xref: /linux/arch/powerpc/perf/hv-24x7.c (revision 25d8d4eecace9de5a6a2193e4df1917afbdd3052)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hypervisor supplied "24x7" performance counter support
4  *
5  * Author: Cody P Schafer <cody@linux.vnet.ibm.com>
6  * Copyright 2014 IBM Corporation.
7  */
8 
9 #define pr_fmt(fmt) "hv-24x7: " fmt
10 
11 #include <linux/perf_event.h>
12 #include <linux/rbtree.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 
17 #include <asm/cputhreads.h>
18 #include <asm/firmware.h>
19 #include <asm/hvcall.h>
20 #include <asm/io.h>
21 #include <linux/byteorder/generic.h>
22 
23 #include <asm/rtas.h>
24 #include "hv-24x7.h"
25 #include "hv-24x7-catalog.h"
26 #include "hv-common.h"
27 
28 /* Version of the 24x7 hypervisor API that we should use in this machine. */
29 static int interface_version;
30 
31 /* Whether we have to aggregate result data for some domains. */
32 static bool aggregate_result_elements;
33 
34 static cpumask_t hv_24x7_cpumask;
35 
36 static bool domain_is_valid(unsigned domain)
37 {
38 	switch (domain) {
39 #define DOMAIN(n, v, x, c)		\
40 	case HV_PERF_DOMAIN_##n:	\
41 		/* fall through */
42 #include "hv-24x7-domains.h"
43 #undef DOMAIN
44 		return true;
45 	default:
46 		return false;
47 	}
48 }
49 
50 static bool is_physical_domain(unsigned domain)
51 {
52 	switch (domain) {
53 #define DOMAIN(n, v, x, c)		\
54 	case HV_PERF_DOMAIN_##n:	\
55 		return c;
56 #include "hv-24x7-domains.h"
57 #undef DOMAIN
58 	default:
59 		return false;
60 	}
61 }
62 
63 /*
64  * The Processor Module Information system parameter allows transferring
65  * of certain processor module information from the platform to the OS.
66  * Refer PAPR+ document to get parameter token value as '43'.
67  */
68 
69 #define PROCESSOR_MODULE_INFO   43
70 
71 static u32 phys_sockets;	/* Physical sockets */
72 static u32 phys_chipspersocket;	/* Physical chips per socket*/
73 static u32 phys_coresperchip; /* Physical cores per chip */
74 
75 /*
76  * read_24x7_sys_info()
77  * Retrieve the number of sockets and chips per socket and cores per
78  * chip details through the get-system-parameter rtas call.
79  */
80 void read_24x7_sys_info(void)
81 {
82 	int call_status, len, ntypes;
83 
84 	spin_lock(&rtas_data_buf_lock);
85 
86 	/*
87 	 * Making system parameter: chips and sockets and cores per chip
88 	 * default to 1.
89 	 */
90 	phys_sockets = 1;
91 	phys_chipspersocket = 1;
92 	phys_coresperchip = 1;
93 
94 	call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
95 				NULL,
96 				PROCESSOR_MODULE_INFO,
97 				__pa(rtas_data_buf),
98 				RTAS_DATA_BUF_SIZE);
99 
100 	if (call_status != 0) {
101 		pr_err("Error calling get-system-parameter %d\n",
102 		       call_status);
103 	} else {
104 		len = be16_to_cpup((__be16 *)&rtas_data_buf[0]);
105 		if (len < 8)
106 			goto out;
107 
108 		ntypes = be16_to_cpup((__be16 *)&rtas_data_buf[2]);
109 
110 		if (!ntypes)
111 			goto out;
112 
113 		phys_sockets = be16_to_cpup((__be16 *)&rtas_data_buf[4]);
114 		phys_chipspersocket = be16_to_cpup((__be16 *)&rtas_data_buf[6]);
115 		phys_coresperchip = be16_to_cpup((__be16 *)&rtas_data_buf[8]);
116 	}
117 
118 out:
119 	spin_unlock(&rtas_data_buf_lock);
120 }
121 
122 /* Domains for which more than one result element are returned for each event. */
123 static bool domain_needs_aggregation(unsigned int domain)
124 {
125 	return aggregate_result_elements &&
126 			(domain == HV_PERF_DOMAIN_PHYS_CORE ||
127 			 (domain >= HV_PERF_DOMAIN_VCPU_HOME_CORE &&
128 			  domain <= HV_PERF_DOMAIN_VCPU_REMOTE_NODE));
129 }
130 
131 static const char *domain_name(unsigned domain)
132 {
133 	if (!domain_is_valid(domain))
134 		return NULL;
135 
136 	switch (domain) {
137 	case HV_PERF_DOMAIN_PHYS_CHIP:		return "Physical Chip";
138 	case HV_PERF_DOMAIN_PHYS_CORE:		return "Physical Core";
139 	case HV_PERF_DOMAIN_VCPU_HOME_CORE:	return "VCPU Home Core";
140 	case HV_PERF_DOMAIN_VCPU_HOME_CHIP:	return "VCPU Home Chip";
141 	case HV_PERF_DOMAIN_VCPU_HOME_NODE:	return "VCPU Home Node";
142 	case HV_PERF_DOMAIN_VCPU_REMOTE_NODE:	return "VCPU Remote Node";
143 	}
144 
145 	WARN_ON_ONCE(domain);
146 	return NULL;
147 }
148 
149 static bool catalog_entry_domain_is_valid(unsigned domain)
150 {
151 	/* POWER8 doesn't support virtual domains. */
152 	if (interface_version == 1)
153 		return is_physical_domain(domain);
154 	else
155 		return domain_is_valid(domain);
156 }
157 
158 /*
159  * TODO: Merging events:
160  * - Think of the hcall as an interface to a 4d array of counters:
161  *   - x = domains
162  *   - y = indexes in the domain (core, chip, vcpu, node, etc)
163  *   - z = offset into the counter space
164  *   - w = lpars (guest vms, "logical partitions")
165  * - A single request is: x,y,y_last,z,z_last,w,w_last
166  *   - this means we can retrieve a rectangle of counters in y,z for a single x.
167  *
168  * - Things to consider (ignoring w):
169  *   - input  cost_per_request = 16
170  *   - output cost_per_result(ys,zs)  = 8 + 8 * ys + ys * zs
171  *   - limited number of requests per hcall (must fit into 4K bytes)
172  *     - 4k = 16 [buffer header] - 16 [request size] * request_count
173  *     - 255 requests per hcall
174  *   - sometimes it will be more efficient to read extra data and discard
175  */
176 
177 /*
178  * Example usage:
179  *  perf stat -e 'hv_24x7/domain=2,offset=8,vcpu=0,lpar=0xffffffff/'
180  */
181 
182 /* u3 0-6, one of HV_24X7_PERF_DOMAIN */
183 EVENT_DEFINE_RANGE_FORMAT(domain, config, 0, 3);
184 /* u16 */
185 EVENT_DEFINE_RANGE_FORMAT(core, config, 16, 31);
186 EVENT_DEFINE_RANGE_FORMAT(chip, config, 16, 31);
187 EVENT_DEFINE_RANGE_FORMAT(vcpu, config, 16, 31);
188 /* u32, see "data_offset" */
189 EVENT_DEFINE_RANGE_FORMAT(offset, config, 32, 63);
190 /* u16 */
191 EVENT_DEFINE_RANGE_FORMAT(lpar, config1, 0, 15);
192 
193 EVENT_DEFINE_RANGE(reserved1, config,   4, 15);
194 EVENT_DEFINE_RANGE(reserved2, config1, 16, 63);
195 EVENT_DEFINE_RANGE(reserved3, config2,  0, 63);
196 
197 static struct attribute *format_attrs[] = {
198 	&format_attr_domain.attr,
199 	&format_attr_offset.attr,
200 	&format_attr_core.attr,
201 	&format_attr_chip.attr,
202 	&format_attr_vcpu.attr,
203 	&format_attr_lpar.attr,
204 	NULL,
205 };
206 
207 static struct attribute_group format_group = {
208 	.name = "format",
209 	.attrs = format_attrs,
210 };
211 
212 static struct attribute_group event_group = {
213 	.name = "events",
214 	/* .attrs is set in init */
215 };
216 
217 static struct attribute_group event_desc_group = {
218 	.name = "event_descs",
219 	/* .attrs is set in init */
220 };
221 
222 static struct attribute_group event_long_desc_group = {
223 	.name = "event_long_descs",
224 	/* .attrs is set in init */
225 };
226 
227 static struct kmem_cache *hv_page_cache;
228 
229 DEFINE_PER_CPU(int, hv_24x7_txn_flags);
230 DEFINE_PER_CPU(int, hv_24x7_txn_err);
231 
232 struct hv_24x7_hw {
233 	struct perf_event *events[255];
234 };
235 
236 DEFINE_PER_CPU(struct hv_24x7_hw, hv_24x7_hw);
237 
238 /*
239  * request_buffer and result_buffer are not required to be 4k aligned,
240  * but are not allowed to cross any 4k boundary. Aligning them to 4k is
241  * the simplest way to ensure that.
