1 /* 2 * Hypervisor supplied "24x7" performance counter support 3 * 4 * Author: Cody P Schafer <cody@linux.vnet.ibm.com> 5 * Copyright 2014 IBM Corporation. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #define pr_fmt(fmt) "hv-24x7: " fmt 14 15 #include <linux/perf_event.h> 16 #include <linux/rbtree.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 21 #include <asm/firmware.h> 22 #include <asm/hvcall.h> 23 #include <asm/io.h> 24 #include <linux/byteorder/generic.h> 25 26 #include "hv-24x7.h" 27 #include "hv-24x7-catalog.h" 28 #include "hv-common.h" 29 30 static bool domain_is_valid(unsigned domain) 31 { 32 switch (domain) { 33 #define DOMAIN(n, v, x, c) \ 34 case HV_PERF_DOMAIN_##n: \ 35 /* fall through */ 36 #include "hv-24x7-domains.h" 37 #undef DOMAIN 38 return true; 39 default: 40 return false; 41 } 42 } 43 44 static bool is_physical_domain(unsigned domain) 45 { 46 switch (domain) { 47 #define DOMAIN(n, v, x, c) \ 48 case HV_PERF_DOMAIN_##n: \ 49 return c; 50 #include "hv-24x7-domains.h" 51 #undef DOMAIN 52 default: 53 return false; 54 } 55 } 56 57 static const char *domain_name(unsigned domain) 58 { 59 if (!domain_is_valid(domain)) 60 return NULL; 61 62 switch (domain) { 63 case HV_PERF_DOMAIN_PHYS_CHIP: return "Physical Chip"; 64 case HV_PERF_DOMAIN_PHYS_CORE: return "Physical Core"; 65 case HV_PERF_DOMAIN_VCPU_HOME_CORE: return "VCPU Home Core"; 66 case HV_PERF_DOMAIN_VCPU_HOME_CHIP: return "VCPU Home Chip"; 67 case HV_PERF_DOMAIN_VCPU_HOME_NODE: return "VCPU Home Node"; 68 case HV_PERF_DOMAIN_VCPU_REMOTE_NODE: return "VCPU Remote Node"; 69 } 70 71 WARN_ON_ONCE(domain); 72 return NULL; 73 } 74 75 static bool catalog_entry_domain_is_valid(unsigned domain) 76 { 77 return is_physical_domain(domain); 78 } 79 80 /* 81 * TODO: Merging events: 82 * - Think of the hcall as an interface to a 4d array of counters: 83 * - x = domains 84 * - y = indexes in the domain (core, chip, vcpu, node, etc) 85 * - z = offset into the counter space 86 * - w = lpars (guest vms, "logical partitions") 87 * - A single request is: x,y,y_last,z,z_last,w,w_last 88 * - this means we can retrieve a rectangle of counters in y,z for a single x. 89 * 90 * - Things to consider (ignoring w): 91 * - input cost_per_request = 16 92 * - output cost_per_result(ys,zs) = 8 + 8 * ys + ys * zs 93 * - limited number of requests per hcall (must fit into 4K bytes) 94 * - 4k = 16 [buffer header] - 16 [request size] * request_count 95 * - 255 requests per hcall 96 * - sometimes it will be more efficient to read extra data and discard 97 */ 98 99 /* 100 * Example usage: 101 * perf stat -e 'hv_24x7/domain=2,offset=8,vcpu=0,lpar=0xffffffff/' 102 */ 103 104 /* u3 0-6, one of HV_24X7_PERF_DOMAIN */ 105 EVENT_DEFINE_RANGE_FORMAT(domain, config, 0, 3); 106 /* u16 */ 107 EVENT_DEFINE_RANGE_FORMAT(core, config, 16, 31); 108 EVENT_DEFINE_RANGE_FORMAT(chip, config, 16, 31); 109 EVENT_DEFINE_RANGE_FORMAT(vcpu, config, 16, 31); 110 /* u32, see "data_offset" */ 111 EVENT_DEFINE_RANGE_FORMAT(offset, config, 32, 63); 112 /* u16 */ 113 EVENT_DEFINE_RANGE_FORMAT(lpar, config1, 0, 15); 114 115 EVENT_DEFINE_RANGE(reserved1, config, 4, 15); 116 EVENT_DEFINE_RANGE(reserved2, config1, 16, 63); 117 EVENT_DEFINE_RANGE(reserved3, config2, 0, 63); 118 119 static struct attribute *format_attrs[] = { 120 &format_attr_domain.attr, 121 &format_attr_offset.attr, 122 &format_attr_core.attr, 123 &format_attr_chip.attr, 124 &format_attr_vcpu.attr, 125 &format_attr_lpar.attr, 126 NULL, 127 }; 128 129 static struct attribute_group format_group = { 130 .name = "format", 131 .attrs = format_attrs, 132 }; 133 134 static struct attribute_group event_group = { 135 .name = "events", 136 /* .attrs is set in init */ 137 }; 138 139 static struct attribute_group event_desc_group = { 140 .name = "event_descs", 141 /* .attrs is set in init */ 142 }; 143 144 static struct attribute_group event_long_desc_group = { 145 .name = "event_long_descs", 146 /* .attrs is set in init */ 147 }; 148 149 static struct kmem_cache *hv_page_cache; 150 151 DEFINE_PER_CPU(int, hv_24x7_txn_flags); 152 DEFINE_PER_CPU(int, hv_24x7_txn_err); 153 154 struct hv_24x7_hw { 155 struct perf_event *events[255]; 156 }; 157 158 DEFINE_PER_CPU(struct hv_24x7_hw, hv_24x7_hw); 159 160 /* 161 * request_buffer and result_buffer are not required to be 4k aligned, 162 * but are not allowed to cross any 4k boundary. Aligning them to 4k is 163 * the simplest way to ensure that. 164 */ 165 #define H24x7_DATA_BUFFER_SIZE 4096 166 DEFINE_PER_CPU(char, hv_24x7_reqb[H24x7_DATA_BUFFER_SIZE]) __aligned(4096); 167 DEFINE_PER_CPU(char, hv_24x7_resb[H24x7_DATA_BUFFER_SIZE]) __aligned(4096); 168 169 static char *event_name(struct hv_24x7_event_data *ev, int *len) 170 { 171 *len = be16_to_cpu(ev->event_name_len) - 2; 172 return (char *)ev->remainder; 173 } 174 175 static char *event_desc(struct hv_24x7_event_data *ev, int *len) 176 { 177 unsigned nl = be16_to_cpu(ev->event_name_len); 178 __be16 *desc_len = (__be16 *)(ev->remainder + nl - 2); 179 180 *len = be16_to_cpu(*desc_len) - 2; 181 return (char *)ev->remainder + nl; 182 } 183 184 static char *event_long_desc(struct hv_24x7_event_data *ev, int *len) 185 { 186 unsigned nl = be16_to_cpu(ev->event_name_len); 187 __be16 *desc_len_ = (__be16 *)(ev->remainder + nl - 2); 188 unsigned desc_len = be16_to_cpu(*desc_len_); 189 __be16 *long_desc_len = (__be16 *)(ev->remainder + nl + desc_len - 2); 190 191 *len = be16_to_cpu(*long_desc_len) - 2; 192 return (char *)ev->remainder + nl + desc_len; 193 } 194 195 static bool event_fixed_portion_is_within(struct hv_24x7_event_data *ev, 196 void *end) 197 { 198 void *start = ev; 199 200 return (start + offsetof(struct hv_24x7_event_data, remainder)) < end; 201 } 202 203 /* 204 * Things we don't check: 205 * - padding for desc, name, and long/detailed desc is required to be '\0' 206 * bytes. 