xref: /linux/arch/powerpc/perf/hv-24x7.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hypervisor supplied "24x7" performance counter support
4  *
5  * Author: Cody P Schafer <cody@linux.vnet.ibm.com>
6  * Copyright 2014 IBM Corporation.
7  */
8 
9 #define pr_fmt(fmt) "hv-24x7: " fmt
10 
11 #include <linux/perf_event.h>
12 #include <linux/rbtree.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 
17 #include <asm/cputhreads.h>
18 #include <asm/firmware.h>
19 #include <asm/hvcall.h>
20 #include <asm/io.h>
21 #include <asm/papr-sysparm.h>
22 #include <linux/byteorder/generic.h>
23 
24 #include <asm/rtas.h>
25 #include "hv-24x7.h"
26 #include "hv-24x7-catalog.h"
27 #include "hv-common.h"
28 
29 /* Version of the 24x7 hypervisor API that we should use in this machine. */
30 static int interface_version;
31 
32 /* Whether we have to aggregate result data for some domains. */
33 static bool aggregate_result_elements;
34 
35 static cpumask_t hv_24x7_cpumask;
36 
37 static bool domain_is_valid(unsigned int domain)
38 {
39 	switch (domain) {
40 #define DOMAIN(n, v, x, c)		\
41 	case HV_PERF_DOMAIN_##n:	\
42 		/* fall through */
43 #include "hv-24x7-domains.h"
44 #undef DOMAIN
45 		return true;
46 	default:
47 		return false;
48 	}
49 }
50 
51 static bool is_physical_domain(unsigned int domain)
52 {
53 	switch (domain) {
54 #define DOMAIN(n, v, x, c)		\
55 	case HV_PERF_DOMAIN_##n:	\
56 		return c;
57 #include "hv-24x7-domains.h"
58 #undef DOMAIN
59 	default:
60 		return false;
61 	}
62 }
63 
64 /*
65  * The Processor Module Information system parameter allows transferring
66  * of certain processor module information from the platform to the OS.
67  * Refer PAPR+ document to get parameter token value as '43'.
68  */
69 
70 static u32 phys_sockets;	/* Physical sockets */
71 static u32 phys_chipspersocket;	/* Physical chips per socket*/
72 static u32 phys_coresperchip; /* Physical cores per chip */
73 
74 /*
75  * read_24x7_sys_info()
76  * Retrieve the number of sockets and chips per socket and cores per
77  * chip details through the get-system-parameter rtas call.
78  */
79 void read_24x7_sys_info(void)
80 {
81 	struct papr_sysparm_buf *buf;
82 
83 	/*
84 	 * Making system parameter: chips and sockets and cores per chip
85 	 * default to 1.
86 	 */
87 	phys_sockets = 1;
88 	phys_chipspersocket = 1;
89 	phys_coresperchip = 1;
90 
91 	buf = papr_sysparm_buf_alloc();
92 	if (!buf)
93 		return;
94 
95 	if (!papr_sysparm_get(PAPR_SYSPARM_PROC_MODULE_INFO, buf)) {
96 		int ntypes = be16_to_cpup((__be16 *)&buf->val[0]);
97 		int len = be16_to_cpu(buf->len);
98 
99 		if (len >= 8 && ntypes != 0) {
100 			phys_sockets = be16_to_cpup((__be16 *)&buf->val[2]);
101 			phys_chipspersocket = be16_to_cpup((__be16 *)&buf->val[4]);
102 			phys_coresperchip = be16_to_cpup((__be16 *)&buf->val[6]);
103 		}
104 	}
105 
106 	papr_sysparm_buf_free(buf);
107 }
108 
109 /* Domains for which more than one result element are returned for each event. */
110 static bool domain_needs_aggregation(unsigned int domain)
111 {
112 	return aggregate_result_elements &&
113 			(domain == HV_PERF_DOMAIN_PHYS_CORE ||
114 			 (domain >= HV_PERF_DOMAIN_VCPU_HOME_CORE &&
115 			  domain <= HV_PERF_DOMAIN_VCPU_REMOTE_NODE));
116 }
117 
118 static const char *domain_name(unsigned int domain)
119 {
120 	if (!domain_is_valid(domain))
121 		return NULL;
122 
123 	switch (domain) {
124 	case HV_PERF_DOMAIN_PHYS_CHIP:		return "Physical Chip";
125 	case HV_PERF_DOMAIN_PHYS_CORE:		return "Physical Core";
126 	case HV_PERF_DOMAIN_VCPU_HOME_CORE:	return "VCPU Home Core";
127 	case HV_PERF_DOMAIN_VCPU_HOME_CHIP:	return "VCPU Home Chip";
128 	case HV_PERF_DOMAIN_VCPU_HOME_NODE:	return "VCPU Home Node";
129 	case HV_PERF_DOMAIN_VCPU_REMOTE_NODE:	return "VCPU Remote Node";
130 	}
131 
132 	WARN_ON_ONCE(domain);
133 	return NULL;
134 }
135 
136 static bool catalog_entry_domain_is_valid(unsigned int domain)
137 {
138 	/* POWER8 doesn't support virtual domains. */
139 	if (interface_version == 1)
140 		return is_physical_domain(domain);
141 	else
142 		return domain_is_valid(domain);
143 }
144 
145 /*
146  * TODO: Merging events:
147  * - Think of the hcall as an interface to a 4d array of counters:
148  *   - x = domains
149  *   - y = indexes in the domain (core, chip, vcpu, node, etc)
150  *   - z = offset into the counter space
151  *   - w = lpars (guest vms, "logical partitions")
152  * - A single request is: x,y,y_last,z,z_last,w,w_last
153  *   - this means we can retrieve a rectangle of counters in y,z for a single x.