242  */
243 #define H24x7_DATA_BUFFER_SIZE	4096
244 DEFINE_PER_CPU(char, hv_24x7_reqb[H24x7_DATA_BUFFER_SIZE]) __aligned(4096);
245 DEFINE_PER_CPU(char, hv_24x7_resb[H24x7_DATA_BUFFER_SIZE]) __aligned(4096);
246 
247 static unsigned int max_num_requests(int interface_version)
248 {
249 	return (H24x7_DATA_BUFFER_SIZE - sizeof(struct hv_24x7_request_buffer))
250 		/ H24x7_REQUEST_SIZE(interface_version);
251 }
252 
253 static char *event_name(struct hv_24x7_event_data *ev, int *len)
254 {
255 	*len = be16_to_cpu(ev->event_name_len) - 2;
256 	return (char *)ev->remainder;
257 }
258 
259 static char *event_desc(struct hv_24x7_event_data *ev, int *len)
260 {
261 	unsigned nl = be16_to_cpu(ev->event_name_len);
262 	__be16 *desc_len = (__be16 *)(ev->remainder + nl - 2);
263 
264 	*len = be16_to_cpu(*desc_len) - 2;
265 	return (char *)ev->remainder + nl;
266 }
267 
268 static char *event_long_desc(struct hv_24x7_event_data *ev, int *len)
269 {
270 	unsigned nl = be16_to_cpu(ev->event_name_len);
271 	__be16 *desc_len_ = (__be16 *)(ev->remainder + nl - 2);
272 	unsigned desc_len = be16_to_cpu(*desc_len_);
273 	__be16 *long_desc_len = (__be16 *)(ev->remainder + nl + desc_len - 2);
274 
275 	*len = be16_to_cpu(*long_desc_len) - 2;
276 	return (char *)ev->remainder + nl + desc_len;
277 }
278 
279 static bool event_fixed_portion_is_within(struct hv_24x7_event_data *ev,
280 					  void *end)
281 {
282 	void *start = ev;
283 
284 	return (start + offsetof(struct hv_24x7_event_data, remainder)) < end;
285 }
286 
287 /*
288  * Things we don't check:
289  *  - padding for desc, name, and long/detailed desc is required to be '\0'
290  *    bytes.
291  *
292  *  Return NULL if we pass end,
293  *  Otherwise return the address of the byte just following the event.
294  */
295 static void *event_end(struct hv_24x7_event_data *ev, void *end)
296 {
297 	void *start = ev;
298 	__be16 *dl_, *ldl_;
299 	unsigned dl, ldl;
300 	unsigned nl = be16_to_cpu(ev->event_name_len);
301 
302 	if (nl < 2) {
303 		pr_debug("%s: name length too short: %d", __func__, nl);
304 		return NULL;
305 	}
306 
307 	if (start + nl > end) {
308 		pr_debug("%s: start=%p + nl=%u > end=%p",
309 				__func__, start, nl, end);
310 		return NULL;
311 	}
312 
313 	dl_ = (__be16 *)(ev->remainder + nl - 2);
314 	if (!IS_ALIGNED((uintptr_t)dl_, 2))
315 		pr_warn("desc len not aligned %p", dl_);
316 	dl = be16_to_cpu(*dl_);
317 	if (dl < 2) {
318 		pr_debug("%s: desc len too short: %d", __func__, dl);
319 		return NULL;
320 	}
321 
322 	if (start + nl + dl > end) {
323 		pr_debug("%s: (start=%p + nl=%u + dl=%u)=%p > end=%p",
324 				__func__, start, nl, dl, start + nl + dl, end);
325 		return NULL;
326 	}
327 
328 	ldl_ = (__be16 *)(ev->remainder + nl + dl - 2);
329 	if (!IS_ALIGNED((uintptr_t)ldl_, 2))
330 		pr_warn("long desc len not aligned %p", ldl_);
331 	ldl = be16_to_cpu(*ldl_);
332 	if (ldl < 2) {
333 		pr_debug("%s: long desc len too short (ldl=%u)",
334 				__func__, ldl);
335 		return NULL;
336 	}
337 
338 	if (start + nl + dl + ldl > end) {
339 		pr_debug("%s: start=%p + nl=%u + dl=%u + ldl=%u > end=%p",
340 				__func__, start, nl, dl, ldl, end);
341 		return NULL;
342 	}
343 
344 	return start + nl + dl + ldl;
345 }
346 
347 static long h_get_24x7_catalog_page_(unsigned long phys_4096,
348 				     unsigned long version, unsigned long index)
349 {
350 	pr_devel("h_get_24x7_catalog_page(0x%lx, %lu, %lu)",
351 			phys_4096, version, index);
352 
353 	WARN_ON(!IS_ALIGNED(phys_4096, 4096));
354 
355 	return plpar_hcall_norets(H_GET_24X7_CATALOG_PAGE,
356 			phys_4096, version, index);
357 }
358 
359 static long h_get_24x7_catalog_page(char page[], u64 version, u32 index)
360 {
361 	return h_get_24x7_catalog_page_(virt_to_phys(page),
362 					version, index);
363 }
364 
365 /*
366  * Each event we find in the catalog, will have a sysfs entry. Format the
367  * data for this sysfs entry based on the event's domain.
368  *
369  * Events belonging to the Chip domain can only be monitored in that domain.
370  * i.e the domain for these events is a fixed/knwon value.
371  *
372  * Events belonging to the Core domain can be monitored either in the physical
373  * core or in one of the virtual CPU domains. So the domain value for these
374  * events must be specified by the user (i.e is a required parameter). Format
375  * the Core events with 'domain=?' so the perf-tool can error check required
376  * parameters.
377  *
378  * NOTE: For the Core domain events, rather than making domain a required
379  *	 parameter we could default it to PHYS_CORE and allowe users to
380  *	 override the domain to one of the VCPU domains.
381  *
382  *	 However, this can make the interface a little inconsistent.
383  *
384  *	 If we set domain=2 (PHYS_CHIP) and allow user to override this field
385  *	 the user may be tempted to also modify the "offset=x" field in which
386  *	 can lead to confusing usage. Consider the HPM_PCYC (offset=0x18) and
387  *	 HPM_INST (offset=0x20) events. With:
388  *
389  *		perf stat -e hv_24x7/HPM_PCYC,offset=0x20/
390  *
391  *	we end up monitoring HPM_INST, while the command line has HPM_PCYC.
392  *
393  *	By not assigning a default value to the domain for the Core events,
394  *	we can have simple guidelines:
395  *
396  *		- Specifying values for parameters with "=?" is required.
397  *
398  *		- Specifying (i.e overriding) values for other parameters
399  *		  is undefined.
