all cpus in a given core.
776 		 *
777 		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
778 		 * function set the ref->count to zero, if the cpu which is
779 		 * about to offline is the last cpu in a given core and make
780 		 * an OPAL call to disable the engine in that core.
781 		 *
782 		 */
783 		mutex_unlock(&ref->lock);
784 		return;
785 	}
786 	ref->refc--;
787 	if (ref->refc == 0) {
788 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
789 					    get_hard_smp_processor_id(event->cpu));
790 		if (rc) {
791 			mutex_unlock(&ref->lock);
792 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
793 			return;
794 		}
795 	} else if (ref->refc < 0) {
796 		WARN(1, "core-imc: Invalid event reference count\n");
797 		ref->refc = 0;
798 	}
799 	mutex_unlock(&ref->lock);
800 
801 	reset_global_refc(event);
802 }
803 
804 static int core_imc_event_init(struct perf_event *event)
805 {
806 	int core_id, rc;
807 	u64 config = event->attr.config;
808 	struct imc_mem_info *pcmi;
809 	struct imc_pmu *pmu;
810 	struct imc_pmu_ref *ref;
811 
812 	if (event->attr.type != event->pmu->type)
813 		return -ENOENT;
814 
815 	/* Sampling not supported */
816 	if (event->hw.sample_period)
817 		return -EINVAL;
818 
819 	if (event->cpu < 0)
820 		return -EINVAL;
821 
822 	event->hw.idx = -1;
823 	pmu = imc_event_to_pmu(event);
824 
825 	/* Sanity check for config (event offset) */
826 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
827 		return -EINVAL;
828 
829 	if (!is_core_imc_mem_inited(event->cpu))
830 		return -ENODEV;
831 
832 	core_id = event->cpu / threads_per_core;
833 	pcmi = &core_imc_pmu->mem_info[core_id];
834 	if ((!pcmi->vbase))
835 		return -ENODEV;
836 
837 	/* Get the core_imc mutex for this core */
838 	ref = &core_imc_refc[core_id];
839 	if (!ref)
840 		return -EINVAL;
841 
842 	/*
843 	 * Core pmu units are enabled only when it is used.
844 	 * See if this is triggered for the first time.
845 	 * If yes, take the mutex lock and enable the core counters.
846 	 * If not, just increment the count in core_imc_refc struct.
847 	 */
848 	mutex_lock(&ref->lock);
849 	if (ref->refc == 0) {
850 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
851 					     get_hard_smp_processor_id(event->cpu));
852 		if (rc) {
853 			mutex_unlock(&ref->lock);
854 			pr_err("core-imc: Unable to start the counters for core %d\n",
855 									core_id);
856 			return rc;
857 		}
858 	}
859 	++ref->refc;
860 	mutex_unlock(&ref->lock);
861 
862 	/*
863 	 * Since the system can run either in accumulation or trace-mode
864 	 * of IMC at a time, core-imc events are allowed only if no other
865 	 * trace/thread imc events are enabled/monitored.
866 	 *
867 	 * Take the global lock, and check the refc.id
868 	 * to know whether any other trace/thread imc
869 	 * events are running.
870 	 */
871 	mutex_lock(&imc_global_refc.lock);
872 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
873 		/*
874 		 * No other trace/thread imc events are running in
875 		 * the system, so set the refc.id to core-imc.
876 		 */
877 		imc_global_refc.id = IMC_DOMAIN_CORE;
878 		imc_global_refc.refc++;
879 	} else {
880 		mutex_unlock(&imc_global_refc.lock);
881 		return -EBUSY;
882 	}
883 	mutex_unlock(&imc_global_refc.lock);
884 
885 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
886 	event->destroy = core_imc_counters_release;
887 	return 0;
888 }
889 
890 /*
891  * Allocates a page of memory for each of the online cpus, and load
892  * LDBAR with 0.
893  * The physical base address of the page allocated for a cpu will be
894  * written to the LDBAR for that cpu, when the thread-imc event
895  * is added.