207 * 208 * Return NULL if we pass end, 209 * Otherwise return the address of the byte just following the event. 210 */ 211 static void *event_end(struct hv_24x7_event_data *ev, void *end) 212 { 213 void *start = ev; 214 __be16 *dl_, *ldl_; 215 unsigned dl, ldl; 216 unsigned nl = be16_to_cpu(ev->event_name_len); 217 218 if (nl < 2) { 219 pr_debug("%s: name length too short: %d", __func__, nl); 220 return NULL; 221 } 222 223 if (start + nl > end) { 224 pr_debug("%s: start=%p + nl=%u > end=%p", 225 __func__, start, nl, end); 226 return NULL; 227 } 228 229 dl_ = (__be16 *)(ev->remainder + nl - 2); 230 if (!IS_ALIGNED((uintptr_t)dl_, 2)) 231 pr_warn("desc len not aligned %p", dl_); 232 dl = be16_to_cpu(*dl_); 233 if (dl < 2) { 234 pr_debug("%s: desc len too short: %d", __func__, dl); 235 return NULL; 236 } 237 238 if (start + nl + dl > end) { 239 pr_debug("%s: (start=%p + nl=%u + dl=%u)=%p > end=%p", 240 __func__, start, nl, dl, start + nl + dl, end); 241 return NULL; 242 } 243 244 ldl_ = (__be16 *)(ev->remainder + nl + dl - 2); 245 if (!IS_ALIGNED((uintptr_t)ldl_, 2)) 246 pr_warn("long desc len not aligned %p", ldl_); 247 ldl = be16_to_cpu(*ldl_); 248 if (ldl < 2) { 249 pr_debug("%s: long desc len too short (ldl=%u)", 250 __func__, ldl); 251 return NULL; 252 } 253 254 if (start + nl + dl + ldl > end) { 255 pr_debug("%s: start=%p + nl=%u + dl=%u + ldl=%u > end=%p", 256 __func__, start, nl, dl, ldl, end); 257 return NULL; 258 } 259 260 return start + nl + dl + ldl; 261 } 262 263 static unsigned long h_get_24x7_catalog_page_(unsigned long phys_4096, 264 unsigned long version, 265 unsigned long index) 266 { 267 pr_devel("h_get_24x7_catalog_page(0x%lx, %lu, %lu)", 268 phys_4096, version, index); 269 270 WARN_ON(!IS_ALIGNED(phys_4096, 4096)); 271 272 return plpar_hcall_norets(H_GET_24X7_CATALOG_PAGE, 273 phys_4096, version, index); 274 } 275 276 static unsigned long h_get_24x7_catalog_page(char page[], 277 u64 version, u32 index) 278 { 279 return h_get_24x7_catalog_page_(virt_to_phys(page), 280 version, index); 281 } 282 283 /* 284 * Each event we find in the catalog, will have a sysfs entry. Format the 285 * data for this sysfs entry based on the event's domain. 286 * 287 * Events belonging to the Chip domain can only be monitored in that domain. 288 * i.e the domain for these events is a fixed/knwon value. 289 * 290 * Events belonging to the Core domain can be monitored either in the physical 291 * core or in one of the virtual CPU domains. So the domain value for these 292 * events must be specified by the user (i.e is a required parameter). Format 293 * the Core events with 'domain=?' so the perf-tool can error check required 294 * parameters. 295 * 296 * NOTE: For the Core domain events, rather than making domain a required 297 * parameter we could default it to PHYS_CORE and allowe users to 298 * override the domain to one of the VCPU domains. 299 * 300 * However, this can make the interface a little inconsistent. 301 * 302 * If we set domain=2 (PHYS_CHIP) and allow user to override this field 303 * the user may be tempted to also modify the "offset=x" field in which 304 * can lead to confusing usage. Consider the HPM_PCYC (offset=0x18) and 305 * HPM_INST (offset=0x20) events. With: 306 * 307 * perf stat -e hv_24x7/HPM_PCYC,offset=0x20/ 308 * 309 * we end up monitoring HPM_INST, while the command line has HPM_PCYC. 310 * 311 * By not assigning a default value to the domain for the Core events, 312 * we can have simple guidelines: 313 * 314 * - Specifying values for parameters with "=?" is required. 315 * 316 * - Specifying (i.e overriding) values for other parameters 317 * is undefined. 318 */ 319 static char *event_fmt(struct hv_24x7_event_data *event, unsigned domain) 320 { 321 const char *sindex; 322 const char *lpar; 323 const char *domain_str; 324 char buf[8]; 325 326 switch (domain) { 327 case HV_PERF_DOMAIN_PHYS_CHIP: 328 snprintf(buf, sizeof(buf), "%d", domain); 329 domain_str = buf; 330 lpar = "0x0"; 331 sindex = "chip"; 332 break; 333 case HV_PERF_DOMAIN_PHYS_CORE: 334 domain_str = "?"; 335 lpar = "0x0"; 336 sindex = "core"; 337 break; 338 default: 339 domain_str = "?"; 340 lpar = "?"; 341 sindex = "vcpu"; 342 } 343 344 return kasprintf(GFP_KERNEL, 345 "domain=%s,offset=0x%x,%s=?,lpar=%s", 346 domain_str, 347 be16_to_cpu(event->event_counter_offs) + 348 be16_to_cpu(event->event_group_record_offs), 349 sindex, 350 lpar); 351 } 352 353 /* Avoid trusting fw to NUL terminate strings */ 354 static char *memdup_to_str(char *maybe_str, int max_len, gfp_t gfp) 355 { 356 return kasprintf(gfp, "%.