400  */
401 static char *event_fmt(struct hv_24x7_event_data *event, unsigned domain)
402 {
403 	const char *sindex;
404 	const char *lpar;
405 	const char *domain_str;
406 	char buf[8];
407 
408 	switch (domain) {
409 	case HV_PERF_DOMAIN_PHYS_CHIP:
410 		snprintf(buf, sizeof(buf), "%d", domain);
411 		domain_str = buf;
412 		lpar = "0x0";
413 		sindex = "chip";
414 		break;
415 	case HV_PERF_DOMAIN_PHYS_CORE:
416 		domain_str = "?";
417 		lpar = "0x0";
418 		sindex = "core";
419 		break;
420 	default:
421 		domain_str = "?";
422 		lpar = "?";
423 		sindex = "vcpu";
424 	}
425 
426 	return kasprintf(GFP_KERNEL,
427 			"domain=%s,offset=0x%x,%s=?,lpar=%s",
428 			domain_str,
429 			be16_to_cpu(event->event_counter_offs) +
430 				be16_to_cpu(event->event_group_record_offs),
431 			sindex,
432 			lpar);
433 }
434 
435 /* Avoid trusting fw to NUL terminate strings */
436 static char *memdup_to_str(char *maybe_str, int max_len, gfp_t gfp)
437 {
438 	return kasprintf(gfp, "%.*s", max_len, maybe_str);
439 }
440 
441 static ssize_t device_show_string(struct device *dev,
442 		struct device_attribute *attr, char *buf)
443 {
444 	struct dev_ext_attribute *d;
445 
446 	d = container_of(attr, struct dev_ext_attribute, attr);
447 
448 	return sprintf(buf, "%s\n", (char *)d->var);
449 }
450 
451 static ssize_t cpumask_show(struct device *dev,
452 			    struct device_attribute *attr, char *buf)
453 {
454 	return cpumap_print_to_pagebuf(true, buf, &hv_24x7_cpumask);
455 }
456 
457 static ssize_t sockets_show(struct device *dev,
458 			    struct device_attribute *attr, char *buf)
459 {
460 	return sprintf(buf, "%d\n", phys_sockets);
461 }
462 
463 static ssize_t chipspersocket_show(struct device *dev,
464 				   struct device_attribute *attr, char *buf)
465 {
466 	return sprintf(buf, "%d\n", phys_chipspersocket);
467 }
468 
469 static ssize_t coresperchip_show(struct device *dev,
470 				 struct device_attribute *attr, char *buf)
471 {
472 	return sprintf(buf, "%d\n", phys_coresperchip);
473 }
474 
475 static struct attribute *device_str_attr_create_(char *name, char *str)
476 {
477 	struct dev_ext_attribute *attr = kzalloc(sizeof(*attr), GFP_KERNEL);
478 
479 	if (!attr)
480 		return NULL;
481 
482 	sysfs_attr_init(&attr->attr.attr);
483 
484 	attr->var = str;
485 	attr->attr.attr.name = name;
486 	attr->attr.attr.mode = 0444;
487 	attr->attr.show = device_show_string;
488 
489 	return &attr->attr.attr;
490 }
491 
492 /*
493  * Allocate and initialize strings representing event attributes.
494  *
495  * NOTE: The strings allocated here are never destroyed and continue to
496  *	 exist till shutdown. This is to allow us to create as many events
497  *	 from the catalog as possible, even if we encounter errors with some.
498  *	 In case of changes to error paths in future, these may need to be
499  *	 freed by the caller.
500  */
501 static struct attribute *device_str_attr_create(char *name, int name_max,
502 						int name_nonce,
503 						char *str, size_t str_max)
504 {
505 	char *n;
506 	char *s = memdup_to_str(str, str_max, GFP_KERNEL);
507 	struct attribute *a;
508 
509 	if (!s)
510 		return NULL;
511 
512 	if (!name_nonce)
513 		n = kasprintf(GFP_KERNEL, "%.*s", name_max, name);
514 	else
515 		n = kasprintf(GFP_KERNEL, "%.*s__%d", name_max, name,
516 					name_nonce);
517 	if (!n)
518 		goto out_s;
519 
520 	a = device_str_attr_create_(n, s);
521 	if (!a)
522 		goto out_n;
523 
524 	return a;
525 out_n:
526 	kfree(n);
527 out_s:
528 	kfree(s);
529 	return NULL;
530 }
531 
532 static struct attribute *event_to_attr(unsigned ix,
533 				       struct hv_24x7_event_data *event,
534 				       unsigned domain,
535 				       int nonce)
536 {
537 	int event_name_len;
538 	char *ev_name, *a_ev_name, *val;
539 	struct attribute *attr;
540 
541 	if (!domain_is_valid(domain)) {
542 		pr_warn("catalog event %u has invalid domain %u\n",
543 				ix, domain);
544 		return NULL;
545 	}
546 
547 	val = event_fmt(event, domain);
548 	if (!val)
549 		return NULL;
550 
551 	ev_name = event_name(event, &event_name_len);
552 	if (!nonce)
553 		a_ev_name = kasprintf(GFP_KERNEL, "%.*s",
554 				(int)event_name_len, ev_name);
555 	else
556 		a_ev_name = kasprintf(GFP_KERNEL, "%.*s__%d",
557 				(int)event_name_len, ev_name, nonce);
558 
559 	if (!a_ev_name)
560 		goto out_val;
561 
562 	attr = device_str_attr_create_(a_ev_name, val);
563 	if (!attr)
564 		goto out_name;
565 
566 	return attr;
567 out_name:
568 	kfree(a_ev_name);
569 out_val:
570 	kfree(val);
571 	return NULL;
572 }
573 
574 static struct attribute *event_to_desc_attr(struct hv_24x7_event_data *event,
575 					    int nonce)
576 {
577 	int nl, dl;
578 	char *name = event_name(event, &nl);
579 	char *desc = event_desc(event, &dl);
580 
581 	/* If there isn't a description, don't create the sysfs file */
582 	if (!dl)
583 		return NULL;
584 
585 	return device_str_attr_create(name, nl, nonce, desc, dl);
586 }
587 
588 static struct attribute *
589 event_to_long_desc_attr(struct hv_24x7_event_data *event, int nonce)
590 {
591 	int nl, dl;
592 	char *name = event_name(event, &nl);
593 	char *desc = event_long_desc(event, &dl);
594 
595 	/* If there isn't a description, don't create the sysfs file */
596 	if (!dl)
597 		return NULL;
598 
599 	return device_str_attr_create(name, nl, nonce, desc, dl);
600 }
601 
602 static int event_data_to_attrs(unsigned ix, struct attribute **attrs,
603 				   struct hv_24x7_event_data *event, int nonce)
604 {
605 	*attrs = event_to_attr(ix, event, event->domain, nonce);
606 	if (!*attrs)
607 		return -1;
608 
609 	return 0;
610 }
611 
612 /* */
613 struct event_uniq {
614 	struct rb_node node;
615 	const char *name;
616 	int nl;
617 	unsigned ct;
618 	unsigned domain;
619 };
620 
621 static int memord(const void *d1, size_t s1, const void *d2, size_t s2)
622 {
623 	if (s1 < s2)
624 		return 1;
625 	if (s1 > s2)
626 		return -1;
627 
628 	return memcmp(d1, d2, s1);
629 }
630 
631 static int ev_uniq_ord(const void *v1, size_t s1, unsigned d1, const void *v2,
632 		       size_t s2, unsigned d2)
633 {
634 	int r = memord(v1, s1, v2, s2);
635 
636 	if (r)
637 		return r;
638 	if (d1 > d2)
639 		return 1;
640 	if (d2 > d1)
641 		return -1;
642 	return 0;
643 }
644 
645 static int event_uniq_add(struct rb_root *root, const char *name, int nl,
646 			  unsigned domain)
647 {
648 	struct rb_node **new = &(root->rb_node), *parent = NULL;
649 	struct event_uniq *data;
650 
651 	/* Figure out where to put new node */
652 	while (*new) {
653 		struct event_uniq *it;
654 		int result;
655 
656 		it = rb_entry(*new, struct event_uniq, node);
657 		result = ev_uniq_ord(name, nl, domain, it->name, it->nl,
658 					it->domain);
659 
660 		parent = *new;
661 		if (result < 0)
662 			new = &((*new)->rb_left);
663 		else if (result > 0)
664 			new = &((*new)->rb_right);
665 		else {
666 			it->ct++;
667 			pr_info("found a duplicate event %.*s, ct=%u\n", nl,
668 						name, it->ct);
669 			return it->ct;
670 		}
671 	}
672 
673 	data = kmalloc(sizeof(*data), GFP_KERNEL);
674 	if (!data)
675 		return -ENOMEM;
676 
677 	*data = (struct event_uniq) {
678 		.name = name,
679 		.nl = nl,
680 		.ct = 0,
681 		.domain = domain,
682 	};
683 
684 	/* Add new node and rebalance tree. */
685 	rb_link_node(&data->node, parent, new);
686 	rb_insert_color(&data->node, root);
687 
688 	/* data->ct */
689 	return 0;
690 }
691 
692 static void event_uniq_destroy(struct rb_root *root)
693 {
694 	/*
695 	 * the strings we point to are in the giant block of memory filled by
696 	 * the catalog, and are freed separately.