896  *
897  * LDBAR Register Layout:
898  *
899  *  0          4         8         12        16        20        24        28
900  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
901  *   | |       [   ]    [                   Counter Address [8:50]
902  *   | * Mode    |
903  *   |           * PB Scope
904  *   * Enable/Disable
905  *
906  *  32        36        40        44        48        52        56        60
907  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
908  *           Counter Address [8:50]              ]
909  *
910  */
911 static int thread_imc_mem_alloc(int cpu_id, int size)
912 {
913 	u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
914 	int nid = cpu_to_node(cpu_id);
915 
916 	if (!local_mem) {
917 		struct page *page;
918 		/*
919 		 * This case could happen only once at start, since we dont
920 		 * free the memory in cpu offline path.
921 		 */
922 		page = alloc_pages_node(nid,
923 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
924 				  __GFP_NOWARN, get_order(size));
925 		if (!page)
926 			return -ENOMEM;
927 		local_mem = page_address(page);
928 
929 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
930 	}
931 
932 	mtspr(SPRN_LDBAR, 0);
933 	return 0;
934 }
935 
936 static int ppc_thread_imc_cpu_online(unsigned int cpu)
937 {
938 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
939 }
940 
941 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
942 {
943 	/*
944 	 * Set the bit 0 of LDBAR to zero.
945 	 *
946 	 * If bit 0 of LDBAR is unset, it will stop posting
947 	 * the counter data to memory.
948 	 * For thread-imc, bit 0 of LDBAR will be set to 1 in the
949 	 * event_add function. So reset this bit here, to stop the updates
950 	 * to memory in the cpu_offline path.
951 	 */
952 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
953 
954 	/* Reduce the refc if thread-imc event running on this cpu */
955 	mutex_lock(&imc_global_refc.lock);
956 	if (imc_global_refc.id == IMC_DOMAIN_THREAD)
957 		imc_global_refc.refc--;
958 	mutex_unlock(&imc_global_refc.lock);
959 
960 	return 0;
961 }
962 
963 static int thread_imc_cpu_init(void)
964 {
965 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
966 			  "perf/powerpc/imc_thread:online",
967 			  ppc_thread_imc_cpu_online,
968 			  ppc_thread_imc_cpu_offline);
969 }
970 
971 static int thread_imc_event_init(struct perf_event *event)
972 {
973 	u32 config = event->attr.config;
974 	struct task_struct *target;
975 	struct imc_pmu *pmu;
976 
977 	if (event->attr.type != event->pmu->type)
978 		return -ENOENT;
979 
980 	if (!perfmon_capable())
981 		return -EACCES;
982 
983 	/* Sampling not supported */
984 	if (event->hw.sample_period)
985 		return -EINVAL;
986 
987 	event->hw.idx = -1;
988 	pmu = imc_event_to_pmu(event);
989 
990 	/* Sanity check for config offset */
991 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
992 		return -EINVAL;
993 
994 	target = event->hw.target;
995 	if (!target)
996 		return -EINVAL;
997 
998 	mutex_lock(&imc_global_refc.lock);
999 	/*
1000 	 * Check if any other trace/core imc events are running in the
1001 	 * system, if not set the global id to thread-imc.
1002 	 */
1003 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1004 		imc_global_refc.id = IMC_DOMAIN_THREAD;
1005 		imc_global_refc.refc++;
1006 	} else {
1007 		mutex_unlock(&imc_global_refc.lock);
1008 		return -EBUSY;
1009 	}
1010 	mutex_unlock(&imc_global_refc.lock);
1011 
1012 	event->pmu->task_ctx_nr = perf_sw_context;
1013 	event->destroy = reset_global_refc;
1014 	return 0;
1015 }
1016 
1017 static bool is_thread_imc_pmu(struct perf_event *event)
1018 {
1019 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1020 		return true;
1021 
1022 	return false;
1023 }
1024 
1025 static u64 * get_event_base_addr(struct perf_event *event)
1026 {
1027 	u64 addr;
1028 
1029 	if (is_thread_imc_pmu(event)) {
1030 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1031 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1032 	}
1033 
1034 	return (u64 *)event->hw.event_base;
1035 }
1036 
1037 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1038 				     unsigned int txn_flags)
1039 {
1040 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1041 		return;
1042 	perf_pmu_disable(pmu);
1043 }
1044 
1045 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1046 {
1047 	perf_pmu_enable(pmu);
1048 }
1049 
1050 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1051 {
1052 	perf_pmu_enable(pmu);
1053 	return 0;
1054 }
1055 
1056 static u64 imc_read_counter(struct perf_event *event)
1057 {
1058 	u64 *addr, data;
1059 
1060 	/*
1061 	 * In-Memory Collection (IMC) counters are free flowing counters.