*s", max_len, maybe_str); 357 } 358 359 static ssize_t device_show_string(struct device *dev, 360 struct device_attribute *attr, char *buf) 361 { 362 struct dev_ext_attribute *d; 363 364 d = container_of(attr, struct dev_ext_attribute, attr); 365 366 return sprintf(buf, "%s\n", (char *)d->var); 367 } 368 369 static struct attribute *device_str_attr_create_(char *name, char *str) 370 { 371 struct dev_ext_attribute *attr = kzalloc(sizeof(*attr), GFP_KERNEL); 372 373 if (!attr) 374 return NULL; 375 376 sysfs_attr_init(&attr->attr.attr); 377 378 attr->var = str; 379 attr->attr.attr.name = name; 380 attr->attr.attr.mode = 0444; 381 attr->attr.show = device_show_string; 382 383 return &attr->attr.attr; 384 } 385 386 /* 387 * Allocate and initialize strings representing event attributes. 388 * 389 * NOTE: The strings allocated here are never destroyed and continue to 390 * exist till shutdown. This is to allow us to create as many events 391 * from the catalog as possible, even if we encounter errors with some. 392 * In case of changes to error paths in future, these may need to be 393 * freed by the caller. 394 */ 395 static struct attribute *device_str_attr_create(char *name, int name_max, 396 int name_nonce, 397 char *str, size_t str_max) 398 { 399 char *n; 400 char *s = memdup_to_str(str, str_max, GFP_KERNEL); 401 struct attribute *a; 402 403 if (!s) 404 return NULL; 405 406 if (!name_nonce) 407 n = kasprintf(GFP_KERNEL, "%.*s", name_max, name); 408 else 409 n = kasprintf(GFP_KERNEL, "%.*s__%d", name_max, name, 410 name_nonce); 411 if (!n) 412 goto out_s; 413 414 a = device_str_attr_create_(n, s); 415 if (!a) 416 goto out_n; 417 418 return a; 419 out_n: 420 kfree(n); 421 out_s: 422 kfree(s); 423 return NULL; 424 } 425 426 static struct attribute *event_to_attr(unsigned ix, 427 struct hv_24x7_event_data *event, 428 unsigned domain, 429 int nonce) 430 { 431 int event_name_len; 432 char *ev_name, *a_ev_name, *val; 433 struct attribute *attr; 434 435 if (!domain_is_valid(domain)) { 436 pr_warn("catalog event %u has invalid domain %u\n", 437 ix, domain); 438 return NULL; 439 } 440 441 val = event_fmt(event, domain); 442 if (!val) 443 return NULL; 444 445 ev_name = event_name(event, &event_name_len); 446 if (!nonce) 447 a_ev_name = kasprintf(GFP_KERNEL, "%.*s", 448 (int)event_name_len, ev_name); 449 else 450 a_ev_name = kasprintf(GFP_KERNEL, "%.*s__%d", 451 (int)event_name_len, ev_name, nonce); 452 453 if (!a_ev_name) 454 goto out_val; 455 456 attr = device_str_attr_create_(a_ev_name, val); 457 if (!attr) 458 goto out_name; 459 460 return attr; 461 out_name: 462 kfree(a_ev_name); 463 out_val: 464 kfree(val); 465 return NULL; 466 } 467 468 static struct attribute *event_to_desc_attr(struct hv_24x7_event_data *event, 469 int nonce) 470 { 471 int nl, dl; 472 char *name = event_name(event, &nl); 473 char *desc = event_desc(event, &dl); 474 475 /* If there isn't a description, don't create the sysfs file */ 476 if (!dl) 477 return NULL; 478 479 return device_str_attr_create(name, nl, nonce, desc, dl); 480 } 481 482 static struct attribute * 483 event_to_long_desc_attr(struct hv_24x7_event_data *event, int nonce) 484 { 485 int nl, dl; 486 char *name = event_name(event, &nl); 487 char *desc = event_long_desc(event, &dl); 488 489 /* If there isn't a description, don't create the sysfs file */ 490 if (!dl) 491 return NULL; 492 493 return device_str_attr_create(name, nl, nonce, desc, dl); 494 } 495 496 static int event_data_to_attrs(unsigned ix, struct attribute **attrs, 497 struct hv_24x7_event_data *event, int nonce) 498 { 499 *attrs = event_to_attr(ix, event, event->domain, nonce); 500 if (!*attrs) 501 return -1; 502 503 return 0; 504 } 505 506 /* */ 507 struct event_uniq { 508 struct rb_node node; 509 const char *name; 510 int nl; 511 unsigned ct; 512 unsigned domain; 513 }; 514 515 static int memord(const void *d1, size_t s1, const void *d2, size_t s2) 516 { 517 if (s1 < s2) 518 return 1; 519 if (s2 > s1) 520 return -1; 521 522 return memcmp(d1, d2, s1); 523 } 524 525 static int ev_uniq_ord(const void *v1, size_t s1, unsigned d1, const void *v2, 526 size_t s2, unsigned d2) 527 { 528 int r = memord(v1, s1, v2, s2); 529 530 if (r) 531 return r; 532 if (d1 > d2) 533 return 1; 534 if (d2 > d1) 535 return -1; 536 return 0; 537 } 538 539 static int event_uniq_add(struct rb_root *root, const char *name, int nl, 540 unsigned domain) 541 { 542 struct rb_node **new = &(root->rb_node), *parent = NULL; 543 struct event_uniq *data; 544 545 /* Figure out where to put new node */ 546 while (*new) { 547 struct event_uniq *it; 548 int result; 549 550 it = container_of(*new, struct event_uniq, node); 551 result = ev_uniq_ord(name, nl, domain, it->name, it->nl, 552 it->domain); 553 554 parent = *new; 555 if (result < 0) 556 new = &((*new)->rb_left); 557 else if (result > 0) 558 new = &((*new)->rb_right); 559 else { 560 it->ct++; 561 pr_info("found a duplicate event %.*s, ct=%u\n", nl, 562 name, it->ct); 563 return it->ct; 564 } 565 } 566 567 data = kmalloc(sizeof(*data), GFP_KERNEL); 568 if (!data) 569 return -ENOMEM; 570 571 *data = (struct event_uniq) { 572 .name = name, 573 .nl = nl, 574 .ct = 0, 575 .domain = domain, 576 }; 577 578 /* Add new node and rebalance tree. */ 579 rb_link_node(&data->node, parent, new); 580 rb_insert_color(&data->node, root); 581 582 /* data->ct */ 583 return 0; 584 } 585 586 static void event_uniq_destroy(struct rb_root *root) 587 { 588 /* 589 * the strings we point to are in the giant block of memory filled by 590 * the catalog, and are freed separately. 