154  *
155  * - Things to consider (ignoring w):
156  *   - input  cost_per_request = 16
157  *   - output cost_per_result(ys,zs)  = 8 + 8 * ys + ys * zs
158  *   - limited number of requests per hcall (must fit into 4K bytes)
159  *     - 4k = 16 [buffer header] - 16 [request size] * request_count
160  *     - 255 requests per hcall
161  *   - sometimes it will be more efficient to read extra data and discard
162  */
163 
164 /*
165  * Example usage:
166  *  perf stat -e 'hv_24x7/domain=2,offset=8,vcpu=0,lpar=0xffffffff/'
167  */
168 
169 /* u3 0-6, one of HV_24X7_PERF_DOMAIN */
170 EVENT_DEFINE_RANGE_FORMAT(domain, config, 0, 3);
171 /* u16 */
172 EVENT_DEFINE_RANGE_FORMAT(core, config, 16, 31);
173 EVENT_DEFINE_RANGE_FORMAT(chip, config, 16, 31);
174 EVENT_DEFINE_RANGE_FORMAT(vcpu, config, 16, 31);
175 /* u32, see "data_offset" */
176 EVENT_DEFINE_RANGE_FORMAT(offset, config, 32, 63);
177 /* u16 */
178 EVENT_DEFINE_RANGE_FORMAT(lpar, config1, 0, 15);
179 
180 EVENT_DEFINE_RANGE(reserved1, config,   4, 15);
181 EVENT_DEFINE_RANGE(reserved2, config1, 16, 63);
182 EVENT_DEFINE_RANGE(reserved3, config2,  0, 63);
183 
184 static struct attribute *format_attrs[] = {
185 	&format_attr_domain.attr,
186 	&format_attr_offset.attr,
187 	&format_attr_core.attr,
188 	&format_attr_chip.attr,
189 	&format_attr_vcpu.attr,
190 	&format_attr_lpar.attr,
191 	NULL,
192 };
193 
194 static const struct attribute_group format_group = {
195 	.name = "format",
196 	.attrs = format_attrs,
197 };
198 
199 static struct attribute_group event_group = {
200 	.name = "events",
201 	/* .attrs is set in init */
202 };
203 
204 static struct attribute_group event_desc_group = {
205 	.name = "event_descs",
206 	/* .attrs is set in init */
207 };
208 
209 static struct attribute_group event_long_desc_group = {
210 	.name = "event_long_descs",
211 	/* .attrs is set in init */
212 };
213 
214 static struct kmem_cache *hv_page_cache;
215 
216 static DEFINE_PER_CPU(int, hv_24x7_txn_flags);
217 static DEFINE_PER_CPU(int, hv_24x7_txn_err);
218 
219 struct hv_24x7_hw {
220 	struct perf_event *events[255];
221 };
222 
223 static DEFINE_PER_CPU(struct hv_24x7_hw, hv_24x7_hw);
224 
225 /*
226  * request_buffer and result_buffer are not required to be 4k aligned,
227  * but are not allowed to cross any 4k boundary. Aligning them to 4k is
228  * the simplest way to ensure that.
229  */
230 #define H24x7_DATA_BUFFER_SIZE	4096
231 static DEFINE_PER_CPU(char, hv_24x7_reqb[H24x7_DATA_BUFFER_SIZE]) __aligned(4096);
232 static DEFINE_PER_CPU(char, hv_24x7_resb[H24x7_DATA_BUFFER_SIZE]) __aligned(4096);
233 
234 static unsigned int max_num_requests(int interface_version)
235 {
236 	return (H24x7_DATA_BUFFER_SIZE - sizeof(struct hv_24x7_request_buffer))
237 		/ H24x7_REQUEST_SIZE(interface_version);
238 }
239 
240 static char *event_name(struct hv_24x7_event_data *ev, int *len)
241 {
242 	*len = be16_to_cpu(ev->event_name_len) - 2;
243 	return (char *)ev->remainder;
244 }
245 
246 static char *event_desc(struct hv_24x7_event_data *ev, int *len)
247 {
248 	unsigned int nl = be16_to_cpu(ev->event_name_len);
249 	__be16 *desc_len = (__be16 *)(ev->remainder + nl - 2);
250 
251 	*len = be16_to_cpu(*desc_len) - 2;
252 	return (char *)ev->remainder + nl;
253 }
254 
255 static char *event_long_desc(struct hv_24x7_event_data *ev, int *len)
256 {
257 	unsigned int nl = be16_to_cpu(ev->event_name_len);
258 	__be16 *desc_len_ = (__be16 *)(ev->remainder + nl - 2);
259 	unsigned int desc_len = be16_to_cpu(*desc_len_);
260 	__be16 *long_desc_len = (__be16 *)(ev->remainder + nl + desc_len - 2);
261 
262 	*len = be16_to_cpu(*long_desc_len) - 2;
263 	return (char *)ev->remainder + nl + desc_len;
264 }
265 
266 static bool event_fixed_portion_is_within(struct hv_24x7_event_data *ev,
267 					  void *end)
268 {
269 	void *start = ev;
270 
271 	return (start + offsetof(struct hv_24x7_event_data, remainder)) < end;
272 }
273 
274 /*
275  * Things we don't check:
276  *  - padding for desc, name, and long/detailed desc is required to be '\0'
277  *    bytes.
278  *
279  *  Return NULL if we pass end,
280  *  Otherwise return the address of the byte just following the event.
281  */
282 static void *event_end(struct hv_24x7_event_data *ev, void *end)
283 {
284 	void *start = ev;
285 	__be16 *dl_, *ldl_;
286 	unsigned int dl, ldl;
287 	unsigned int nl = be16_to_cpu(ev->event_name_len);
288 
289 	if (nl < 2) {
290 		pr_debug("%s: name length too short: %d", __func__, nl);
291 		return NULL;
292 	}
293 
294 	if (start + nl > end) {
295 		pr_debug("%s: start=%p + nl=%u > end=%p",
296 				__func__, start, nl, end);
297 		return NULL;
298 	}
299 
300 	dl_ = (__be16 *)(ev->remainder + nl - 2);
301 	if (!IS_ALIGNED((uintptr_t)dl_, 2))
302 		pr_warn("desc len not aligned %p", dl_);
303 	dl = be16_to_cpu(*dl_);
304 	if (dl < 2) {
305 		pr_debug("%s: desc len too short: %d", __func__, dl);
306 		return NULL;
307 	}
308 
309 	if (start + nl + dl > end) {
310 		pr_debug("%s: (start=%p + nl=%u + dl=%u)=%p > end=%p",
311 				__func__, start, nl, dl, start + nl + dl, end);
312 		return NULL;
313 	}
314 
315 	ldl_ = (__be16 *)(ev->remainder + nl + dl - 2);
316 	if (!IS_ALIGNED((uintptr_t)ldl_, 2))
317 		pr_warn("long desc len not aligned %p", ldl_);
318 	ldl = be16_to_cpu(*ldl_);
319 	if (ldl < 2) {
320 		pr_debug("%s: long desc len too short (ldl=%u)",
321 				__func__, ldl);
322 		return NULL;
323 	}
324 
325 	if (start + nl + dl + ldl > end) {
326 		pr_debug("%s: start=%p + nl=%u + dl=%u + ldl=%u > end=%p",
327 				__func__, start, nl, dl, ldl, end);
328 		return NULL;
329 	}
330 
331 	return start + nl + dl + ldl;
332 }
333 
334 static long h_get_24x7_catalog_page_(unsigned long phys_4096,
335 				     unsigned long version, unsigned long index)
336 {
337 	pr_devel("h_get_24x7_catalog_page(0x%lx, %lu, %lu)",
338 			phys_4096, version, index);
339 
340 	WARN_ON(!IS_ALIGNED(phys_4096, 4096));
341 
342 	return plpar_hcall_norets(H_GET_24X7_CATALOG_PAGE,
343 			phys_4096, version, index);
344 }
345 
346 static long h_get_24x7_catalog_page(char page[], u64 version, u32 index)
347 {
348 	return h_get_24x7_catalog_page_(virt_to_phys(page),
349 					version, index);
350 }
351 
352 /*
353  * Each event we find in the catalog, will have a sysfs entry. Format the
354  * data for this sysfs entry based on the event's domain.