1062 	 * So we take a snapshot of the counter value on enable and save it
1063 	 * to calculate the delta at later stage to present the event counter
1064 	 * value.
1065 	 */
1066 	addr = get_event_base_addr(event);
1067 	data = be64_to_cpu(READ_ONCE(*addr));
1068 	local64_set(&event->hw.prev_count, data);
1069 
1070 	return data;
1071 }
1072 
1073 static void imc_event_update(struct perf_event *event)
1074 {
1075 	u64 counter_prev, counter_new, final_count;
1076 
1077 	counter_prev = local64_read(&event->hw.prev_count);
1078 	counter_new = imc_read_counter(event);
1079 	final_count = counter_new - counter_prev;
1080 
1081 	/* Update the delta to the event count */
1082 	local64_add(final_count, &event->count);
1083 }
1084 
1085 static void imc_event_start(struct perf_event *event, int flags)
1086 {
1087 	/*
1088 	 * In Memory Counters are free flowing counters. HW or the microcode
1089 	 * keeps adding to the counter offset in memory. To get event
1090 	 * counter value, we snapshot the value here and we calculate
1091 	 * delta at later point.
1092 	 */
1093 	imc_read_counter(event);
1094 }
1095 
1096 static void imc_event_stop(struct perf_event *event, int flags)
1097 {
1098 	/*
1099 	 * Take a snapshot and calculate the delta and update
1100 	 * the event counter values.
1101 	 */
1102 	imc_event_update(event);
1103 }
1104 
1105 static int imc_event_add(struct perf_event *event, int flags)
1106 {
1107 	if (flags & PERF_EF_START)
1108 		imc_event_start(event, flags);
1109 
1110 	return 0;
1111 }
1112 
1113 static int thread_imc_event_add(struct perf_event *event, int flags)
1114 {
1115 	int core_id;
1116 	struct imc_pmu_ref *ref;
1117 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1118 
1119 	if (flags & PERF_EF_START)
1120 		imc_event_start(event, flags);
1121 
1122 	if (!is_core_imc_mem_inited(smp_processor_id()))
1123 		return -EINVAL;
1124 
1125 	core_id = smp_processor_id() / threads_per_core;
1126 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1127 	mtspr(SPRN_LDBAR, ldbar_value);
1128 
1129 	/*
1130 	 * imc pmus are enabled only when it is used.
1131 	 * See if this is triggered for the first time.
1132 	 * If yes, take the mutex lock and enable the counters.
1133 	 * If not, just increment the count in ref count struct.
1134 	 */
1135 	ref = &core_imc_refc[core_id];
1136 	if (!ref)
1137 		return -EINVAL;
1138 
1139 	mutex_lock(&ref->lock);
1140 	if (ref->refc == 0) {
1141 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1142 		    get_hard_smp_processor_id(smp_processor_id()))) {
1143 			mutex_unlock(&ref->lock);
1144 			pr_err("thread-imc: Unable to start the counter\
1145 				for core %d\n", core_id);
1146 			return -EINVAL;
1147 		}
1148 	}
1149 	++ref->refc;
1150 	mutex_unlock(&ref->lock);
1151 	return 0;
1152 }
1153 
1154 static void thread_imc_event_del(struct perf_event *event, int flags)
1155 {
1156 
1157 	int core_id;
1158 	struct imc_pmu_ref *ref;
1159 
1160 	core_id = smp_processor_id() / threads_per_core;
1161 	ref = &core_imc_refc[core_id];
1162 	if (!ref) {
1163 		pr_debug("imc: Failed to get event reference count\n");
1164 		return;
1165 	}
1166 
1167 	mutex_lock(&ref->lock);
1168 	ref->refc--;
1169 	if (ref->refc == 0) {
1170 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1171 		    get_hard_smp_processor_id(smp_processor_id()))) {
1172 			mutex_unlock(&ref->lock);
1173 			pr_err("thread-imc: Unable to stop the counters\
1174 				for core %d\n", core_id);
1175 			return;
1176 		}
1177 	} else if (ref->refc < 0) {
1178 		ref->refc = 0;
1179 	}
1180 	mutex_unlock(&ref->lock);
1181 
1182 	/* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1183 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1184 
1185 	/*
1186 	 * Take a snapshot and calculate the delta and update
1187 	 * the event counter values.