591 */ 592 struct event_uniq *pos, *n; 593 594 rbtree_postorder_for_each_entry_safe(pos, n, root, node) 595 kfree(pos); 596 } 597 598 599 /* 600 * ensure the event structure's sizes are self consistent and don't cause us to 601 * read outside of the event 602 * 603 * On success, return the event length in bytes. 604 * Otherwise, return -1 (and print as appropriate). 605 */ 606 static ssize_t catalog_event_len_validate(struct hv_24x7_event_data *event, 607 size_t event_idx, 608 size_t event_data_bytes, 609 size_t event_entry_count, 610 size_t offset, void *end) 611 { 612 ssize_t ev_len; 613 void *ev_end, *calc_ev_end; 614 615 if (offset >= event_data_bytes) 616 return -1; 617 618 if (event_idx >= event_entry_count) { 619 pr_devel("catalog event data has %zu bytes of padding after last event\n", 620 event_data_bytes - offset); 621 return -1; 622 } 623 624 if (!event_fixed_portion_is_within(event, end)) { 625 pr_warn("event %zu fixed portion is not within range\n", 626 event_idx); 627 return -1; 628 } 629 630 ev_len = be16_to_cpu(event->length); 631 632 if (ev_len % 16) 633 pr_info("event %zu has length %zu not divisible by 16: event=%pK\n", 634 event_idx, ev_len, event); 635 636 ev_end = (__u8 *)event + ev_len; 637 if (ev_end > end) { 638 pr_warn("event %zu has .length=%zu, ends after buffer end: ev_end=%pK > end=%pK, offset=%zu\n", 639 event_idx, ev_len, ev_end, end, 640 offset); 641 return -1; 642 } 643 644 calc_ev_end = event_end(event, end); 645 if (!calc_ev_end) { 646 pr_warn("event %zu has a calculated length which exceeds buffer length %zu: event=%pK end=%pK, offset=%zu\n", 647 event_idx, event_data_bytes, event, end, 648 offset); 649 return -1; 650 } 651 652 if (calc_ev_end > ev_end) { 653 pr_warn("event %zu exceeds it's own length: event=%pK, end=%pK, offset=%zu, calc_ev_end=%pK\n", 654 event_idx, event, ev_end, offset, calc_ev_end); 655 return -1; 656 } 657 658 return ev_len; 659 } 660 661 #define MAX_4K (SIZE_MAX / 4096) 662 663 static int create_events_from_catalog(struct attribute ***events_, 664 struct attribute ***event_descs_, 665 struct attribute ***event_long_descs_) 666 { 667 unsigned long hret; 668 size_t catalog_len, catalog_page_len, event_entry_count, 669 event_data_len, event_data_offs, 670 event_data_bytes, junk_events, event_idx, event_attr_ct, i, 671 attr_max, event_idx_last, desc_ct, long_desc_ct; 672 ssize_t ct, ev_len; 673 uint32_t catalog_version_num; 674 struct attribute **events, **event_descs, **event_long_descs; 675 struct hv_24x7_catalog_page_0 *page_0 = 676 kmem_cache_alloc(hv_page_cache, GFP_KERNEL); 677 void *page = page_0; 678 void *event_data, *end; 679 struct hv_24x7_event_data *event; 680 struct rb_root ev_uniq = RB_ROOT; 681 int ret = 0; 682 683 if (!page) { 684 ret = -ENOMEM; 685 goto e_out; 686 } 687 688 hret = h_get_24x7_catalog_page(page, 0, 0); 689 if (hret) { 690 ret = -EIO; 691 goto e_free; 692 } 693 694 catalog_version_num = be64_to_cpu(page_0->version); 695 catalog_page_len = be32_to_cpu(page_0->length); 696 697 if (MAX_4K < catalog_page_len) { 698 pr_err("invalid page count: %zu\n", catalog_page_len); 699 ret = -EIO; 700 goto e_free; 701 } 702 703 catalog_len = catalog_page_len * 4096; 704 705 event_entry_count = be16_to_cpu(page_0->event_entry_count); 706 event_data_offs = be16_to_cpu(page_0->event_data_offs); 707 event_data_len = be16_to_cpu(page_0->event_data_len); 708 709 pr_devel("cv %zu cl %zu eec %zu edo %zu edl %zu\n", 710 (size_t)catalog_version_num, catalog_len, 711 event_entry_count, event_data_offs, event_data_len); 712 713 if ((MAX_4K < event_data_len) 714 || (MAX_4K < event_data_offs) 715 || (MAX_4K - event_data_offs < event_data_len)) { 716 pr_err("invalid event data offs %zu and/or len %zu\n", 717 event_data_offs, event_data_len); 718 ret = -EIO; 719 goto e_free; 720 } 721 722 if ((event_data_offs + event_data_len) > catalog_page_len) { 723 pr_err("event data %zu-%zu does not fit inside catalog 0-%zu\n", 724 event_data_offs, 725 event_data_offs + event_data_len, 726 catalog_page_len); 727 ret = -EIO; 728 goto e_free; 729 } 730 731 if (SIZE_MAX - 1 < event_entry_count) { 732 pr_err("event_entry_count %zu is invalid\n", event_entry_count); 733 ret = -EIO; 734 goto e_free; 735 } 736 737 event_data_bytes = event_data_len * 4096; 738 739 /* 740 * event data can span several pages, events can cross between these 741 * pages. Use vmalloc to make this easier. 742 */ 743 event_data = vmalloc(event_data_bytes); 744 if (!event_data) { 745 pr_err("could not allocate event data\n"); 746 ret = -ENOMEM; 747 goto e_free; 748 } 749 750 end = event_data + event_data_bytes; 751 752 /* 753 * using vmalloc_to_phys() like this only works if PAGE_SIZE is 754 * divisible by 4096 755 */ 756 BUILD_BUG_ON(PAGE_SIZE % 4096); 757 758 for (i = 0; i < event_data_len; i++) { 759 hret = h_get_24x7_catalog_page_( 760 vmalloc_to_phys(event_data + i * 4096), 761 catalog_version_num, 762 i + event_data_offs); 763 if (hret) { 764 pr_err("failed to get event data in page %zu\n", 765 i + event_data_offs); 766 ret = -EIO; 767 goto e_event_data; 768 } 769 } 770 771 /* 772 * scan the catalog to determine the number of attributes we need, and 773 * verify it at the same time. 774 */ 775 for (junk_events = 0, event = event_data, event_idx = 0, attr_max = 0; 776 ; 777 event_idx++, event = (void *)event + ev_len) { 778 size_t offset = (void *)event - (void *)event_data; 779 char *name; 780 int nl; 781 782 ev_len = catalog_event_len_validate(event, event_idx, 783 event_data_bytes, 784 event_entry_count, 785 offset, end); 786 if (ev_len < 0) 787 break; 788 789 name = event_name(event, &nl); 790 791 if (event->event_group_record_len == 0) { 792 pr_devel("invalid event %zu (%.