355  *
356  * Events belonging to the Chip domain can only be monitored in that domain.
357  * i.e the domain for these events is a fixed/knwon value.
358  *
359  * Events belonging to the Core domain can be monitored either in the physical
360  * core or in one of the virtual CPU domains. So the domain value for these
361  * events must be specified by the user (i.e is a required parameter). Format
362  * the Core events with 'domain=?' so the perf-tool can error check required
363  * parameters.
364  *
365  * NOTE: For the Core domain events, rather than making domain a required
366  *	 parameter we could default it to PHYS_CORE and allowe users to
367  *	 override the domain to one of the VCPU domains.
368  *
369  *	 However, this can make the interface a little inconsistent.
370  *
371  *	 If we set domain=2 (PHYS_CHIP) and allow user to override this field
372  *	 the user may be tempted to also modify the "offset=x" field in which
373  *	 can lead to confusing usage. Consider the HPM_PCYC (offset=0x18) and
374  *	 HPM_INST (offset=0x20) events. With:
375  *
376  *		perf stat -e hv_24x7/HPM_PCYC,offset=0x20/
377  *
378  *	we end up monitoring HPM_INST, while the command line has HPM_PCYC.
379  *
380  *	By not assigning a default value to the domain for the Core events,
381  *	we can have simple guidelines:
382  *
383  *		- Specifying values for parameters with "=?" is required.
384  *
385  *		- Specifying (i.e overriding) values for other parameters
386  *		  is undefined.
387  */
388 static char *event_fmt(struct hv_24x7_event_data *event, unsigned int domain)
389 {
390 	const char *sindex;
391 	const char *lpar;
392 	const char *domain_str;
393 	char buf[8];
394 
395 	switch (domain) {
396 	case HV_PERF_DOMAIN_PHYS_CHIP:
397 		snprintf(buf, sizeof(buf), "%d", domain);
398 		domain_str = buf;
399 		lpar = "0x0";
400 		sindex = "chip";
401 		break;
402 	case HV_PERF_DOMAIN_PHYS_CORE:
403 		domain_str = "?";
404 		lpar = "0x0";
405 		sindex = "core";
406 		break;
407 	default:
408 		domain_str = "?";
409 		lpar = "?";
410 		sindex = "vcpu";
411 	}
412 
413 	return kasprintf(GFP_KERNEL,
414 			"domain=%s,offset=0x%x,%s=?,lpar=%s",
415 			domain_str,
416 			be16_to_cpu(event->event_counter_offs) +
417 				be16_to_cpu(event->event_group_record_offs),
418 			sindex,
419 			lpar);
420 }
421 
422 /* Avoid trusting fw to NUL terminate strings */
423 static char *memdup_to_str(char *maybe_str, int max_len, gfp_t gfp)
424 {
425 	return kasprintf(gfp, "%.*s", max_len, maybe_str);
426 }
427 
428 static ssize_t cpumask_show(struct device *dev,
429 			    struct device_attribute *attr, char *buf)
430 {
431 	return cpumap_print_to_pagebuf(true, buf, &hv_24x7_cpumask);
432 }
433 
434 static ssize_t sockets_show(struct device *dev,
435 			    struct device_attribute *attr, char *buf)
436 {
437 	return sprintf(buf, "%d\n", phys_sockets);
438 }
439 
440 static ssize_t chipspersocket_show(struct device *dev,
441 				   struct device_attribute *attr, char *buf)
442 {
443 	return sprintf(buf, "%d\n", phys_chipspersocket);
444 }
445 
446 static ssize_t coresperchip_show(struct device *dev,
447 				 struct device_attribute *attr, char *buf)
448 {
449 	return sprintf(buf, "%d\n", phys_coresperchip);
450 }
451 
452 static struct attribute *device_str_attr_create_(char *name, char *str)
453 {
454 	struct dev_ext_attribute *attr = kzalloc(sizeof(*attr), GFP_KERNEL);
455 
456 	if (!attr)
457 		return NULL;
458 
459 	sysfs_attr_init(&attr->attr.attr);
460 
461 	attr->var = str;
462 	attr->attr.attr.name = name;
463 	attr->attr.attr.mode = 0444;
464 	attr->attr.show = device_show_string;
465 
466 	return &attr->attr.attr;
467 }
468 
469 /*
470  * Allocate and initialize strings representing event attributes.
471  *
472  * NOTE: The strings allocated here are never destroyed and continue to
473  *	 exist till shutdown. This is to allow us to create as many events
474  *	 from the catalog as possible, even if we encounter errors with some.
475  *	 In case of changes to error paths in future, these may need to be
476  *	 freed by the caller.