1188 	 */
1189 	imc_event_update(event);
1190 }
1191 
1192 /*
1193  * Allocate a page of memory for each cpu, and load LDBAR with 0.
1194  */
1195 static int trace_imc_mem_alloc(int cpu_id, int size)
1196 {
1197 	u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1198 	int phys_id = cpu_to_node(cpu_id), rc = 0;
1199 	int core_id = (cpu_id / threads_per_core);
1200 
1201 	if (!local_mem) {
1202 		struct page *page;
1203 
1204 		page = alloc_pages_node(phys_id,
1205 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1206 				__GFP_NOWARN, get_order(size));
1207 		if (!page)
1208 			return -ENOMEM;
1209 		local_mem = page_address(page);
1210 		per_cpu(trace_imc_mem, cpu_id) = local_mem;
1211 
1212 		/* Initialise the counters for trace mode */
1213 		rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1214 					    get_hard_smp_processor_id(cpu_id));
1215 		if (rc) {
1216 			pr_info("IMC:opal init failed for trace imc\n");
1217 			return rc;
1218 		}
1219 	}
1220 
1221 	/* Init the mutex, if not already */
1222 	trace_imc_refc[core_id].id = core_id;
1223 	mutex_init(&trace_imc_refc[core_id].lock);
1224 
1225 	mtspr(SPRN_LDBAR, 0);
1226 	return 0;
1227 }
1228 
1229 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1230 {
1231 	return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1232 }
1233 
1234 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1235 {
1236 	/*
1237 	 * No need to set bit 0 of LDBAR to zero, as
1238 	 * it is set to zero for imc trace-mode
1239 	 *
1240 	 * Reduce the refc if any trace-imc event running
1241 	 * on this cpu.
1242 	 */
1243 	mutex_lock(&imc_global_refc.lock);
1244 	if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1245 		imc_global_refc.refc--;
1246 	mutex_unlock(&imc_global_refc.lock);
1247 
1248 	return 0;
1249 }
1250 
1251 static int trace_imc_cpu_init(void)
1252 {
1253 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1254 			  "perf/powerpc/imc_trace:online",
1255 			  ppc_trace_imc_cpu_online,
1256 			  ppc_trace_imc_cpu_offline);
1257 }
1258 
1259 static u64 get_trace_imc_event_base_addr(void)
1260 {
1261 	return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1262 }
1263 
1264 /*
1265  * Function to parse trace-imc data obtained
1266  * and to prepare the perf sample.
1267  */
1268 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1269 				    struct perf_sample_data *data,
1270 				    u64 *prev_tb,
1271 				    struct perf_event_header *header,
1272 				    struct perf_event *event)
1273 {
1274 	/* Sanity checks for a valid record */
1275 	if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1276 		*prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1277 	else
1278 		return -EINVAL;
1279 
1280 	if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1281 			 be64_to_cpu(READ_ONCE(mem->tb2)))
1282 		return -EINVAL;
1283 
1284 	/* Prepare perf sample */
1285 	data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1286 	data->period = event->hw.last_period;
1287 
1288 	header->type = PERF_RECORD_SAMPLE;
1289 	header->size = sizeof(*header) + event->header_size;
1290 	header->misc = 0;
1291 
1292 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1293 		switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1294 		case 0:/* when MSR HV and PR not set in the trace-record */
1295 			header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1296 			break;
1297 		case 1: /* MSR HV is 0 and PR is 1 */
1298 			header->misc |= PERF_RECORD_MISC_GUEST_USER;
1299 			break;
1300 		case 2: /* MSR HV is 1 and PR is 0 */
1301 			header->misc |= PERF_RECORD_MISC_KERNEL;
1302 			break;
1303 		case 3: /* MSR HV is 1 and PR is 1 */
1304 			header->misc |= PERF_RECORD_MISC_USER;
1305 			break;
1306 		default:
1307 			pr_info("IMC: Unable to set the flag based on MSR bits\n");
1308 			break;
1309 		}
1310 	} else {
1311 		if (is_kernel_addr(data->ip))
1312 			header->misc |= PERF_RECORD_MISC_KERNEL;
1313 		else