*s): group_record_len == 0, skipping\n", 793 event_idx, nl, name); 794 junk_events++; 795 continue; 796 } 797 798 if (!catalog_entry_domain_is_valid(event->domain)) { 799 pr_info("event %zu (%.*s) has invalid domain %d\n", 800 event_idx, nl, name, event->domain); 801 junk_events++; 802 continue; 803 } 804 805 attr_max++; 806 } 807 808 event_idx_last = event_idx; 809 if (event_idx_last != event_entry_count) 810 pr_warn("event buffer ended before listed # of events were parsed (got %zu, wanted %zu, junk %zu)\n", 811 event_idx_last, event_entry_count, junk_events); 812 813 events = kmalloc_array(attr_max + 1, sizeof(*events), GFP_KERNEL); 814 if (!events) { 815 ret = -ENOMEM; 816 goto e_event_data; 817 } 818 819 event_descs = kmalloc_array(event_idx + 1, sizeof(*event_descs), 820 GFP_KERNEL); 821 if (!event_descs) { 822 ret = -ENOMEM; 823 goto e_event_attrs; 824 } 825 826 event_long_descs = kmalloc_array(event_idx + 1, 827 sizeof(*event_long_descs), GFP_KERNEL); 828 if (!event_long_descs) { 829 ret = -ENOMEM; 830 goto e_event_descs; 831 } 832 833 /* Iterate over the catalog filling in the attribute vector */ 834 for (junk_events = 0, event_attr_ct = 0, desc_ct = 0, long_desc_ct = 0, 835 event = event_data, event_idx = 0; 836 event_idx < event_idx_last; 837 event_idx++, ev_len = be16_to_cpu(event->length), 838 event = (void *)event + ev_len) { 839 char *name; 840 int nl; 841 int nonce; 842 /* 843 * these are the only "bad" events that are intermixed and that 844 * we can ignore without issue. make sure to skip them here 845 */ 846 if (event->event_group_record_len == 0) 847 continue; 848 if (!catalog_entry_domain_is_valid(event->domain)) 849 continue; 850 851 name = event_name(event, &nl); 852 nonce = event_uniq_add(&ev_uniq, name, nl, event->domain); 853 ct = event_data_to_attrs(event_idx, events + event_attr_ct, 854 event, nonce); 855 if (ct < 0) { 856 pr_warn("event %zu (%.*s) creation failure, skipping\n", 857 event_idx, nl, name); 858 junk_events++; 859 } else { 860 event_attr_ct++; 861 event_descs[desc_ct] = event_to_desc_attr(event, nonce); 862 if (event_descs[desc_ct]) 863 desc_ct++; 864 event_long_descs[long_desc_ct] = 865 event_to_long_desc_attr(event, nonce); 866 if (event_long_descs[long_desc_ct]) 867 long_desc_ct++; 868 } 869 } 870 871 pr_info("read %zu catalog entries, created %zu event attrs (%zu failures), %zu descs\n", 872 event_idx, event_attr_ct, junk_events, desc_ct); 873 874 events[event_attr_ct] = NULL; 875 event_descs[desc_ct] = NULL; 876 event_long_descs[long_desc_ct] = NULL; 877 878 event_uniq_destroy(&ev_uniq); 879 vfree(event_data); 880 kmem_cache_free(hv_page_cache, page); 881 882 *events_ = events; 883 *event_descs_ = event_descs; 884 *event_long_descs_ = event_long_descs; 885 return 0; 886 887 e_event_descs: 888 kfree(event_descs); 889 e_event_attrs: 890 kfree(events); 891 e_event_data: 892 vfree(event_data); 893 e_free: 894 kmem_cache_free(hv_page_cache, page); 895 e_out: 896 *events_ = NULL; 897 *event_descs_ = NULL; 898 *event_long_descs_ = NULL; 899 return ret; 900 } 901 902 static ssize_t catalog_read(struct file *filp, struct kobject *kobj, 903 struct bin_attribute *bin_attr, char *buf, 904 loff_t offset, size_t count) 905 { 906 unsigned long hret; 907 ssize_t ret = 0; 908 size_t catalog_len = 0, catalog_page_len = 0; 909 loff_t page_offset = 0; 910 loff_t offset_in_page; 911 size_t copy_len; 912 uint64_t catalog_version_num = 0; 913 void *page = kmem_cache_alloc(hv_page_cache, GFP_USER); 914 struct hv_24x7_catalog_page_0 *page_0 = page; 915 916 if (!page) 917 return -ENOMEM; 918 919 hret = h_get_24x7_catalog_page(page, 0, 0); 920 if (hret) { 921 ret = -EIO; 922 goto e_free; 923 } 924 925 catalog_version_num = be64_to_cpu(page_0->version); 926 catalog_page_len = be32_to_cpu(page_0->length); 927 catalog_len = catalog_page_len * 4096; 928 929 page_offset = offset / 4096; 930 offset_in_page = offset % 4096; 931 932 if (page_offset >= catalog_page_len) 933 goto e_free; 934 935 if (page_offset != 0) { 936 hret = h_get_24x7_catalog_page(page, catalog_version_num, 937 page_offset); 938 if (hret) { 939 ret = -EIO; 940 goto e_free; 941 } 942 } 943 944 copy_len = 4096 - offset_in_page; 945 if (copy_len > count) 946 copy_len = count; 947 948 memcpy(buf, page+offset_in_page, copy_len); 949 ret = copy_len; 950 951 e_free: 952 if (hret) 953 pr_err("h_get_24x7_catalog_page(ver=%lld, page=%lld) failed:" 954 " rc=%ld\n", 955 catalog_version_num, page_offset, hret); 956 kmem_cache_free(hv_page_cache, page); 957 958 pr_devel("catalog_read: offset=%lld(%lld) count=%zu " 959 "catalog_len=%zu(%zu) => %zd\n", offset, page_offset, 960 count, catalog_len, catalog_page_len, ret); 961 962 return ret; 963 } 964 965 static ssize_t domains_show(struct device *dev, struct