477  */
478 static struct attribute *device_str_attr_create(char *name, int name_max,
479 						int name_nonce,
480 						char *str, size_t str_max)
481 {
482 	char *n;
483 	char *s = memdup_to_str(str, str_max, GFP_KERNEL);
484 	struct attribute *a;
485 
486 	if (!s)
487 		return NULL;
488 
489 	if (!name_nonce)
490 		n = kasprintf(GFP_KERNEL, "%.*s", name_max, name);
491 	else
492 		n = kasprintf(GFP_KERNEL, "%.*s__%d", name_max, name,
493 					name_nonce);
494 	if (!n)
495 		goto out_s;
496 
497 	a = device_str_attr_create_(n, s);
498 	if (!a)
499 		goto out_n;
500 
501 	return a;
502 out_n:
503 	kfree(n);
504 out_s:
505 	kfree(s);
506 	return NULL;
507 }
508 
509 static struct attribute *event_to_attr(unsigned int ix,
510 				       struct hv_24x7_event_data *event,
511 				       unsigned int domain,
512 				       int nonce)
513 {
514 	int event_name_len;
515 	char *ev_name, *a_ev_name, *val;
516 	struct attribute *attr;
517 
518 	if (!domain_is_valid(domain)) {
519 		pr_warn("catalog event %u has invalid domain %u\n",
520 				ix, domain);
521 		return NULL;
522 	}
523 
524 	val = event_fmt(event, domain);
525 	if (!val)
526 		return NULL;
527 
528 	ev_name = event_name(event, &event_name_len);
529 	if (!nonce)
530 		a_ev_name = kasprintf(GFP_KERNEL, "%.*s",
531 				(int)event_name_len, ev_name);
532 	else
533 		a_ev_name = kasprintf(GFP_KERNEL, "%.*s__%d",
534 				(int)event_name_len, ev_name, nonce);
535 
536 	if (!a_ev_name)
537 		goto out_val;
538 
539 	attr = device_str_attr_create_(a_ev_name, val);
540 	if (!attr)
541 		goto out_name;
542 
543 	return attr;
544 out_name:
545 	kfree(a_ev_name);
546 out_val:
547 	kfree(val);
548 	return NULL;
549 }
550 
551 static struct attribute *event_to_desc_attr(struct hv_24x7_event_data *event,
552 					    int nonce)
553 {
554 	int nl, dl;
555 	char *name = event_name(event, &nl);
556 	char *desc = event_desc(event, &dl);
557 
558 	/* If there isn't a description, don't create the sysfs file */
559 	if (!dl)
560 		return NULL;
561 
562 	return device_str_attr_create(name, nl, nonce, desc, dl);
563 }
564 
565 static struct attribute *
566 event_to_long_desc_attr(struct hv_24x7_event_data *event, int nonce)
567 {
568 	int nl, dl;
569 	char *name = event_name(event, &nl);
570 	char *desc = event_long_desc(event, &dl);
571 
572 	/* If there isn't a description, don't create the sysfs file */
573 	if (!dl)
574 		return NULL;
575 
576 	return device_str_attr_create(name, nl, nonce, desc, dl);
577 }
578 
579 static int event_data_to_attrs(unsigned int ix, struct attribute **attrs,
580 			       struct hv_24x7_event_data *event, int nonce)
581 {
582 	*attrs = event_to_attr(ix, event, event->domain, nonce);
583 	if (!*attrs)
584 		return -1;
585 
586 	return 0;
587 }
588 
589 /* */
590 struct event_uniq {
591 	struct rb_node node;
592 	const char *name;
593 	int nl;
594 	unsigned int ct;
595 	unsigned int domain;
596 };
597 
598 static int memord(const void *d1, size_t s1, const void *d2, size_t s2)
599 {
600 	if (s1 < s2)
601 		return 1;
602 	if (s1 > s2)
603 		return -1;
604 
605 	return memcmp(d1, d2, s1);
606 }
607 
608 static int ev_uniq_ord(const void *v1, size_t s1, unsigned int d1,
609 		       const void *v2, size_t s2, unsigned int d2)
610 {
611 	int r = memord(v1, s1, v2, s2);
612 
613 	if (r)
614 		return r;
615 	if (d1 > d2)
616 		return 1;
617 	if (d2 > d1)
618 		return -1;
619 	return 0;
620 }
621 
622 static int event_uniq_add(struct rb_root *root, const char *name, int nl,
623 			  unsigned int domain)
624 {
625 	struct rb_node **new = &(root->rb_node), *parent = NULL;
626 	struct event_uniq *data;
627 
628 	/* Figure out where to put new node */
629 	while (*new) {
630 		struct event_uniq *it;
631 		int result;
632 
633 		it = rb_entry(*new, struct event_uniq, node);
634 		result = ev_uniq_ord(name, nl, domain, it->name, it->nl,
635 					it->domain);
636 
637 		parent = *new;
638 		if (result < 0)
639 			new = &((*new)->rb_left);
640 		else if (result > 0)
641 			new = &((*new)->rb_right);
642 		else {
643 			it->ct++;
644 			pr_info("found a duplicate event %.*s, ct=%u\n", nl,
645 						name, it->ct);
646 			return it->ct;
647 		}
648 	}
649 
650 	data = kmalloc(sizeof(*data), GFP_KERNEL);
651 	if (!data)
652 		return -ENOMEM;
653 
654 	*data = (struct event_uniq) {
655 		.name = name,
656 		.nl = nl,
657 		.ct = 0,
658 		.domain = domain,
659 	};
660 
661 	/* Add new node and rebalance tree. */
662 	rb_link_node(&data->node, parent, new);
663 	rb_insert_color(&data->node, root);
664 
665 	/* data->ct */
666 	return 0;
667 }
668 
669 static void event_uniq_destroy(struct rb_root *root)
670 {
671 	/*
672 	 * the strings we point to are in the giant block of memory filled by
673 	 * the catalog, and are freed separately.
674 	 */
675 	struct event_uniq *pos, *n;
676 
677 	rbtree_postorder_for_each_entry_safe(pos, n, root, node)
678 		kfree(pos);
679 }
680 
681 
682 /*
683  * ensure the event structure's sizes are self consistent and don't cause us to
684  * read outside of the event
685  *
686  * On success, return the event length in bytes.
687  * Otherwise, return -1 (and print as appropriate).
688  */
689 static ssize_t catalog_event_len_validate(struct hv_24x7_event_data *event,
690 					  size_t event_idx,
691 					  size_t event_data_bytes,
692 					  size_t event_entry_count,
693 					  size_t offset, void *end)
694 {
695 	ssize_t ev_len;
696 	void *ev_end, *calc_ev_end;
697 
698 	if (offset >= event_data_bytes)
699 		return -1;
700 
701 	if (event_idx >= event_entry_count) {
702 		pr_devel("catalog event data has %zu bytes of padding after last event\n",
703 				event_data_bytes - offset);
704 		return -1;
705 	}
706 
707 	if (!event_fixed_portion_is_within(event, end)) {
708 		pr_warn("event %zu fixed portion is not within range\n",
709 				event_idx);
710 		return -1;
711 	}
712 
713 	ev_len = be16_to_cpu(event->length);
714 
715 	if (ev_len % 16)
716 		pr_info("event %zu has length %zu not divisible by 16: event=%pK\n",
717 				event_idx, ev_len, event);
718 
719 	ev_end = (__u8 *)event + ev_len;
720 	if (ev_end > end) {
721 		pr_warn("event %zu has .length=%zu, ends after buffer end: ev_end=%pK > end=%pK, offset=%zu\n",
722 				event_idx, ev_len, ev_end, end,
723 				offset);
724 		return -1;
725 	}
726 
727 	calc_ev_end = event_end(event, end);