1314 			header->misc |= PERF_RECORD_MISC_USER;
1315 	}
1316 	perf_event_header__init_id(header, data, event);
1317 
1318 	return 0;
1319 }
1320 
1321 static void dump_trace_imc_data(struct perf_event *event)
1322 {
1323 	struct trace_imc_data *mem;
1324 	int i, ret;
1325 	u64 prev_tb = 0;
1326 
1327 	mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1328 	for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1329 		i++, mem++) {
1330 		struct perf_sample_data data;
1331 		struct perf_event_header header;
1332 
1333 		ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1334 		if (ret) /* Exit, if not a valid record */
1335 			break;
1336 		else {
1337 			/* If this is a valid record, create the sample */
1338 			struct perf_output_handle handle;
1339 
1340 			if (perf_output_begin(&handle, &data, event, header.size))
1341 				return;
1342 
1343 			perf_output_sample(&handle, &header, &data, event);
1344 			perf_output_end(&handle);
1345 		}
1346 	}
1347 }
1348 
1349 static int trace_imc_event_add(struct perf_event *event, int flags)
1350 {
1351 	int core_id = smp_processor_id() / threads_per_core;
1352 	struct imc_pmu_ref *ref = NULL;
1353 	u64 local_mem, ldbar_value;
1354 
1355 	/* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1356 	local_mem = get_trace_imc_event_base_addr();
1357 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1358 
1359 	/* trace-imc reference count */
1360 	if (trace_imc_refc)
1361 		ref = &trace_imc_refc[core_id];
1362 	if (!ref) {
1363 		pr_debug("imc: Failed to get the event reference count\n");
1364 		return -EINVAL;
1365 	}
1366 
1367 	mtspr(SPRN_LDBAR, ldbar_value);
1368 	mutex_lock(&ref->lock);
1369 	if (ref->refc == 0) {
1370 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1371 				get_hard_smp_processor_id(smp_processor_id()))) {
1372 			mutex_unlock(&ref->lock);
1373 			pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1374 			return -EINVAL;
1375 		}
1376 	}
1377 	++ref->refc;
1378 	mutex_unlock(&ref->lock);
1379 	return 0;
1380 }
1381 
1382 static void trace_imc_event_read(struct perf_event *event)
1383 {
1384 	return;
1385 }
1386 
1387 static void trace_imc_event_stop(struct perf_event *event, int flags)
1388 {
1389 	u64 local_mem = get_trace_imc_event_base_addr();
1390 	dump_trace_imc_data(event);
1391 	memset((void *)local_mem, 0, sizeof(u64));
1392 }
1393 
1394 static void trace_imc_event_start(struct perf_event *event, int flags)
1395 {
1396 	return;
1397 }
1398 
1399 static void trace_imc_event_del(struct perf_event *event, int flags)
1400 {
1401 	int core_id = smp_processor_id() / threads_per_core;
1402 	struct imc_pmu_ref *ref = NULL;
1403 
1404 	if (trace_imc_refc)
1405 		ref = &trace_imc_refc[core_id];
1406 	if (!ref) {
1407 		pr_debug("imc: Failed to get event reference count\n");
1408 		return;
1409 	}
1410 
1411 	mutex_lock(&ref->lock);
1412 	ref->refc--;
1413 	if (ref->refc == 0) {
1414 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1415 				get_hard_smp_processor_id(smp_processor_id()))) {
1416 			mutex_unlock(&ref->lock);
1417 			pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1418 			return;
1419 		}
1420 	} else if (ref->refc < 0) {
1421 		ref->refc = 0;
1422 	}
1423 	mutex_unlock(&ref->lock);
1424 
1425 	trace_imc_event_stop(event, flags);
1426 }
1427 
1428 static int trace_imc_event_init(struct perf_event *event)
1429 {
1430 	if (event->attr.type != event->pmu->type)
1431 		return -ENOENT;
1432 
1433 	if (!perfmon_capable())
1434 		return -EACCES;
1435 
1436 	/* Return if this is a couting event */
1437 	if (event->attr.sample_period == 0)
1438 		return -ENOENT;
1439 
1440 	/*
1441 	 * Take the global lock, and make sure
1442 	 * no other thread is running any core/thread imc
1443 	 * events
1444 	 */
1445 	mutex_lock(&imc_global_refc.lock);
1446 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1447 		/*
1448 		 * No core/thread imc events are running in the
1449 		 * system, so set the refc.id to trace-imc.