device_attribute *attr, 966 char *page) 967 { 968 int d, n, count = 0; 969 const char *str; 970 971 for (d = 0; d < HV_PERF_DOMAIN_MAX; d++) { 972 str = domain_name(d); 973 if (!str) 974 continue; 975 976 n = sprintf(page, "%d: %s\n", d, str); 977 if (n < 0) 978 break; 979 980 count += n; 981 page += n; 982 } 983 return count; 984 } 985 986 #define PAGE_0_ATTR(_name, _fmt, _expr) \ 987 static ssize_t _name##_show(struct device *dev, \ 988 struct device_attribute *dev_attr, \ 989 char *buf) \ 990 { \ 991 unsigned long hret; \ 992 ssize_t ret = 0; \ 993 void *page = kmem_cache_alloc(hv_page_cache, GFP_USER); \ 994 struct hv_24x7_catalog_page_0 *page_0 = page; \ 995 if (!page) \ 996 return -ENOMEM; \ 997 hret = h_get_24x7_catalog_page(page, 0, 0); \ 998 if (hret) { \ 999 ret = -EIO; \ 1000 goto e_free; \ 1001 } \ 1002 ret = sprintf(buf, _fmt, _expr); \ 1003 e_free: \ 1004 kmem_cache_free(hv_page_cache, page); \ 1005 return ret; \ 1006 } \ 1007 static DEVICE_ATTR_RO(_name) 1008 1009 PAGE_0_ATTR(catalog_version, "%lld\n", 1010 (unsigned long long)be64_to_cpu(page_0->version)); 1011 PAGE_0_ATTR(catalog_len, "%lld\n", 1012 (unsigned long long)be32_to_cpu(page_0->length) * 4096); 1013 static BIN_ATTR_RO(catalog, 0/* real length varies */); 1014 static DEVICE_ATTR_RO(domains); 1015 1016 static struct bin_attribute *if_bin_attrs[] = { 1017 &bin_attr_catalog, 1018 NULL, 1019 }; 1020 1021 static struct attribute *if_attrs[] = { 1022 &dev_attr_catalog_len.attr, 1023 &dev_attr_catalog_version.attr, 1024 &dev_attr_domains.attr, 1025 NULL, 1026 }; 1027 1028 static struct attribute_group if_group = { 1029 .name = "interface", 1030 .bin_attrs = if_bin_attrs, 1031 .attrs = if_attrs, 1032 }; 1033 1034 static const struct attribute_group *attr_groups[] = { 1035 &format_group, 1036 &event_group, 1037 &event_desc_group, 1038 &event_long_desc_group, 1039 &if_group, 1040 NULL, 1041 }; 1042 1043 static void log_24x7_hcall(struct hv_24x7_request_buffer *request_buffer, 1044 struct hv_24x7_data_result_buffer *result_buffer, 1045 unsigned long ret) 1046 { 1047 struct hv_24x7_request *req; 1048 1049 req = &request_buffer->requests[0]; 1050 pr_notice_ratelimited("hcall failed: [%d %#x %#x %d] => " 1051 "ret 0x%lx (%ld) detail=0x%x failing ix=%x\n", 1052 req->performance_domain, req->data_offset, 1053 req->starting_ix, req->starting_lpar_ix, ret, ret, 1054 result_buffer->detailed_rc, 1055 result_buffer->failing_request_ix); 1056 } 1057 1058 /* 1059 * Start the process for a new H_GET_24x7_DATA hcall. 1060 */ 1061 static void init_24x7_request(struct hv_24x7_request_buffer *request_buffer, 1062 struct hv_24x7_data_result_buffer *result_buffer) 1063 { 1064 1065 memset(request_buffer, 0, 4096); 1066 memset(result_buffer, 0, 4096); 1067 1068 request_buffer->interface_version = HV_24X7_IF_VERSION_CURRENT; 1069 /* memset above set request_buffer->num_requests to 0 */ 1070 } 1071 1072 /* 1073 * Commit (i.e perform) the H_GET_24x7_DATA hcall using the data collected 1074 * by 'init_24x7_request()' and 'add_event_to_24x7_request()'. 1075 */ 1076 static int make_24x7_request(struct hv_24x7_request_buffer *request_buffer, 1077 struct hv_24x7_data_result_buffer *result_buffer) 1078 { 1079 unsigned long ret; 1080 1081 /* 1082 * NOTE: Due to variable number of array elements in request and 1083 * result buffer(s), sizeof() is not reliable. Use the actual 1084 * allocated buffer size, H24x7_DATA_BUFFER_SIZE. 1085 */ 1086 ret = plpar_hcall_norets(H_GET_24X7_DATA, 1087 virt_to_phys(request_buffer), H24x7_DATA_BUFFER_SIZE, 1088 virt_to_phys(result_buffer), H24x7_DATA_BUFFER_SIZE); 1089 1090 if (ret) 1091 log_24x7_hcall(request_buffer, result_buffer, ret); 1092 1093 return ret; 1094 } 1095 1096 /* 1097 * Add the given @event to the next slot in the 24x7 request_buffer. 1098 * 1099 * Note that H_GET_24X7_DATA hcall allows reading several counters' 1100 * values in a single HCALL. We expect the caller to add events to the 1101 * request buffer one by one, make the HCALL and process the results. 1102 */ 1103 static int add_event_to_24x7_request(struct perf_event *event, 1104 struct hv_24x7_request_buffer *request_buffer) 1105 { 1106 u16 idx; 1107 int i; 1108 struct hv_24x7_request *req; 1109 1110 if (request_buffer->num_requests > 254) { 1111 pr_devel("Too many requests for 24x7 HCALL %d\n", 1112 request_buffer->num_requests); 1113 return -EINVAL; 1114 } 1115 1116 switch (event_get_domain(event)) { 1117 case HV_PERF_DOMAIN_PHYS_CHIP: 1118 idx = event_get_chip(event); 1119 break; 1120 case HV_PERF_DOMAIN_PHYS_CORE: 1121 idx = event_get_core(event); 1122 break; 1123 default: 1124 idx = event_get_vcpu(event); 1125 } 1126 1127 i = request_buffer->num_requests++; 1128 req = &request_buffer->requests[i]; 1129 1130 req->performance_domain = event_get_domain(event); 1131 req->data_size = cpu_to_be16(8); 1132 req->data_offset = cpu_to_be32(event_get_offset(event)); 1133 req->starting_lpar_ix = cpu_to_be16(event_get_lpar(event)), 1134 req->max_num_lpars = cpu_to_be16(1); 1135 req->starting_ix = cpu_to_be16(idx); 1136 req->max_ix = cpu_to_be16(1); 1137 1138 return 0; 1139 } 1140 1141 static unsigned long single_24x7_request(struct perf_event *event, u64 *count) 1142 { 1143 unsigned long ret; 1144 struct hv_24x7_request_buffer *request_buffer; 1145 struct