697 	 */
698 	struct event_uniq *pos, *n;
699 
700 	rbtree_postorder_for_each_entry_safe(pos, n, root, node)
701 		kfree(pos);
702 }
703 
704 
705 /*
706  * ensure the event structure's sizes are self consistent and don't cause us to
707  * read outside of the event
708  *
709  * On success, return the event length in bytes.
710  * Otherwise, return -1 (and print as appropriate).
711  */
712 static ssize_t catalog_event_len_validate(struct hv_24x7_event_data *event,
713 					  size_t event_idx,
714 					  size_t event_data_bytes,
715 					  size_t event_entry_count,
716 					  size_t offset, void *end)
717 {
718 	ssize_t ev_len;
719 	void *ev_end, *calc_ev_end;
720 
721 	if (offset >= event_data_bytes)
722 		return -1;
723 
724 	if (event_idx >= event_entry_count) {
725 		pr_devel("catalog event data has %zu bytes of padding after last event\n",
726 				event_data_bytes - offset);
727 		return -1;
728 	}
729 
730 	if (!event_fixed_portion_is_within(event, end)) {
731 		pr_warn("event %zu fixed portion is not within range\n",
732 				event_idx);
733 		return -1;
734 	}
735 
736 	ev_len = be16_to_cpu(event->length);
737 
738 	if (ev_len % 16)
739 		pr_info("event %zu has length %zu not divisible by 16: event=%pK\n",
740 				event_idx, ev_len, event);
741 
742 	ev_end = (__u8 *)event + ev_len;
743 	if (ev_end > end) {
744 		pr_warn("event %zu has .length=%zu, ends after buffer end: ev_end=%pK > end=%pK, offset=%zu\n",
745 				event_idx, ev_len, ev_end, end,
746 				offset);
747 		return -1;
748 	}
749 
750 	calc_ev_end = event_end(event, end);
751 	if (!calc_ev_end) {
752 		pr_warn("event %zu has a calculated length which exceeds buffer length %zu: event=%pK end=%pK, offset=%zu\n",
753 			event_idx, event_data_bytes, event, end,
754 			offset);
755 		return -1;
756 	}
757 
758 	if (calc_ev_end > ev_end) {
759 		pr_warn("event %zu exceeds it's own length: event=%pK, end=%pK, offset=%zu, calc_ev_end=%pK\n",
760 			event_idx, event, ev_end, offset, calc_ev_end);
761 		return -1;
762 	}
763 
764 	return ev_len;
765 }
766 
767 #define MAX_4K (SIZE_MAX / 4096)
768 
769 static int create_events_from_catalog(struct attribute ***events_,
770 				      struct attribute ***event_descs_,
771 				      struct attribute ***event_long_descs_)
772 {
773 	long hret;
774 	size_t catalog_len, catalog_page_len, event_entry_count,
775 	       event_data_len, event_data_offs,
776 	       event_data_bytes, junk_events, event_idx, event_attr_ct, i,
777 	       attr_max, event_idx_last, desc_ct, long_desc_ct;
778 	ssize_t ct, ev_len;
779 	uint64_t catalog_version_num;
780 	struct attribute **events, **event_descs, **event_long_descs;
781 	struct hv_24x7_catalog_page_0 *page_0 =
782 		kmem_cache_alloc(hv_page_cache, GFP_KERNEL);
783 	void *page = page_0;
784 	void *event_data, *end;
785 	struct hv_24x7_event_data *event;
786 	struct rb_root ev_uniq = RB_ROOT;
787 	int ret = 0;
788 
789 	if (!page) {
790 		ret = -ENOMEM;
791 		goto e_out;
792 	}
793 
794 	hret = h_get_24x7_catalog_page(page, 0, 0);
795 	if (hret) {
796 		ret = -EIO;
797 		goto e_free;
798 	}
799 
800 	catalog_version_num = be64_to_cpu(page_0->version);
801 	catalog_page_len = be32_to_cpu(page_0->length);
802 
803 	if (MAX_4K < catalog_page_len) {
804 		pr_err("invalid page count: %zu\n", catalog_page_len);
805 		ret = -EIO;
806 		goto e_free;
807 	}
808 
809 	catalog_len = catalog_page_len * 4096;
810 
811 	event_entry_count = be16_to_cpu(page_0->event_entry_count);
812 	event_data_offs   = be16_to_cpu(page_0->event_data_offs);
813 	event_data_len    = be16_to_cpu(page_0->event_data_len);
814 
815 	pr_devel("cv %llu cl %zu eec %zu edo %zu edl %zu\n",
816 			catalog_version_num, catalog_len,
817 			event_entry_count, event_data_offs, event_data_len);
818 
819 	if ((MAX_4K < event_data_len)
820 			|| (MAX_4K < event_data_offs)
821 			|| (MAX_4K - event_data_offs < event_data_len)) {
822 		pr_err("invalid event data offs %zu and/or len %zu\n",
823 				event_data_offs, event_data_len);
824 		ret = -EIO;
825 		goto e_free;
826 	}
827 
828 	if ((event_data_offs + event_data_len) > catalog_page_len) {
829 		pr_err("event data %zu-%zu does not fit inside catalog 0-%zu\n",
830 				event_data_offs,
831 				event_data_offs + event_data_len,
832 				catalog_page_len);
833 		ret = -EIO;
834 		goto e_free;
835 	}
836 
837 	if (SIZE_MAX - 1 < event_entry_count) {
838 		pr_err("event_entry_count %zu is invalid\n", event_entry_count);
839 		ret = -EIO;
840 		goto e_free;
841 	}
842 
843 	event_data_bytes = event_data_len * 4096;
844 
845 	/*
846 	 * event data can span several pages, events can cross between these
847 	 * pages. Use vmalloc to make this easier.
848 	 */
849 	event_data = vmalloc(event_data_bytes);
850 	if (!event_data) {
851 		pr_err("could not allocate event data\n");
852 		ret = -ENOMEM;
853 		goto e_free;
854 	}
855 
856 	end = event_data + event_data_bytes;
857 
858 	/*
859 	 * using vmalloc_to_phys() like this only works if PAGE_SIZE is
860 	 * divisible by 4096
861 	 */
862 	BUILD_BUG_ON(PAGE_SIZE % 4096);
863 
864 	for (i = 0; i < event_data_len; i++) {
865 		hret = h_get_24x7_catalog_page_(
866 				vmalloc_to_phys(event_data + i * 4096),
867 				catalog_version_num,
868 				i + event_data_offs);
869 		if (hret) {
870 			pr_err("Failed to get event data in page %zu: rc=%ld\n",
871 			       i + event_data_offs, hret);
872 			ret = -EIO;
873 			goto e_event_data;
874 		}
875 	}
876 
877 	/*
878 	 * scan the catalog to determine the number of attributes we need, and
879 	 * verify it at the same time.