1450 		 */
1451 		imc_global_refc.id = IMC_DOMAIN_TRACE;
1452 		imc_global_refc.refc++;
1453 	} else {
1454 		mutex_unlock(&imc_global_refc.lock);
1455 		return -EBUSY;
1456 	}
1457 	mutex_unlock(&imc_global_refc.lock);
1458 
1459 	event->hw.idx = -1;
1460 
1461 	/*
1462 	 * There can only be a single PMU for perf_hw_context events which is assigned to
1463 	 * core PMU. Hence use "perf_sw_context" for trace_imc.
1464 	 */
1465 	event->pmu->task_ctx_nr = perf_sw_context;
1466 	event->destroy = reset_global_refc;
1467 	return 0;
1468 }
1469 
1470 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1471 static int update_pmu_ops(struct imc_pmu *pmu)
1472 {
1473 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1474 	pmu->pmu.add = imc_event_add;
1475 	pmu->pmu.del = imc_event_stop;
1476 	pmu->pmu.start = imc_event_start;
1477 	pmu->pmu.stop = imc_event_stop;
1478 	pmu->pmu.read = imc_event_update;
1479 	pmu->pmu.attr_groups = pmu->attr_groups;
1480 	pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1481 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1482 
1483 	switch (pmu->domain) {
1484 	case IMC_DOMAIN_NEST:
1485 		pmu->pmu.event_init = nest_imc_event_init;
1486 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1487 		break;
1488 	case IMC_DOMAIN_CORE:
1489 		pmu->pmu.event_init = core_imc_event_init;
1490 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1491 		break;
1492 	case IMC_DOMAIN_THREAD:
1493 		pmu->pmu.event_init = thread_imc_event_init;
1494 		pmu->pmu.add = thread_imc_event_add;
1495 		pmu->pmu.del = thread_imc_event_del;
1496 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1497 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1498 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1499 		break;
1500 	case IMC_DOMAIN_TRACE:
1501 		pmu->pmu.event_init = trace_imc_event_init;
1502 		pmu->pmu.add = trace_imc_event_add;
1503 		pmu->pmu.del = trace_imc_event_del;
1504 		pmu->pmu.start = trace_imc_event_start;
1505 		pmu->pmu.stop = trace_imc_event_stop;
1506 		pmu->pmu.read = trace_imc_event_read;
1507 		pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1508 		break;
1509 	default:
1510 		break;
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1517 static int init_nest_pmu_ref(void)
1518 {
1519 	int nid, i, cpu;
1520 
1521 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1522 								GFP_KERNEL);
1523 
1524 	if (!nest_imc_refc)
1525 		return -ENOMEM;
1526 
1527 	i = 0;
1528 	for_each_node(nid) {
1529 		/*
1530 		 * Mutex lock to avoid races while tracking the number of
1531 		 * sessions using the chip's nest pmu units.
1532 		 */
1533 		mutex_init(&nest_imc_refc[i].lock);
1534 
1535 		/*
1536 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1537 		 * 0 and will be used as index to the array. "i" will not go off the
1538 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1539 		 * nodes only.
1540 		 */
1541 		nest_imc_refc[i++].id = nid;
1542 	}
1543 
1544 	/*
1545 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1546 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1547 	 */
1548 	for_each_possible_cpu(cpu) {
1549 		nid = cpu_to_node(cpu);
1550 		for (i = 0; i < num_possible_nodes(); i++) {
1551 			if (nest_imc_refc[i].id == nid) {
1552 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1553 				break;
1554 			}
1555 		}
1556 	}
1557 	return 0;
1558 }
1559 
1560 static void cleanup_all_core_imc_memory(void)
1561 {
1562 	int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1563 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1564 	int size = core_imc_pmu->counter_mem_size;
1565 
1566 	/* mem_info will never be NULL */
1567 	for (i = 0; i < nr_cores; i++) {
1568 		if (ptr[i].vbase)
1569 			free_pages((u64)ptr[i].vbase, get_order(size));
1570 	}
1571 
1572 	kfree(ptr);
1573 	kfree(core_imc_refc);
1574 }
1575 
1576 static void thread_imc_ldbar_disable(void *dummy)
1577 {
1578 	/*
1579 	 * By setting 0th bit of LDBAR to zero, we disable thread-imc
1580 	 * updates to memory.