hv_24x7_data_result_buffer *result_buffer; 1146 1147 BUILD_BUG_ON(sizeof(*request_buffer) > 4096); 1148 BUILD_BUG_ON(sizeof(*result_buffer) > 4096); 1149 1150 request_buffer = (void *)get_cpu_var(hv_24x7_reqb); 1151 result_buffer = (void *)get_cpu_var(hv_24x7_resb); 1152 1153 init_24x7_request(request_buffer, result_buffer); 1154 1155 ret = add_event_to_24x7_request(event, request_buffer); 1156 if (ret) 1157 goto out; 1158 1159 ret = make_24x7_request(request_buffer, result_buffer); 1160 if (ret) { 1161 log_24x7_hcall(request_buffer, result_buffer, ret); 1162 goto out; 1163 } 1164 1165 /* process result from hcall */ 1166 *count = be64_to_cpu(result_buffer->results[0].elements[0].element_data[0]); 1167 1168 out: 1169 put_cpu_var(hv_24x7_reqb); 1170 put_cpu_var(hv_24x7_resb); 1171 return ret; 1172 } 1173 1174 1175 static int h_24x7_event_init(struct perf_event *event) 1176 { 1177 struct hv_perf_caps caps; 1178 unsigned domain; 1179 unsigned long hret; 1180 u64 ct; 1181 1182 /* Not our event */ 1183 if (event->attr.type != event->pmu->type) 1184 return -ENOENT; 1185 1186 /* Unused areas must be 0 */ 1187 if (event_get_reserved1(event) || 1188 event_get_reserved2(event) || 1189 event_get_reserved3(event)) { 1190 pr_devel("reserved set when forbidden 0x%llx(0x%llx) 0x%llx(0x%llx) 0x%llx(0x%llx)\n", 1191 event->attr.config, 1192 event_get_reserved1(event), 1193 event->attr.config1, 1194 event_get_reserved2(event), 1195 event->attr.config2, 1196 event_get_reserved3(event)); 1197 return -EINVAL; 1198 } 1199 1200 /* unsupported modes and filters */ 1201 if (event->attr.exclude_user || 1202 event->attr.exclude_kernel || 1203 event->attr.exclude_hv || 1204 event->attr.exclude_idle || 1205 event->attr.exclude_host || 1206 event->attr.exclude_guest) 1207 return -EINVAL; 1208 1209 /* no branch sampling */ 1210 if (has_branch_stack(event)) 1211 return -EOPNOTSUPP; 1212 1213 /* offset must be 8 byte aligned */ 1214 if (event_get_offset(event) % 8) { 1215 pr_devel("bad alignment\n"); 1216 return -EINVAL; 1217 } 1218 1219 /* Domains above 6 are invalid */ 1220 domain = event_get_domain(event); 1221 if (domain > 6) { 1222 pr_devel("invalid domain %d\n", domain); 1223 return -EINVAL; 1224 } 1225 1226 hret = hv_perf_caps_get(&caps); 1227 if (hret) { 1228 pr_devel("could not get capabilities: rc=%ld\n", hret); 1229 return -EIO; 1230 } 1231 1232 /* Physical domains & other lpars require extra capabilities */ 1233 if (!caps.collect_privileged && (is_physical_domain(domain) || 1234 (event_get_lpar(event) != event_get_lpar_max()))) { 1235 pr_devel("hv permissions disallow: is_physical_domain:%d, lpar=0x%llx\n", 1236 is_physical_domain(domain), 1237 event_get_lpar(event)); 1238 return -EACCES; 1239 } 1240 1241 /* Get the initial value of the counter for this event */ 1242 if (single_24x7_request(event, &ct)) { 1243 pr_devel("test hcall failed\n"); 1244 return -EIO; 1245 } 1246 (void)local64_xchg(&event->hw.prev_count, ct); 1247 1248 return 0; 1249 } 1250 1251 static u64 h_24x7_get_value(struct perf_event *event) 1252 { 1253 unsigned long ret; 1254 u64 ct; 1255 ret = single_24x7_request(event, &ct); 1256 if (ret) 1257 /* We checked this in event init, shouldn't fail here... */ 1258 return 0; 1259 1260 return ct; 1261 } 1262 1263 static void update_event_count(struct perf_event *event, u64 now) 1264 { 1265 s64 prev; 1266 1267 prev = local64_xchg(&event->hw.prev_count, now); 1268 local64_add(now - prev, &event->count); 1269 } 1270 1271 static void h_24x7_event_read(struct perf_event *event) 1272 { 1273 u64 now; 1274 struct hv_24x7_request_buffer *request_buffer; 1275 struct hv_24x7_hw *h24x7hw; 1276 int txn_flags; 1277 1278 txn_flags = __this_cpu_read(hv_24x7_txn_flags); 1279 1280 /* 1281 * If in a READ transaction, add this counter to the list of 1282 * counters to read during the next HCALL (i.e commit_txn()). 1283 * If not in a READ transaction, go ahead and make the HCALL 1284 * to read this counter by itself. 1285 */ 1286 1287 if (txn_flags & PERF_PMU_TXN_READ) { 1288 int i; 1289 int ret; 1290 1291 if (__this_cpu_read(hv_24x7_txn_err)) 1292 return; 1293 1294 request_buffer = (void *)get_cpu_var(hv_24x7_reqb); 1295 1296 ret = add_event_to_24x7_request(event, request_buffer); 1297 if (ret) { 1298 __this_cpu_write(hv_24x7_txn_err, ret); 1299 } else { 1300 /* 1301 * Associate the event with the HCALL request index, 1302 * so ->commit_txn() can quickly find/update count. 1303 */ 1304 i = request_buffer->num_requests - 1; 1305 1306 h24x7hw = &get_cpu_var(hv_24x7_hw); 1307 h24x7hw->events[i] = event; 1308 put_cpu_var(h24x7hw); 1309 /* 1310 * Clear the event count so we can compute the _change_ 1311 * in the 24x7 raw counter value at the end of the txn. 1312 * 1313 * Note that we could alternatively read the 24x7 value 1314 * now and save its value in event->hw.prev_count. But 1315 * that would require issuing a hcall, which would then 1316 * defeat the purpose of using the txn interface. 