880 	 */
881 	for (junk_events = 0, event = event_data, event_idx = 0, attr_max = 0;
882 	     ;
883 	     event_idx++, event = (void *)event + ev_len) {
884 		size_t offset = (void *)event - (void *)event_data;
885 		char *name;
886 		int nl;
887 
888 		ev_len = catalog_event_len_validate(event, event_idx,
889 						    event_data_bytes,
890 						    event_entry_count,
891 						    offset, end);
892 		if (ev_len < 0)
893 			break;
894 
895 		name = event_name(event, &nl);
896 
897 		if (event->event_group_record_len == 0) {
898 			pr_devel("invalid event %zu (%.*s): group_record_len == 0, skipping\n",
899 					event_idx, nl, name);
900 			junk_events++;
901 			continue;
902 		}
903 
904 		if (!catalog_entry_domain_is_valid(event->domain)) {
905 			pr_info("event %zu (%.*s) has invalid domain %d\n",
906 					event_idx, nl, name, event->domain);
907 			junk_events++;
908 			continue;
909 		}
910 
911 		attr_max++;
912 	}
913 
914 	event_idx_last = event_idx;
915 	if (event_idx_last != event_entry_count)
916 		pr_warn("event buffer ended before listed # of events were parsed (got %zu, wanted %zu, junk %zu)\n",
917 				event_idx_last, event_entry_count, junk_events);
918 
919 	events = kmalloc_array(attr_max + 1, sizeof(*events), GFP_KERNEL);
920 	if (!events) {
921 		ret = -ENOMEM;
922 		goto e_event_data;
923 	}
924 
925 	event_descs = kmalloc_array(event_idx + 1, sizeof(*event_descs),
926 				GFP_KERNEL);
927 	if (!event_descs) {
928 		ret = -ENOMEM;
929 		goto e_event_attrs;
930 	}
931 
932 	event_long_descs = kmalloc_array(event_idx + 1,
933 			sizeof(*event_long_descs), GFP_KERNEL);
934 	if (!event_long_descs) {
935 		ret = -ENOMEM;
936 		goto e_event_descs;
937 	}
938 
939 	/* Iterate over the catalog filling in the attribute vector */
940 	for (junk_events = 0, event_attr_ct = 0, desc_ct = 0, long_desc_ct = 0,
941 				event = event_data, event_idx = 0;
942 			event_idx < event_idx_last;
943 			event_idx++, ev_len = be16_to_cpu(event->length),
944 				event = (void *)event + ev_len) {
945 		char *name;
946 		int nl;
947 		int nonce;
948 		/*
949 		 * these are the only "bad" events that are intermixed and that
950 		 * we can ignore without issue. make sure to skip them here
951 		 */
952 		if (event->event_group_record_len == 0)
953 			continue;
954 		if (!catalog_entry_domain_is_valid(event->domain))
955 			continue;
956 
957 		name  = event_name(event, &nl);
958 		nonce = event_uniq_add(&ev_uniq, name, nl, event->domain);
959 		ct    = event_data_to_attrs(event_idx, events + event_attr_ct,
960 					    event, nonce);
961 		if (ct < 0) {
962 			pr_warn("event %zu (%.*s) creation failure, skipping\n",
963 				event_idx, nl, name);
964 			junk_events++;
965 		} else {
966 			event_attr_ct++;
967 			event_descs[desc_ct] = event_to_desc_attr(event, nonce);
968 			if (event_descs[desc_ct])
969 				desc_ct++;
970 			event_long_descs[long_desc_ct] =
971 					event_to_long_desc_attr(event, nonce);
972 			if (event_long_descs[long_desc_ct])
973 				long_desc_ct++;
974 		}
975 	}
976 
977 	pr_info("read %zu catalog entries, created %zu event attrs (%zu failures), %zu descs\n",
978 			event_idx, event_attr_ct, junk_events, desc_ct);
979 
980 	events[event_attr_ct] = NULL;
981 	event_descs[desc_ct] = NULL;
982 	event_long_descs[long_desc_ct] = NULL;
983 
984 	event_uniq_destroy(&ev_uniq);
985 	vfree(event_data);
986 	kmem_cache_free(hv_page_cache, page);
987 
988 	*events_ = events;
989 	*event_descs_ = event_descs;
990 	*event_long_descs_ = event_long_descs;
991 	return 0;
992 
993 e_event_descs:
994 	kfree(event_descs);
995 e_event_attrs:
996 	kfree(events);
997 e_event_data:
998 	vfree(event_data);
999 e_free:
1000 	kmem_cache_free(hv_page_cache, page);
1001 e_out:
1002 	*events_ = NULL;
1003 	*event_descs_ = NULL;
1004 	*event_long_descs_ = NULL;
1005 	return ret;
1006 }
1007 
1008 static ssize_t catalog_read(struct file *filp, struct kobject *kobj,
1009 			    struct bin_attribute *bin_attr, char *buf,
1010 			    loff_t offset, size_t count)
1011 {
1012 	long hret;
1013 	ssize_t ret = 0;
1014 	size_t catalog_len = 0, catalog_page_len = 0;
1015 	loff_t page_offset = 0;
1016 	loff_t offset_in_page;
1017 	size_t copy_len;
1018 	uint64_t catalog_version_num = 0;
1019 	void *page = kmem_cache_alloc(hv_page_cache, GFP_USER);
1020 	struct hv_24x7_catalog_page_0 *page_0 = page;
1021 
1022 	if (!page)
1023 		return -ENOMEM;
1024 
1025 	hret = h_get_24x7_catalog_page(page, 0, 0);
1026 	if (hret) {
1027 		ret = -EIO;
1028 		goto e_free;
1029 	}
1030 
1031 	catalog_version_num = be64_to_cpu(page_0->version);
1032 	catalog_page_len = be32_to_cpu(page_0->length);
1033 	catalog_len = catalog_page_len * 4096;
1034 
1035 	page_offset = offset / 4096;
1036 	offset_in_page = offset % 4096;
1037 
1038 	if (page_offset >= catalog_page_len)
1039 		goto e_free;
1040 
1041 	if (page_offset != 0) {
1042 		hret = h_get_24x7_catalog_page(page, catalog_version_num,
1043 					       page_offset);
1044 		if (hret) {
1045 			ret = -EIO;
1046 			goto e_free;
1047 		}
1048 	}
1049 
1050 	copy_len = 4096 - offset_in_page;
1051 	if (copy_len > count)
1052 		copy_len = count;
1053 
1054 	memcpy(buf, page+offset_in_page, copy_len);
1055 	ret = copy_len;
1056 
1057 e_free:
1058 	if (hret)
1059 		pr_err("h_get_24x7_catalog_page(ver=%lld, page=%lld) failed:"
1060 		       " rc=%ld\n",
1061 		       catalog_version_num, page_offset, hret);
1062 	kmem_cache_free(hv_page_cache, page);
1063 
1064 	pr_devel("catalog_read: offset=%lld(%lld) count=%zu "
1065 			"catalog_len=%zu(%zu) => %zd\n", offset, page_offset,
1066 			count, catalog_len, catalog_page_len, ret);
1067 
1068 	return ret;
1069 }
1070 
1071 static ssize_t domains_show(struct device *dev, struct device_attribute *attr,
1072 			    char *page)
1073 {
1074 	int d, n, count = 0;
1075 	const char *str;
1076 
1077 	for (d = 0; d < HV_PERF_DOMAIN_MAX; d++) {
1078 		str = domain_name(d);
1079 		if (!str)
1080 			continue;
1081 
1082 		n = sprintf(page, "%d: %s\n", d, str);
1083 		if (n < 0)
1084 			break;
1085 
1086 		count += n;
1087 		page += n;
1088 	}
1089 	return count;
1090 }
1091 
1092 #define PAGE_0_ATTR(_name, _fmt, _expr)				\
1093 static ssize_t _name##_show(struct device *dev,			\
1094 			    struct device_attribute *dev_attr,	\
1095 			    char *buf)				\
1096 {								\
1097 	long hret;						\
1098 	ssize_t ret = 0;					\
1099 	void *page = kmem_cache_alloc(hv_page_cache, GFP_USER);	\
1100 	struct hv_24x7_catalog_page_0 *page_0 = page;		\
1101 	if (!page)						\
1102 		return -ENOMEM;					\
1103 	hret = h_get_24x7_catalog_page(page, 0, 0);		\
1104 	if (hret) {						\
1105 		ret = -EIO;					\
1106 		goto e_free;					\
1107 	}							\
1108 	ret = sprintf(buf, _fmt, _expr);			\
1109 e_free:								\
1110 	kmem_cache_free(hv_page_cache, page);			\
1111 	return ret;						\
1112 }								\
1113 static DEVICE_ATTR_RO(_name)
1114 
1115 PAGE_0_ATTR(catalog_version, "%lld\n",
1116 		(unsigned long long)be64_to_cpu(page_0->version));
1117 PAGE_0_ATTR(catalog_len, "%lld\n",
1118 		(unsigned long long)be32_to_cpu(page_0->length) * 4096);
1119 static BIN_ATTR_RO(catalog, 0/* real length varies */);
1120 static DEVICE_ATTR_RO(domains);
1121 static DEVICE_ATTR_RO(sockets);
1122 static DEVICE_ATTR_RO(chipspersocket);
1123 static DEVICE_ATTR_RO(coresperchip);
1124 static DEVICE_ATTR_RO(cpumask);
1125 
1126 static struct bin_attribute *if_bin_attrs[] = {
1127 	&bin_attr_catalog,
1128 	NULL,
1129 };
1130 
1131 static struct attribute *if_attrs[] = {
1132 	&dev_attr_catalog_len.attr,
1133 	&dev_attr_catalog_version.attr,
1134 	&dev_attr_domains.attr,
1135 	&dev_attr_sockets.attr,
1136 	&dev_attr_chipspersocket.attr,
1137 	&dev_attr_coresperchip.attr,
1138 	&dev_attr_cpumask.attr,
1139 	NULL,
1140 };
1141 
1142 static struct attribute_group if_group = {
1143 	.name = "interface",
1144 	.bin_attrs = if_bin_attrs,
1145 	.attrs = if_attrs,
1146 };
1147 
1148 static const struct attribute_group *attr_groups[] = {
1149 	&format_group,
1150 	&event_group,
1151 	&event_desc_group,
1152 	&event_long_desc_group,
1153 	&if_group,
1154 	NULL,
1155 };
1156 
1157 /*
1158  * Start the process for a new H_GET_24x7_DATA hcall.