728 	if (!calc_ev_end) {
729 		pr_warn("event %zu has a calculated length which exceeds buffer length %zu: event=%pK end=%pK, offset=%zu\n",
730 			event_idx, event_data_bytes, event, end,
731 			offset);
732 		return -1;
733 	}
734 
735 	if (calc_ev_end > ev_end) {
736 		pr_warn("event %zu exceeds its own length: event=%pK, end=%pK, offset=%zu, calc_ev_end=%pK\n",
737 			event_idx, event, ev_end, offset, calc_ev_end);
738 		return -1;
739 	}
740 
741 	return ev_len;
742 }
743 
744 /*
745  * Return true incase of invalid or dummy events with names like RESERVED*
746  */
747 static bool ignore_event(const char *name)
748 {
749 	return strncmp(name, "RESERVED", 8) == 0;
750 }
751 
752 #define MAX_4K (SIZE_MAX / 4096)
753 
754 static int create_events_from_catalog(struct attribute ***events_,
755 				      struct attribute ***event_descs_,
756 				      struct attribute ***event_long_descs_)
757 {
758 	long hret;
759 	size_t catalog_len, catalog_page_len, event_entry_count,
760 	       event_data_len, event_data_offs,
761 	       event_data_bytes, junk_events, event_idx, event_attr_ct, i,
762 	       attr_max, event_idx_last, desc_ct, long_desc_ct;
763 	ssize_t ct, ev_len;
764 	uint64_t catalog_version_num;
765 	struct attribute **events, **event_descs, **event_long_descs;
766 	struct hv_24x7_catalog_page_0 *page_0 =
767 		kmem_cache_alloc(hv_page_cache, GFP_KERNEL);
768 	void *page = page_0;
769 	void *event_data, *end;
770 	struct hv_24x7_event_data *event;
771 	struct rb_root ev_uniq = RB_ROOT;
772 	int ret = 0;
773 
774 	if (!page) {
775 		ret = -ENOMEM;
776 		goto e_out;
777 	}
778 
779 	hret = h_get_24x7_catalog_page(page, 0, 0);
780 	if (hret) {
781 		ret = -EIO;
782 		goto e_free;
783 	}
784 
785 	catalog_version_num = be64_to_cpu(page_0->version);
786 	catalog_page_len = be32_to_cpu(page_0->length);
787 
788 	if (MAX_4K < catalog_page_len) {
789 		pr_err("invalid page count: %zu\n", catalog_page_len);
790 		ret = -EIO;
791 		goto e_free;
792 	}
793 
794 	catalog_len = catalog_page_len * 4096;
795 
796 	event_entry_count = be16_to_cpu(page_0->event_entry_count);
797 	event_data_offs   = be16_to_cpu(page_0->event_data_offs);
798 	event_data_len    = be16_to_cpu(page_0->event_data_len);
799 
800 	pr_devel("cv %llu cl %zu eec %zu edo %zu edl %zu\n",
801 			catalog_version_num, catalog_len,
802 			event_entry_count, event_data_offs, event_data_len);
803 
804 	if ((MAX_4K < event_data_len)
805 			|| (MAX_4K < event_data_offs)
806 			|| (MAX_4K - event_data_offs < event_data_len)) {
807 		pr_err("invalid event data offs %zu and/or len %zu\n",
808 				event_data_offs, event_data_len);
809 		ret = -EIO;
810 		goto e_free;
811 	}
812 
813 	if ((event_data_offs + event_data_len) > catalog_page_len) {
814 		pr_err("event data %zu-%zu does not fit inside catalog 0-%zu\n",
815 				event_data_offs,
816 				event_data_offs + event_data_len,
817 				catalog_page_len);
818 		ret = -EIO;
819 		goto e_free;
820 	}
821 
822 	if (SIZE_MAX - 1 < event_entry_count) {
823 		pr_err("event_entry_count %zu is invalid\n", event_entry_count);
824 		ret = -EIO;
825 		goto e_free;
826 	}
827 
828 	event_data_bytes = event_data_len * 4096;
829 
830 	/*
831 	 * event data can span several pages, events can cross between these
832 	 * pages. Use vmalloc to make this easier.
833 	 */
834 	event_data = vmalloc(event_data_bytes);
835 	if (!event_data) {
836 		pr_err("could not allocate event data\n");
837 		ret = -ENOMEM;
838 		goto e_free;
839 	}
840 
841 	end = event_data + event_data_bytes;
842 
843 	/*
844 	 * using vmalloc_to_phys() like this only works if PAGE_SIZE is
845 	 * divisible by 4096
846 	 */
847 	BUILD_BUG_ON(PAGE_SIZE % 4096);
848 
849 	for (i = 0; i < event_data_len; i++) {
850 		hret = h_get_24x7_catalog_page_(
851 				vmalloc_to_phys(event_data + i * 4096),
852 				catalog_version_num,
853 				i + event_data_offs);
854 		if (hret) {
855 			pr_err("Failed to get event data in page %zu: rc=%ld\n",
856 			       i + event_data_offs, hret);
857 			ret = -EIO;
858 			goto e_event_data;
859 		}
860 	}
861 
862 	/*
863 	 * scan the catalog to determine the number of attributes we need, and
864 	 * verify it at the same time.
865 	 */
866 	for (junk_events = 0, event = event_data, event_idx = 0, attr_max = 0;
867 	     ;
868 	     event_idx++, event = (void *)event + ev_len) {
869 		size_t offset = (void *)event - (void *)event_data;
870 		char *name;
871 		int nl;
872 
873 		ev_len = catalog_event_len_validate(event, event_idx,
874 						    event_data_bytes,
875 						    event_entry_count,
876 						    offset, end);
877 		if (ev_len < 0)
878 			break;
879 
880 		name = event_name(event, &nl);
881 
882 		if (ignore_event(name)) {
883 			junk_events++;
884 			continue;
885 		}
886 		if (event->event_group_record_len == 0) {
887 			pr_devel("invalid event %zu (%.*s): group_record_len == 0, skipping\n",
888 					event_idx, nl, name);
889 			junk_events++;
890 			continue;
891 		}
892 
893 		if (!catalog_entry_domain_is_valid(event->domain)) {
894 			pr_info("event %zu (%.*s) has invalid domain %d\n",
895 					event_idx, nl, name, event->domain);
896 			junk_events++;
897 			continue;
898 		}
899 
900 		attr_max++;
901 	}
902 
903 	event_idx_last = event_idx;
904 	if (event_idx_last != event_entry_count)
905 		pr_warn("event buffer ended before listed # of events were parsed (got %zu, wanted %zu, junk %zu)\n",
906 				event_idx_last, event_entry_count, junk_events);
907 
908 	events = kmalloc_array(attr_max + 1, sizeof(*events), GFP_KERNEL);
909 	if (!events) {
910 		ret = -ENOMEM;
911 		goto e_event_data;
912 	}
913 
914 	event_descs = kmalloc_array(event_idx + 1, sizeof(*event_descs),
915 				GFP_KERNEL);
916 	if (!event_descs) {
917 		ret = -ENOMEM;
918 		goto e_event_attrs;
919 	}
920 
921 	event_long_descs = kmalloc_array(event_idx + 1,
922 			sizeof(*event_long_descs), GFP_KERNEL);
923 	if (!event_long_descs) {
924 		ret = -ENOMEM;
925 		goto e_event_descs;
926 	}
927 
928 	/* Iterate over the catalog filling in the attribute vector */
929 	for (junk_events = 0, event_attr_ct = 0, desc_ct = 0, long_desc_ct = 0,
930 				event = event_data, event_idx = 0;
931 			event_idx < event_idx_last;
932 			event_idx++, ev_len = be16_to_cpu(event->length),
933 				event = (void *)event + ev_len) {
934 		char *name;
935 		int nl;
936 		int nonce;
937 		/*