1317 */ 1318 local64_set(&event->count, 0); 1319 } 1320 1321 put_cpu_var(hv_24x7_reqb); 1322 } else { 1323 now = h_24x7_get_value(event); 1324 update_event_count(event, now); 1325 } 1326 } 1327 1328 static void h_24x7_event_start(struct perf_event *event, int flags) 1329 { 1330 if (flags & PERF_EF_RELOAD) 1331 local64_set(&event->hw.prev_count, h_24x7_get_value(event)); 1332 } 1333 1334 static void h_24x7_event_stop(struct perf_event *event, int flags) 1335 { 1336 h_24x7_event_read(event); 1337 } 1338 1339 static int h_24x7_event_add(struct perf_event *event, int flags) 1340 { 1341 if (flags & PERF_EF_START) 1342 h_24x7_event_start(event, flags); 1343 1344 return 0; 1345 } 1346 1347 /* 1348 * 24x7 counters only support READ transactions. They are 1349 * always counting and dont need/support ADD transactions. 1350 * Cache the flags, but otherwise ignore transactions that 1351 * are not PERF_PMU_TXN_READ. 1352 */ 1353 static void h_24x7_event_start_txn(struct pmu *pmu, unsigned int flags) 1354 { 1355 struct hv_24x7_request_buffer *request_buffer; 1356 struct hv_24x7_data_result_buffer *result_buffer; 1357 1358 /* We should not be called if we are already in a txn */ 1359 WARN_ON_ONCE(__this_cpu_read(hv_24x7_txn_flags)); 1360 1361 __this_cpu_write(hv_24x7_txn_flags, flags); 1362 if (flags & ~PERF_PMU_TXN_READ) 1363 return; 1364 1365 request_buffer = (void *)get_cpu_var(hv_24x7_reqb); 1366 result_buffer = (void *)get_cpu_var(hv_24x7_resb); 1367 1368 init_24x7_request(request_buffer, result_buffer); 1369 1370 put_cpu_var(hv_24x7_resb); 1371 put_cpu_var(hv_24x7_reqb); 1372 } 1373 1374 /* 1375 * Clean up transaction state. 1376 * 1377 * NOTE: Ignore state of request and result buffers for now. 1378 * We will initialize them during the next read/txn. 1379 */ 1380 static void reset_txn(void) 1381 { 1382 __this_cpu_write(hv_24x7_txn_flags, 0); 1383 __this_cpu_write(hv_24x7_txn_err, 0); 1384 } 1385 1386 /* 1387 * 24x7 counters only support READ transactions. They are always counting 1388 * and dont need/support ADD transactions. Clear ->txn_flags but otherwise 1389 * ignore transactions that are not of type PERF_PMU_TXN_READ. 1390 * 1391 * For READ transactions, submit all pending 24x7 requests (i.e requests 1392 * that were queued by h_24x7_event_read()), to the hypervisor and update 1393 * the event counts. 1394 */ 1395 static int h_24x7_event_commit_txn(struct pmu *pmu) 1396 { 1397 struct hv_24x7_request_buffer *request_buffer; 1398 struct hv_24x7_data_result_buffer *result_buffer; 1399 struct hv_24x7_result *resb; 1400 struct perf_event *event; 1401 u64 count; 1402 int i, ret, txn_flags; 1403 struct hv_24x7_hw *h24x7hw; 1404 1405 txn_flags = __this_cpu_read(hv_24x7_txn_flags); 1406 WARN_ON_ONCE(!txn_flags); 1407 1408 ret = 0; 1409 if (txn_flags & ~PERF_PMU_TXN_READ) 1410 goto out; 1411 1412 ret = __this_cpu_read(hv_24x7_txn_err); 1413 if (ret) 1414 goto out; 1415 1416 request_buffer = (void *)get_cpu_var(hv_24x7_reqb); 1417 result_buffer = (void *)get_cpu_var(hv_24x7_resb); 1418 1419 ret = make_24x7_request(request_buffer, result_buffer); 1420 if (ret) { 1421 log_24x7_hcall(request_buffer, result_buffer, ret); 1422 goto put_reqb; 1423 } 1424 1425 h24x7hw = &get_cpu_var(hv_24x7_hw); 1426 1427 /* Update event counts from hcall */ 1428 for (i = 0; i < request_buffer->num_requests; i++) { 1429 resb = &result_buffer->results[i]; 1430 count = be64_to_cpu(resb->elements[0].element_data[0]); 1431 event = h24x7hw->events[i]; 1432 h24x7hw->events[i] = NULL; 1433 update_event_count(event, count); 1434 } 1435 1436 put_cpu_var(hv_24x7_hw); 1437 1438 put_reqb: 1439 put_cpu_var(hv_24x7_resb); 1440 put_cpu_var(hv_24x7_reqb); 1441 out: 1442 reset_txn(); 1443 return ret; 1444 } 1445 1446 /* 1447 * 24x7 counters only support READ transactions. They are always counting 1448 * and dont need/support ADD transactions. However, regardless of type 1449 * of transaction, all we need to do is cleanup, so we don't have to check 1450 * the type of transaction. 1451 */ 1452 static void h_24x7_event_cancel_txn(struct pmu *pmu) 1453 { 1454 WARN_ON_ONCE(!__this_cpu_read(hv_24x7_txn_flags)); 1455 reset_txn(); 1456 } 1457 1458 static struct pmu h_24x7_pmu = { 1459 .task_ctx_nr = perf_invalid_context, 1460 1461 .name = "hv_24x7", 1462 .attr_groups = attr_groups, 1463 .event_init = h_24x7_event_init, 1464 .add = h_24x7_event_add, 1465 .del = h_24x7_event_stop, 1466 .start = h_24x7_event_start, 1467 .stop = h_24x7_event_stop, 1468 .read = h_24x7_event_read, 1469 .start_txn = h_24x7_event_start_txn, 1470 .commit_txn = h_24x7_event_commit_txn, 1471 .cancel_txn = h_24x7_event_cancel_txn, 1472 }; 1473 1474 static int hv_24x7_init(void) 1475 { 1476 int r; 1477 unsigned long hret; 1478 struct hv_perf_caps caps; 1479 1480 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 1481 pr_debug("not a virtualized system, not enabling\n"); 1482 return -ENODEV; 1483 } 1484 1485 hret = hv_perf_caps_get(&caps); 1486 if (hret) { 1487 pr_debug("could not obtain capabilities, not enabling, rc=%ld\n", 1488 hret); 1489 return -ENODEV; 1490 } 1491 1492 hv_page_cache = kmem_cache_create("hv-page-4096", 4096, 4096, 0, NULL); 1493 if (!hv_page_cache) 1494 return -ENOMEM; 1495 1496 /* sampling not supported */ 1497 h_24x7_pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 1498 1499 r = create_events_from_catalog(&event_group.attrs, 1500 &event_desc_group.attrs, 1501 &event_long_desc_group.attrs); 1502 1503 if (r) 1504 return r; 1505 1506 r = perf_pmu_register(&h_24x7_pmu, h_24x7_pmu.name, -1); 1507 if (r) 1508 return r; 1509 1510 return 0; 1511 } 1512 1513 device_initcall(hv_24x7_init); 1514