1159  */
1160 static void init_24x7_request(struct hv_24x7_request_buffer *request_buffer,
1161 			      struct hv_24x7_data_result_buffer *result_buffer)
1162 {
1163 
1164 	memset(request_buffer, 0, H24x7_DATA_BUFFER_SIZE);
1165 	memset(result_buffer, 0, H24x7_DATA_BUFFER_SIZE);
1166 
1167 	request_buffer->interface_version = interface_version;
1168 	/* memset above set request_buffer->num_requests to 0 */
1169 }
1170 
1171 /*
1172  * Commit (i.e perform) the H_GET_24x7_DATA hcall using the data collected
1173  * by 'init_24x7_request()' and 'add_event_to_24x7_request()'.
1174  */
1175 static int make_24x7_request(struct hv_24x7_request_buffer *request_buffer,
1176 			     struct hv_24x7_data_result_buffer *result_buffer)
1177 {
1178 	long ret;
1179 
1180 	/*
1181 	 * NOTE: Due to variable number of array elements in request and
1182 	 *	 result buffer(s), sizeof() is not reliable. Use the actual
1183 	 *	 allocated buffer size, H24x7_DATA_BUFFER_SIZE.
1184 	 */
1185 	ret = plpar_hcall_norets(H_GET_24X7_DATA,
1186 			virt_to_phys(request_buffer), H24x7_DATA_BUFFER_SIZE,
1187 			virt_to_phys(result_buffer),  H24x7_DATA_BUFFER_SIZE);
1188 
1189 	if (ret) {
1190 		struct hv_24x7_request *req;
1191 
1192 		req = request_buffer->requests;
1193 		pr_notice_ratelimited("hcall failed: [%d %#x %#x %d] => ret 0x%lx (%ld) detail=0x%x failing ix=%x\n",
1194 				      req->performance_domain, req->data_offset,
1195 				      req->starting_ix, req->starting_lpar_ix,
1196 				      ret, ret, result_buffer->detailed_rc,
1197 				      result_buffer->failing_request_ix);
1198 		return -EIO;
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * Add the given @event to the next slot in the 24x7 request_buffer.
1206  *
1207  * Note that H_GET_24X7_DATA hcall allows reading several counters'
1208  * values in a single HCALL. We expect the caller to add events to the
1209  * request buffer one by one, make the HCALL and process the results.
1210  */
1211 static int add_event_to_24x7_request(struct perf_event *event,
1212 				struct hv_24x7_request_buffer *request_buffer)
1213 {
1214 	u16 idx;
1215 	int i;
1216 	size_t req_size;
1217 	struct hv_24x7_request *req;
1218 
1219 	if (request_buffer->num_requests >=
1220 	    max_num_requests(request_buffer->interface_version)) {
1221 		pr_devel("Too many requests for 24x7 HCALL %d\n",
1222 				request_buffer->num_requests);
1223 		return -EINVAL;
1224 	}
1225 
1226 	switch (event_get_domain(event)) {
1227 	case HV_PERF_DOMAIN_PHYS_CHIP:
1228 		idx = event_get_chip(event);
1229 		break;
1230 	case HV_PERF_DOMAIN_PHYS_CORE:
1231 		idx = event_get_core(event);
1232 		break;
1233 	default:
1234 		idx = event_get_vcpu(event);
1235 	}
1236 
1237 	req_size = H24x7_REQUEST_SIZE(request_buffer->interface_version);
1238 
1239 	i = request_buffer->num_requests++;
1240 	req = (void *) request_buffer->requests + i * req_size;
1241 
1242 	req->performance_domain = event_get_domain(event);
1243 	req->data_size = cpu_to_be16(8);
1244 	req->data_offset = cpu_to_be32(event_get_offset(event));
1245 	req->starting_lpar_ix = cpu_to_be16(event_get_lpar(event));
1246 	req->max_num_lpars = cpu_to_be16(1);
1247 	req->starting_ix = cpu_to_be16(idx);
1248 	req->max_ix = cpu_to_be16(1);
1249 
1250 	if (request_buffer->interface_version > 1) {
1251 		if (domain_needs_aggregation(req->performance_domain))
1252 			req->max_num_thread_groups = -1;
1253 		else if (req->performance_domain != HV_PERF_DOMAIN_PHYS_CHIP) {
1254 			req->starting_thread_group_ix = idx % 2;
1255 			req->max_num_thread_groups = 1;
1256 		}
1257 	}
1258 
1259 	return 0;
1260 }
1261 
1262 /**
1263  * get_count_from_result - get event count from all result elements in result
1264  *
1265  * If the event corresponding to this result needs aggregation of the result
1266  * element values, then this function does that.
1267  *
1268  * @event:	Event associated with @res.
1269  * @resb:	Result buffer containing @res.
1270  * @res:	Result to work on.
1271  * @countp:	Output variable containing the event count.
1272  * @next:	Optional output variable pointing to the next result in @resb.
1273  */
1274 static int get_count_from_result(struct perf_event *event,
1275 				 struct hv_24x7_data_result_buffer *resb,
1276 				 struct hv_24x7_result *res, u64 *countp,
1277 				 struct hv_24x7_result **next)
1278 {
1279 	u16 num_elements = be16_to_cpu(res->num_elements_returned);
1280 	u16 data_size = be16_to_cpu(res->result_element_data_size);
1281 	unsigned int data_offset;
1282 	void *element_data;
1283 	int i;
1284 	u64 count;
1285 
1286 	/*
1287 	 * We can bail out early if the result is empty.
1288 	 */
1289 	if (!num_elements) {
1290 		pr_debug("Result of request %hhu is empty, nothing to do\n",
1291 			 res->result_ix);
1292 
1293 		if (next)
1294 			*next = (struct hv_24x7_result *) res->elements;
1295 
1296 		return -ENODATA;
1297 	}
1298 
1299 	/*
1300 	 * Since we always specify 1 as the maximum for the smallest resource
1301 	 * we're requesting, there should to be only one element per result.
1302 	 * Except when an event needs aggregation, in which case there are more.