938 		 * these are the only "bad" events that are intermixed and that
939 		 * we can ignore without issue. make sure to skip them here
940 		 */
941 		if (event->event_group_record_len == 0)
942 			continue;
943 		if (!catalog_entry_domain_is_valid(event->domain))
944 			continue;
945 
946 		name  = event_name(event, &nl);
947 		if (ignore_event(name))
948 			continue;
949 
950 		nonce = event_uniq_add(&ev_uniq, name, nl, event->domain);
951 		ct    = event_data_to_attrs(event_idx, events + event_attr_ct,
952 					    event, nonce);
953 		if (ct < 0) {
954 			pr_warn("event %zu (%.*s) creation failure, skipping\n",
955 				event_idx, nl, name);
956 			junk_events++;
957 		} else {
958 			event_attr_ct++;
959 			event_descs[desc_ct] = event_to_desc_attr(event, nonce);
960 			if (event_descs[desc_ct])
961 				desc_ct++;
962 			event_long_descs[long_desc_ct] =
963 					event_to_long_desc_attr(event, nonce);
964 			if (event_long_descs[long_desc_ct])
965 				long_desc_ct++;
966 		}
967 	}
968 
969 	pr_info("read %zu catalog entries, created %zu event attrs (%zu failures), %zu descs\n",
970 			event_idx, event_attr_ct, junk_events, desc_ct);
971 
972 	events[event_attr_ct] = NULL;
973 	event_descs[desc_ct] = NULL;
974 	event_long_descs[long_desc_ct] = NULL;
975 
976 	event_uniq_destroy(&ev_uniq);
977 	vfree(event_data);
978 	kmem_cache_free(hv_page_cache, page);
979 
980 	*events_ = events;
981 	*event_descs_ = event_descs;
982 	*event_long_descs_ = event_long_descs;
983 	return 0;
984 
985 e_event_descs:
986 	kfree(event_descs);
987 e_event_attrs:
988 	kfree(events);
989 e_event_data:
990 	vfree(event_data);
991 e_free:
992 	kmem_cache_free(hv_page_cache, page);
993 e_out:
994 	*events_ = NULL;
995 	*event_descs_ = NULL;
996 	*event_long_descs_ = NULL;
997 	return ret;
998 }
999 
1000 static ssize_t catalog_read(struct file *filp, struct kobject *kobj,
1001 			    struct bin_attribute *bin_attr, char *buf,
1002 			    loff_t offset, size_t count)
1003 {
1004 	long hret;
1005 	ssize_t ret = 0;
1006 	size_t catalog_len = 0, catalog_page_len = 0;
1007 	loff_t page_offset = 0;
1008 	loff_t offset_in_page;
1009 	size_t copy_len;
1010 	uint64_t catalog_version_num = 0;
1011 	void *page = kmem_cache_alloc(hv_page_cache, GFP_USER);
1012 	struct hv_24x7_catalog_page_0 *page_0 = page;
1013 
1014 	if (!page)
1015 		return -ENOMEM;
1016 
1017 	hret = h_get_24x7_catalog_page(page, 0, 0);
1018 	if (hret) {
1019 		ret = -EIO;
1020 		goto e_free;
1021 	}
1022 
1023 	catalog_version_num = be64_to_cpu(page_0->version);
1024 	catalog_page_len = be32_to_cpu(page_0->length);
1025 	catalog_len = catalog_page_len * 4096;
1026 
1027 	page_offset = offset / 4096;
1028 	offset_in_page = offset % 4096;
1029 
1030 	if (page_offset >= catalog_page_len)
1031 		goto e_free;
1032 
1033 	if (page_offset != 0) {
1034 		hret = h_get_24x7_catalog_page(page, catalog_version_num,
1035 					       page_offset);
1036 		if (hret) {
1037 			ret = -EIO;
1038 			goto e_free;
1039 		}
1040 	}
1041 
1042 	copy_len = 4096 - offset_in_page;
1043 	if (copy_len > count)
1044 		copy_len = count;
1045 
1046 	memcpy(buf, page+offset_in_page, copy_len);
1047 	ret = copy_len;
1048 
1049 e_free:
1050 	if (hret)
1051 		pr_err("h_get_24x7_catalog_page(ver=%lld, page=%lld) failed:"
1052 		       " rc=%ld\n",
1053 		       catalog_version_num, page_offset, hret);
1054 	kmem_cache_free(hv_page_cache, page);
1055 
1056 	pr_devel("catalog_read: offset=%lld(%lld) count=%zu "
1057 			"catalog_len=%zu(%zu) => %zd\n", offset, page_offset,
1058 			count, catalog_len, catalog_page_len, ret);
1059 
1060 	return ret;
1061 }
1062 
1063 static ssize_t domains_show(struct device *dev, struct device_attribute *attr,
1064 			    char *page)
1065 {
1066 	int d, n, count = 0;
1067 	const char *str;
1068 
1069 	for (d = 0; d < HV_PERF_DOMAIN_MAX; d++) {
1070 		str = domain_name(d);
1071 		if (!str)
1072 			continue;
1073 
1074 		n = sprintf(page, "%d: %s\n", d, str);
1075 		if (n < 0)
1076 			break;
1077 
1078 		count += n;
1079 		page += n;
1080 	}
1081 	return count;
1082 }
1083 
1084 #define PAGE_0_ATTR(_name, _fmt, _expr)				\
1085 static ssize_t _name##_show(struct device *dev,			\
1086 			    struct device_attribute *dev_attr,	\
1087 			    char *buf)				\
1088 {								\
1089 	long hret;						\
1090 	ssize_t ret = 0;					\
1091 	void *page = kmem_cache_alloc(hv_page_cache, GFP_USER);	\
1092 	struct hv_24x7_catalog_page_0 *page_0 = page;		\
1093 	if (!page)						\
1094 		return -ENOMEM;					\
1095 	hret = h_get_24x7_catalog_page(page, 0, 0);		\
1096 	if (hret) {						\
1097 		ret = -EIO;					\
1098 		goto e_free;					\
1099 	}							\
1100 	ret = sprintf(buf, _fmt, _expr);			\
1101 e_free:								\
1102 	kmem_cache_free(hv_page_cache, page);			\
1103 	return ret;						\
1104 }								\
1105 static DEVICE_ATTR_RO(_name)
1106 
1107 PAGE_0_ATTR(catalog_version, "%lld\n",
1108 		(unsigned long long)be64_to_cpu(page_0->version));
1109 PAGE_0_ATTR(catalog_len, "%lld\n",
1110 		(unsigned long long)be32_to_cpu(page_0->length) * 4096);
1111 static BIN_ATTR_RO(catalog, 0/* real length varies */);
1112 static DEVICE_ATTR_RO(domains);
1113 static DEVICE_ATTR_RO(sockets);
1114 static DEVICE_ATTR_RO(chipspersocket);
1115 static DEVICE_ATTR_RO(coresperchip);
1116 static DEVICE_ATTR_RO(cpumask);
1117 
1118 static struct bin_attribute *if_bin_attrs[] = {
1119 	&bin_attr_catalog,
1120 	NULL,
1121 };
1122 
1123 static struct attribute *cpumask_attrs[] = {
1124 	&dev_attr_cpumask.attr,
1125 	NULL,
1126 };
1127 
1128 static const struct attribute_group cpumask_attr_group = {
1129 	.attrs = cpumask_attrs,
1130 };
1131 
1132 static struct attribute *if_attrs[] = {
1133 	&dev_attr_catalog_len.attr,
1134 	&dev_attr_catalog_version.attr,
1135 	&dev_attr_domains.attr,
1136 	&dev_attr_sockets.attr,
1137 	&dev_attr_chipspersocket.attr,
1138 	&dev_attr_coresperchip.attr,
1139 	NULL,
1140 };
1141 
1142 static const struct attribute_group if_group = {
1143 	.name = "interface",
1144 	.bin_attrs = if_bin_attrs,
1145 	.attrs = if_attrs,
1146 };
1147 
1148 static const struct attribute_group *attr_groups[] = {
1149 	&format_group,
1150 	&event_group,
1151 	&event_desc_group,
1152 	&event_long_desc_group,
1153 	&if_group,
1154 	&cpumask_attr_group,
1155 	NULL,
1156 };
1157 
1158 /*
1159  * Start the process for a new H_GET_24x7_DATA hcall.