1581 	 */
1582 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1583 }
1584 
1585 void thread_imc_disable(void)
1586 {
1587 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1588 }
1589 
1590 static void cleanup_all_thread_imc_memory(void)
1591 {
1592 	int i, order = get_order(thread_imc_mem_size);
1593 
1594 	for_each_online_cpu(i) {
1595 		if (per_cpu(thread_imc_mem, i))
1596 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1597 
1598 	}
1599 }
1600 
1601 static void cleanup_all_trace_imc_memory(void)
1602 {
1603 	int i, order = get_order(trace_imc_mem_size);
1604 
1605 	for_each_online_cpu(i) {
1606 		if (per_cpu(trace_imc_mem, i))
1607 			free_pages((u64)per_cpu(trace_imc_mem, i), order);
1608 
1609 	}
1610 	kfree(trace_imc_refc);
1611 }
1612 
1613 /* Function to free the attr_groups which are dynamically allocated */
1614 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1615 {
1616 	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1617 		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1618 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1619 }
1620 
1621 /*
1622  * Common function to unregister cpu hotplug callback and
1623  * free the memory.
1624  * TODO: Need to handle pmu unregistering, which will be
1625  * done in followup series.
1626  */
1627 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1628 {
1629 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1630 		mutex_lock(&nest_init_lock);
1631 		if (nest_pmus == 1) {
1632 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1633 			kfree(nest_imc_refc);
1634 			kfree(per_nest_pmu_arr);
1635 			per_nest_pmu_arr = NULL;
1636 		}
1637 
1638 		if (nest_pmus > 0)
1639 			nest_pmus--;
1640 		mutex_unlock(&nest_init_lock);
1641 	}
1642 
1643 	/* Free core_imc memory */
1644 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1645 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1646 		cleanup_all_core_imc_memory();
1647 	}
1648 
1649 	/* Free thread_imc memory */
1650 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1651 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1652 		cleanup_all_thread_imc_memory();
1653 	}
1654 
1655 	if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1656 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1657 		cleanup_all_trace_imc_memory();
1658 	}
1659 }
1660 
1661 /*
1662  * Function to unregister thread-imc if core-imc
1663  * is not registered.
1664  */
1665 void unregister_thread_imc(void)
1666 {
1667 	imc_common_cpuhp_mem_free(thread_imc_pmu);
1668 	imc_common_mem_free(thread_imc_pmu);
1669 	perf_pmu_unregister(&thread_imc_pmu->pmu);
1670 }
1671 
1672 /*
1673  * imc_mem_init : Function to support memory allocation for core imc.
1674  */
1675 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1676 								int pmu_index)
1677 {
1678 	const char *s;
1679 	int nr_cores, cpu, res = -ENOMEM;
1680 
1681 	if (of_property_read_string(parent, "name", &s))
1682 		return -ENODEV;
1683 
1684 	switch (pmu_ptr->domain) {
1685 	case IMC_DOMAIN_NEST:
1686 		/* Update the pmu name */
1687 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1688 		if (!pmu_ptr->pmu.name)
1689 			goto err;
1690 
1691 		/* Needed for hotplug/migration */
1692 		if (!per_nest_pmu_arr) {
1693 			per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1694 						sizeof(struct imc_pmu *),
1695 						GFP_KERNEL);
1696 			if (!per_nest_pmu_arr)
1697 				goto err;
1698 		}
1699 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1700 		break;
1701 	case IMC_DOMAIN_CORE:
1702 		/* Update the pmu name */
1703 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1704 		if (!pmu_ptr->pmu.name)
1705 			goto err;
1706 
1707 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1708 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1709 								GFP_KERNEL);
1710 
1711 		if (!pmu_ptr->mem_info)
1712 			goto err;
1713 
1714 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1715 								GFP_KERNEL);
1716 
1717 		if (!core_imc_refc) {
1718 			kfree(pmu_ptr->mem_info);
1719 			goto err;
1720 		}
1721 
1722 		core_imc_pmu = pmu_ptr;
1723 		break;
1724 	case IMC_DOMAIN_THREAD:
1725 		/* Update the pmu name */
1726 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1727 		if (!pmu_ptr->pmu.name)
1728 			goto err;
1729 
1730 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1731 		for_each_online_cpu(cpu) {
1732 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1733 			if (res) {
1734 				cleanup_all_thread_imc_memory();
1735 				goto err;
1736 			}
1737 		}
1738 
1739 		thread_imc_pmu = pmu_ptr;
1740 		break;
1741 	case IMC_DOMAIN_TRACE:
1742 		/* Update the pmu name */
1743 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1744 		if (!pmu_ptr->pmu.name)
1745 			return -ENOMEM;
1746 
1747 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1748 		trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1749 								GFP_KERNEL);
1750 		if (!trace_imc_refc)
1751 			return -ENOMEM;
1752 
1753 		trace_imc_mem_size = pmu_ptr->counter_mem_size;
1754 		for_each_online_cpu(cpu) {
1755 			res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1756 			if (res) {
1757 				cleanup_all_trace_imc_memory();
1758 				goto err;
1759 			}
1760 		}
1761 		break;
1762 	default:
1763 		return -EINVAL;
1764 	}
1765 
1766 	return 0;
1767 err:
1768 	return res;
1769 }
1770 
1771 /*
1772  * init_imc_pmu : Setup and register the IMC pmu device.