1303 	 */
1304 	if (num_elements != 1 &&
1305 	    !domain_needs_aggregation(event_get_domain(event))) {
1306 		pr_err("Error: result of request %hhu has %hu elements\n",
1307 		       res->result_ix, num_elements);
1308 
1309 		return -EIO;
1310 	}
1311 
1312 	if (data_size != sizeof(u64)) {
1313 		pr_debug("Error: result of request %hhu has data of %hu bytes\n",
1314 			 res->result_ix, data_size);
1315 
1316 		return -ENOTSUPP;
1317 	}
1318 
1319 	if (resb->interface_version == 1)
1320 		data_offset = offsetof(struct hv_24x7_result_element_v1,
1321 				       element_data);
1322 	else
1323 		data_offset = offsetof(struct hv_24x7_result_element_v2,
1324 				       element_data);
1325 
1326 	/* Go through the result elements in the result. */
1327 	for (i = count = 0, element_data = res->elements + data_offset;
1328 	     i < num_elements;
1329 	     i++, element_data += data_size + data_offset)
1330 		count += be64_to_cpu(*((u64 *) element_data));
1331 
1332 	*countp = count;
1333 
1334 	/* The next result is after the last result element. */
1335 	if (next)
1336 		*next = element_data - data_offset;
1337 
1338 	return 0;
1339 }
1340 
1341 static int single_24x7_request(struct perf_event *event, u64 *count)
1342 {
1343 	int ret;
1344 	struct hv_24x7_request_buffer *request_buffer;
1345 	struct hv_24x7_data_result_buffer *result_buffer;
1346 
1347 	BUILD_BUG_ON(sizeof(*request_buffer) > 4096);
1348 	BUILD_BUG_ON(sizeof(*result_buffer) > 4096);
1349 
1350 	request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1351 	result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1352 
1353 	init_24x7_request(request_buffer, result_buffer);
1354 
1355 	ret = add_event_to_24x7_request(event, request_buffer);
1356 	if (ret)
1357 		goto out;
1358 
1359 	ret = make_24x7_request(request_buffer, result_buffer);
1360 	if (ret)
1361 		goto out;
1362 
1363 	/* process result from hcall */
1364 	ret = get_count_from_result(event, result_buffer,
1365 				    result_buffer->results, count, NULL);
1366 
1367 out:
1368 	put_cpu_var(hv_24x7_reqb);
1369 	put_cpu_var(hv_24x7_resb);
1370 	return ret;
1371 }
1372 
1373 
1374 static int h_24x7_event_init(struct perf_event *event)
1375 {
1376 	struct hv_perf_caps caps;
1377 	unsigned domain;
1378 	unsigned long hret;
1379 	u64 ct;
1380 
1381 	/* Not our event */
1382 	if (event->attr.type != event->pmu->type)
1383 		return -ENOENT;
1384 
1385 	/* Unused areas must be 0 */
1386 	if (event_get_reserved1(event) ||
1387 	    event_get_reserved2(event) ||
1388 	    event_get_reserved3(event)) {
1389 		pr_devel("reserved set when forbidden 0x%llx(0x%llx) 0x%llx(0x%llx) 0x%llx(0x%llx)\n",
1390 				event->attr.config,
1391 				event_get_reserved1(event),
1392 				event->attr.config1,
1393 				event_get_reserved2(event),
1394 				event->attr.config2,
1395 				event_get_reserved3(event));
1396 		return -EINVAL;
1397 	}
1398 
1399 	/* no branch sampling */
1400 	if (has_branch_stack(event))
1401 		return -EOPNOTSUPP;
1402 
1403 	/* offset must be 8 byte aligned */
1404 	if (event_get_offset(event) % 8) {
1405 		pr_devel("bad alignment\n");
1406 		return -EINVAL;
1407 	}
1408 
1409 	domain = event_get_domain(event);
1410 	if (domain >= HV_PERF_DOMAIN_MAX) {
1411 		pr_devel("invalid domain %d\n", domain);
1412 		return -EINVAL;
1413 	}
1414 
1415 	hret = hv_perf_caps_get(&caps);
1416 	if (hret) {
1417 		pr_devel("could not get capabilities: rc=%ld\n", hret);
1418 		return -EIO;
1419 	}
1420 
1421 	/* Physical domains & other lpars require extra capabilities */
1422 	if (!caps.collect_privileged && (is_physical_domain(domain) ||
1423 		(event_get_lpar(event) != event_get_lpar_max()))) {
1424 		pr_devel("hv permissions disallow: is_physical_domain:%d, lpar=0x%llx\n",
1425 				is_physical_domain(domain),
1426 				event_get_lpar(event));
1427 		return -EACCES;
1428 	}
1429 
1430 	/* Get the initial value of the counter for this event */
1431 	if (single_24x7_request(event, &ct)) {
1432 		pr_devel("test hcall failed\n");
1433 		return -EIO;
1434 	}
1435 	(void)local64_xchg(&event->hw.prev_count, ct);
1436 
1437 	return 0;
1438 }
1439 
1440 static u64 h_24x7_get_value(struct perf_event *event)
1441 {
1442 	u64 ct;
1443 
1444 	if (single_24x7_request(event, &ct))
1445 		/* We checked this in event init, shouldn't fail here... */
1446 		return 0;
1447 
1448 	return ct;
1449 }
1450 
1451 static void update_event_count(struct perf_event *event, u64 now)
1452 {
1453 	s64 prev;
1454 
1455 	prev = local64_xchg(&event->hw.prev_count, now);
1456 	local64_add(now - prev, &event->count);
1457 }
1458 
1459 static void h_24x7_event_read(struct perf_event *event)
1460 {
1461 	u64 now;
1462 	struct hv_24x7_request_buffer *request_buffer;
1463 	struct hv_24x7_hw *h24x7hw;
1464 	int txn_flags;
1465 
1466 	txn_flags = __this_cpu_read(hv_24x7_txn_flags);
1467 
1468 	/*
1469 	 * If in a READ transaction, add this counter to the list of
1470 	 * counters to read during the next HCALL (i.e commit_txn()).
1471 	 * If not in a READ transaction, go ahead and make the HCALL
1472 	 * to read this counter by itself.
1473 	 */
1474 
1475 	if (txn_flags & PERF_PMU_TXN_READ) {
1476 		int i;
1477 		int ret;
1478 
1479 		if (__this_cpu_read(hv_24x7_txn_err))
1480 			return;
1481 
1482 		request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1483 
1484 		ret = add_event_to_24x7_request(event, request_buffer);
1485 		if (ret) {
1486 			__this_cpu_write(hv_24x7_txn_err, ret);
1487 		} else {
1488 			/*
1489 			 * Associate the event with the HCALL request index,
1490 			 * so ->commit_txn() can quickly find/update count.
1491 			 */
1492 			i = request_buffer->num_requests - 1;
1493 
1494 			h24x7hw = &get_cpu_var(hv_24x7_hw);
1495 			h24x7hw->events[i] = event;
1496 			put_cpu_var(h24x7hw);
1497 		}
1498 
1499 		put_cpu_var(hv_24x7_reqb);
1500 	} else {
1501 		now = h_24x7_get_value(event);
1502 		update_event_count(event, now);
1503 	}
1504 }
1505 
1506 static void h_24x7_event_start(struct perf_event *event, int flags)
1507 {
1508 	if (flags & PERF_EF_RELOAD)
1509 		local64_set(&event->hw.prev_count, h_24x7_get_value(event));
1510 }
1511 
1512 static void h_24x7_event_stop(struct perf_event *event, int flags)
1513 {
1514 	h_24x7_event_read(event);
1515 }
1516 
1517 static int h_24x7_event_add(struct perf_event *event, int flags)
1518 {
1519 	if (flags & PERF_EF_START)
1520 		h_24x7_event_start(event, flags);
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * 24x7 counters only support READ transactions. They are
1527  * always counting and dont need/support ADD transactions.
1528  * Cache the flags, but otherwise ignore transactions that
1529  * are not PERF_PMU_TXN_READ.