1160  */
1161 static void init_24x7_request(struct hv_24x7_request_buffer *request_buffer,
1162 			      struct hv_24x7_data_result_buffer *result_buffer)
1163 {
1164 
1165 	memset(request_buffer, 0, H24x7_DATA_BUFFER_SIZE);
1166 	memset(result_buffer, 0, H24x7_DATA_BUFFER_SIZE);
1167 
1168 	request_buffer->interface_version = interface_version;
1169 	/* memset above set request_buffer->num_requests to 0 */
1170 }
1171 
1172 /*
1173  * Commit (i.e perform) the H_GET_24x7_DATA hcall using the data collected
1174  * by 'init_24x7_request()' and 'add_event_to_24x7_request()'.
1175  */
1176 static int make_24x7_request(struct hv_24x7_request_buffer *request_buffer,
1177 			     struct hv_24x7_data_result_buffer *result_buffer)
1178 {
1179 	long ret;
1180 
1181 	/*
1182 	 * NOTE: Due to variable number of array elements in request and
1183 	 *	 result buffer(s), sizeof() is not reliable. Use the actual
1184 	 *	 allocated buffer size, H24x7_DATA_BUFFER_SIZE.
1185 	 */
1186 	ret = plpar_hcall_norets(H_GET_24X7_DATA,
1187 			virt_to_phys(request_buffer), H24x7_DATA_BUFFER_SIZE,
1188 			virt_to_phys(result_buffer),  H24x7_DATA_BUFFER_SIZE);
1189 
1190 	if (ret) {
1191 		struct hv_24x7_request *req;
1192 
1193 		req = request_buffer->requests;
1194 		pr_notice_ratelimited("hcall failed: [%d %#x %#x %d] => ret 0x%lx (%ld) detail=0x%x failing ix=%x\n",
1195 				      req->performance_domain, req->data_offset,
1196 				      req->starting_ix, req->starting_lpar_ix,
1197 				      ret, ret, result_buffer->detailed_rc,
1198 				      result_buffer->failing_request_ix);
1199 		return -EIO;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Add the given @event to the next slot in the 24x7 request_buffer.
1207  *
1208  * Note that H_GET_24X7_DATA hcall allows reading several counters'
1209  * values in a single HCALL. We expect the caller to add events to the
1210  * request buffer one by one, make the HCALL and process the results.
1211  */
1212 static int add_event_to_24x7_request(struct perf_event *event,
1213 				struct hv_24x7_request_buffer *request_buffer)
1214 {
1215 	u16 idx;
1216 	int i;
1217 	size_t req_size;
1218 	struct hv_24x7_request *req;
1219 
1220 	if (request_buffer->num_requests >=
1221 	    max_num_requests(request_buffer->interface_version)) {
1222 		pr_devel("Too many requests for 24x7 HCALL %d\n",
1223 				request_buffer->num_requests);
1224 		return -EINVAL;
1225 	}
1226 
1227 	switch (event_get_domain(event)) {
1228 	case HV_PERF_DOMAIN_PHYS_CHIP:
1229 		idx = event_get_chip(event);
1230 		break;
1231 	case HV_PERF_DOMAIN_PHYS_CORE:
1232 		idx = event_get_core(event);
1233 		break;
1234 	default:
1235 		idx = event_get_vcpu(event);
1236 	}
1237 
1238 	req_size = H24x7_REQUEST_SIZE(request_buffer->interface_version);
1239 
1240 	i = request_buffer->num_requests++;
1241 	req = (void *) request_buffer->requests + i * req_size;
1242 
1243 	req->performance_domain = event_get_domain(event);
1244 	req->data_size = cpu_to_be16(8);
1245 	req->data_offset = cpu_to_be32(event_get_offset(event));
1246 	req->starting_lpar_ix = cpu_to_be16(event_get_lpar(event));
1247 	req->max_num_lpars = cpu_to_be16(1);
1248 	req->starting_ix = cpu_to_be16(idx);
1249 	req->max_ix = cpu_to_be16(1);
1250 
1251 	if (request_buffer->interface_version > 1) {
1252 		if (domain_needs_aggregation(req->performance_domain))
1253 			req->max_num_thread_groups = -1;
1254 		else if (req->performance_domain != HV_PERF_DOMAIN_PHYS_CHIP) {
1255 			req->starting_thread_group_ix = idx % 2;
1256 			req->max_num_thread_groups = 1;
1257 		}
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 /**
1264  * get_count_from_result - get event count from all result elements in result
1265  *
1266  * If the event corresponding to this result needs aggregation of the result
1267  * element values, then this function does that.
1268  *
1269  * @event:	Event associated with @res.
1270  * @resb:	Result buffer containing @res.
1271  * @res:	Result to work on.
1272  * @countp:	Output variable containing the event count.
1273  * @next:	Optional output variable pointing to the next result in @resb.