1773  *
1774  * @parent:	Device tree unit node
1775  * @pmu_ptr:	memory allocated for this pmu
1776  * @pmu_idx:	Count of nest pmc registered
1777  *
1778  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1779  * Handles failure cases and accordingly frees memory.
1780  */
1781 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1782 {
1783 	int ret;
1784 
1785 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1786 	if (ret)
1787 		goto err_free_mem;
1788 
1789 	switch (pmu_ptr->domain) {
1790 	case IMC_DOMAIN_NEST:
1791 		/*
1792 		* Nest imc pmu need only one cpu per chip, we initialize the
1793 		* cpumask for the first nest imc pmu and use the same for the
1794 		* rest. To handle the cpuhotplug callback unregister, we track
1795 		* the number of nest pmus in "nest_pmus".
1796 		*/
1797 		mutex_lock(&nest_init_lock);
1798 		if (nest_pmus == 0) {
1799 			ret = init_nest_pmu_ref();
1800 			if (ret) {
1801 				mutex_unlock(&nest_init_lock);
1802 				kfree(per_nest_pmu_arr);
1803 				per_nest_pmu_arr = NULL;
1804 				goto err_free_mem;
1805 			}
1806 			/* Register for cpu hotplug notification. */
1807 			ret = nest_pmu_cpumask_init();
1808 			if (ret) {
1809 				mutex_unlock(&nest_init_lock);
1810 				kfree(nest_imc_refc);
1811 				kfree(per_nest_pmu_arr);
1812 				per_nest_pmu_arr = NULL;
1813 				goto err_free_mem;
1814 			}
1815 		}
1816 		nest_pmus++;
1817 		mutex_unlock(&nest_init_lock);
1818 		break;
1819 	case IMC_DOMAIN_CORE:
1820 		ret = core_imc_pmu_cpumask_init();
1821 		if (ret) {
1822 			cleanup_all_core_imc_memory();
1823 			goto err_free_mem;
1824 		}
1825 
1826 		break;
1827 	case IMC_DOMAIN_THREAD:
1828 		ret = thread_imc_cpu_init();
1829 		if (ret) {
1830 			cleanup_all_thread_imc_memory();
1831 			goto err_free_mem;
1832 		}
1833 
1834 		break;
1835 	case IMC_DOMAIN_TRACE:
1836 		ret = trace_imc_cpu_init();
1837 		if (ret) {
1838 			cleanup_all_trace_imc_memory();
1839 			goto err_free_mem;
1840 		}
1841 
1842 		break;
1843 	default:
1844 		return  -EINVAL;	/* Unknown domain */
1845 	}
1846 
1847 	ret = update_events_in_group(parent, pmu_ptr);
1848 	if (ret)
1849 		goto err_free_cpuhp_mem;
1850 
1851 	ret = update_pmu_ops(pmu_ptr);
1852 	if (ret)
1853 		goto err_free_cpuhp_mem;
1854 
1855 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1856 	if (ret)
1857 		goto err_free_cpuhp_mem;
1858 
1859 	pr_debug("%s performance monitor hardware support registered\n",
1860 							pmu_ptr->pmu.name);
1861 
1862 	return 0;
1863 
1864 err_free_cpuhp_mem:
1865 	imc_common_cpuhp_mem_free(pmu_ptr);
1866 err_free_mem:
1867 	imc_common_mem_free(pmu_ptr);
1868 	return ret;
1869 }
1870