1530  */
1531 static void h_24x7_event_start_txn(struct pmu *pmu, unsigned int flags)
1532 {
1533 	struct hv_24x7_request_buffer *request_buffer;
1534 	struct hv_24x7_data_result_buffer *result_buffer;
1535 
1536 	/* We should not be called if we are already in a txn */
1537 	WARN_ON_ONCE(__this_cpu_read(hv_24x7_txn_flags));
1538 
1539 	__this_cpu_write(hv_24x7_txn_flags, flags);
1540 	if (flags & ~PERF_PMU_TXN_READ)
1541 		return;
1542 
1543 	request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1544 	result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1545 
1546 	init_24x7_request(request_buffer, result_buffer);
1547 
1548 	put_cpu_var(hv_24x7_resb);
1549 	put_cpu_var(hv_24x7_reqb);
1550 }
1551 
1552 /*
1553  * Clean up transaction state.
1554  *
1555  * NOTE: Ignore state of request and result buffers for now.
1556  *	 We will initialize them during the next read/txn.
1557  */
1558 static void reset_txn(void)
1559 {
1560 	__this_cpu_write(hv_24x7_txn_flags, 0);
1561 	__this_cpu_write(hv_24x7_txn_err, 0);
1562 }
1563 
1564 /*
1565  * 24x7 counters only support READ transactions. They are always counting
1566  * and dont need/support ADD transactions. Clear ->txn_flags but otherwise
1567  * ignore transactions that are not of type PERF_PMU_TXN_READ.
1568  *
1569  * For READ transactions, submit all pending 24x7 requests (i.e requests
1570  * that were queued by h_24x7_event_read()), to the hypervisor and update
1571  * the event counts.
1572  */
1573 static int h_24x7_event_commit_txn(struct pmu *pmu)
1574 {
1575 	struct hv_24x7_request_buffer *request_buffer;
1576 	struct hv_24x7_data_result_buffer *result_buffer;
1577 	struct hv_24x7_result *res, *next_res;
1578 	u64 count;
1579 	int i, ret, txn_flags;
1580 	struct hv_24x7_hw *h24x7hw;
1581 
1582 	txn_flags = __this_cpu_read(hv_24x7_txn_flags);
1583 	WARN_ON_ONCE(!txn_flags);
1584 
1585 	ret = 0;
1586 	if (txn_flags & ~PERF_PMU_TXN_READ)
1587 		goto out;
1588 
1589 	ret = __this_cpu_read(hv_24x7_txn_err);
1590 	if (ret)
1591 		goto out;
1592 
1593 	request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1594 	result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1595 
1596 	ret = make_24x7_request(request_buffer, result_buffer);
1597 	if (ret)
1598 		goto put_reqb;
1599 
1600 	h24x7hw = &get_cpu_var(hv_24x7_hw);
1601 
1602 	/* Go through results in the result buffer to update event counts. */
1603 	for (i = 0, res = result_buffer->results;
1604 	     i < result_buffer->num_results; i++, res = next_res) {
1605 		struct perf_event *event = h24x7hw->events[res->result_ix];
1606 
1607 		ret = get_count_from_result(event, result_buffer, res, &count,
1608 					    &next_res);
1609 		if (ret)
1610 			break;
1611 
1612 		update_event_count(event, count);
1613 	}
1614 
1615 	put_cpu_var(hv_24x7_hw);
1616 
1617 put_reqb:
1618 	put_cpu_var(hv_24x7_resb);
1619 	put_cpu_var(hv_24x7_reqb);
1620 out:
1621 	reset_txn();
1622 	return ret;
1623 }
1624 
1625 /*
1626  * 24x7 counters only support READ transactions. They are always counting
1627  * and dont need/support ADD transactions. However, regardless of type
1628  * of transaction, all we need to do is cleanup, so we don't have to check
1629  * the type of transaction.
1630  */
1631 static void h_24x7_event_cancel_txn(struct pmu *pmu)
1632 {
1633 	WARN_ON_ONCE(!__this_cpu_read(hv_24x7_txn_flags));
1634 	reset_txn();
1635 }
1636 
1637 static struct pmu h_24x7_pmu = {
1638 	.task_ctx_nr = perf_invalid_context,
1639 
1640 	.name = "hv_24x7",
1641 	.attr_groups = attr_groups,
1642 	.event_init  = h_24x7_event_init,
1643 	.add         = h_24x7_event_add,
1644 	.del         = h_24x7_event_stop,
1645 	.start       = h_24x7_event_start,
1646 	.stop        = h_24x7_event_stop,
1647 	.read        = h_24x7_event_read,
1648 	.start_txn   = h_24x7_event_start_txn,
1649 	.commit_txn  = h_24x7_event_commit_txn,
1650 	.cancel_txn  = h_24x7_event_cancel_txn,
1651 	.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
1652 };
1653 
1654 static int ppc_hv_24x7_cpu_online(unsigned int cpu)
1655 {
1656 	if (cpumask_empty(&hv_24x7_cpumask))
1657 		cpumask_set_cpu(cpu, &hv_24x7_cpumask);
1658 
1659 	return 0;
1660 }
1661 
1662 static int ppc_hv_24x7_cpu_offline(unsigned int cpu)
1663 {
1664 	int target;
1665 
1666 	/* Check if exiting cpu is used for collecting 24x7 events */
1667 	if (!cpumask_test_and_clear_cpu(cpu, &hv_24x7_cpumask))
1668 		return 0;
1669 
1670 	/* Find a new cpu to collect 24x7 events */
1671 	target = cpumask_last(cpu_active_mask);
1672 
1673 	if (target < 0 || target >= nr_cpu_ids) {
1674 		pr_err("hv_24x7: CPU hotplug init failed\n");
1675 		return -1;
1676 	}
1677 
1678 	/* Migrate 24x7 events to the new target */
1679 	cpumask_set_cpu(target, &hv_24x7_cpumask);
1680 	perf_pmu_migrate_context(&h_24x7_pmu, cpu, target);
1681 
1682 	return 0;
1683 }
1684 
1685 static int hv_24x7_cpu_hotplug_init(void)
1686 {
1687 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_HV_24x7_ONLINE,
1688 			  "perf/powerpc/hv_24x7:online",
1689 			  ppc_hv_24x7_cpu_online,
1690 			  ppc_hv_24x7_cpu_offline);
1691 }
1692 
1693 static int hv_24x7_init(void)
1694 {
1695 	int r;
1696 	unsigned long hret;
1697 	struct hv_perf_caps caps;
1698 
1699 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1700 		pr_debug("not a virtualized system, not enabling\n");
1701 		return -ENODEV;
1702 	} else if (!cur_cpu_spec->oprofile_cpu_type)
1703 		return -ENODEV;
1704 
1705 	/* POWER8 only supports v1, while POWER9 only supports v2. */
1706 	if (!strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc64/power8"))
1707 		interface_version = 1;
1708 	else {
1709 		interface_version = 2;
1710 
1711 		/* SMT8 in POWER9 needs to aggregate result elements. */
1712 		if (threads_per_core == 8)
1713 			aggregate_result_elements = true;
1714 	}
1715 
1716 	hret = hv_perf_caps_get(&caps);
1717 	if (hret) {
1718 		pr_debug("could not obtain capabilities, not enabling, rc=%ld\n",
1719 				hret);
1720 		return -ENODEV;
1721 	}
1722 
1723 	hv_page_cache = kmem_cache_create("hv-page-4096", 4096, 4096, 0, NULL);
1724 	if (!hv_page_cache)
1725 		return -ENOMEM;
1726 
1727 	/* sampling not supported */
1728 	h_24x7_pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1729 
1730 	r = create_events_from_catalog(&event_group.attrs,
1731 				   &event_desc_group.attrs,
1732 				   &event_long_desc_group.attrs);
1733 
1734 	if (r)
1735 		return r;
1736 
1737 	/* init cpuhotplug */
1738 	r = hv_24x7_cpu_hotplug_init();
1739 	if (r)
1740 		return r;
1741 
1742 	r = perf_pmu_register(&h_24x7_pmu, h_24x7_pmu.name, -1);
1743 	if (r)
1744 		return r;
1745 
1746 	read_24x7_sys_info();
1747 
1748 	return 0;
1749 }
1750 
1751 device_initcall(hv_24x7_init);
1752