1274  */
1275 static int get_count_from_result(struct perf_event *event,
1276 				 struct hv_24x7_data_result_buffer *resb,
1277 				 struct hv_24x7_result *res, u64 *countp,
1278 				 struct hv_24x7_result **next)
1279 {
1280 	u16 num_elements = be16_to_cpu(res->num_elements_returned);
1281 	u16 data_size = be16_to_cpu(res->result_element_data_size);
1282 	unsigned int data_offset;
1283 	void *element_data;
1284 	int i;
1285 	u64 count;
1286 
1287 	/*
1288 	 * We can bail out early if the result is empty.
1289 	 */
1290 	if (!num_elements) {
1291 		pr_debug("Result of request %hhu is empty, nothing to do\n",
1292 			 res->result_ix);
1293 
1294 		if (next)
1295 			*next = (struct hv_24x7_result *) res->elements;
1296 
1297 		return -ENODATA;
1298 	}
1299 
1300 	/*
1301 	 * Since we always specify 1 as the maximum for the smallest resource
1302 	 * we're requesting, there should to be only one element per result.
1303 	 * Except when an event needs aggregation, in which case there are more.
1304 	 */
1305 	if (num_elements != 1 &&
1306 	    !domain_needs_aggregation(event_get_domain(event))) {
1307 		pr_err("Error: result of request %hhu has %hu elements\n",
1308 		       res->result_ix, num_elements);
1309 
1310 		return -EIO;
1311 	}
1312 
1313 	if (data_size != sizeof(u64)) {
1314 		pr_debug("Error: result of request %hhu has data of %hu bytes\n",
1315 			 res->result_ix, data_size);
1316 
1317 		return -ENOTSUPP;
1318 	}
1319 
1320 	if (resb->interface_version == 1)
1321 		data_offset = offsetof(struct hv_24x7_result_element_v1,
1322 				       element_data);
1323 	else
1324 		data_offset = offsetof(struct hv_24x7_result_element_v2,
1325 				       element_data);
1326 
1327 	/* Go through the result elements in the result. */
1328 	for (i = count = 0, element_data = res->elements + data_offset;
1329 	     i < num_elements;
1330 	     i++, element_data += data_size + data_offset)
1331 		count += be64_to_cpu(*((__be64 *)element_data));
1332 
1333 	*countp = count;
1334 
1335 	/* The next result is after the last result element. */
1336 	if (next)
1337 		*next = element_data - data_offset;
1338 
1339 	return 0;
1340 }
1341 
1342 static int single_24x7_request(struct perf_event *event, u64 *count)
1343 {
1344 	int ret;
1345 	struct hv_24x7_request_buffer *request_buffer;
1346 	struct hv_24x7_data_result_buffer *result_buffer;
1347 
1348 	BUILD_BUG_ON(sizeof(*request_buffer) > 4096);
1349 	BUILD_BUG_ON(sizeof(*result_buffer) > 4096);
1350 
1351 	request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1352 	result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1353 
1354 	init_24x7_request(request_buffer, result_buffer);
1355 
1356 	ret = add_event_to_24x7_request(event, request_buffer);
1357 	if (ret)
1358 		goto out;
1359 
1360 	ret = make_24x7_request(request_buffer, result_buffer);
1361 	if (ret)
1362 		goto out;
1363 
1364 	/* process result from hcall */
1365 	ret = get_count_from_result(event, result_buffer,
1366 				    result_buffer->results, count, NULL);
1367 
1368 out:
1369 	put_cpu_var(hv_24x7_reqb);
1370 	put_cpu_var(hv_24x7_resb);
1371 	return ret;
1372 }
1373 
1374 
1375 static int h_24x7_event_init(struct perf_event *event)
1376 {
1377 	struct hv_perf_caps caps;
1378 	unsigned int domain;
1379 	unsigned long hret;
1380 	u64 ct;
1381 
1382 	/* Not our event */
1383 	if (event->attr.type != event->pmu->type)
1384 		return -ENOENT;
1385 
1386 	/* Unused areas must be 0 */
1387 	if (event_get_reserved1(event) ||
1388 	    event_get_reserved2(event) ||
1389 	    event_get_reserved3(event)) {
1390 		pr_devel("reserved set when forbidden 0x%llx(0x%llx) 0x%llx(0x%llx) 0x%llx(0x%llx)\n",
1391 				event->attr.config,
1392 				event_get_reserved1(event),
1393 				event->attr.config1,
1394 				event_get_reserved2(event),
1395 				event->attr.config2,
1396 				event_get_reserved3(event));
1397 		return -EINVAL;
1398 	}
1399 
1400 	/* no branch sampling */
1401 	if (has_branch_stack(event))
1402 		return -EOPNOTSUPP;
1403 
1404 	/* offset must be 8 byte aligned */
1405 	if (event_get_offset(event) % 8) {
1406 		pr_devel("bad alignment\n");
1407 		return -EINVAL;
1408 	}
1409 
1410 	domain = event_get_domain(event);
1411 	if (domain  == 0 || domain >= HV_PERF_DOMAIN_MAX) {
1412 		pr_devel("invalid domain %d\n", domain);
1413 		return -EINVAL;
1414 	}
1415 
1416 	hret = hv_perf_caps_get(&caps);
1417 	if (hret) {
1418 		pr_devel("could not get capabilities: rc=%ld\n", hret);
1419 		return -EIO;
1420 	}
1421 
1422 	/* Physical domains & other lpars require extra capabilities */
1423 	if (!caps.collect_privileged && (is_physical_domain(domain) ||
1424 		(event_get_lpar(event) != event_get_lpar_max()))) {
1425 		pr_devel("hv permissions disallow: is_physical_domain:%d, lpar=0x%llx\n",
1426 				is_physical_domain(domain),
1427 				event_get_lpar(event));
1428 		return -EACCES;
1429 	}
1430 
1431 	/* Get the initial value of the counter for this event */
1432 	if (single_24x7_request(event, &ct)) {
1433 		pr_devel("test hcall failed\n");
1434 		return -EIO;
1435 	}
1436 	(void)local64_xchg(&event->hw.prev_count, ct);
1437 
1438 	return 0;
1439 }
1440 
1441 static u64 h_24x7_get_value(struct perf_event *event)
1442 {
1443 	u64 ct;
1444 
1445 	if (single_24x7_request(event, &ct))
1446 		/* We checked this in event init, shouldn't fail here... */
1447 		return 0;
1448 
1449 	return ct;
1450 }
1451 
1452 static void update_event_count(struct perf_event *event, u64 now)
1453 {
1454 	s64 prev;
1455 
1456 	prev = local64_xchg(&event->hw.prev_count, now);
1457 	local64_add(now - prev, &event->count);
1458 }
1459 
1460 static void h_24x7_event_read(struct perf_event *event)
1461 {
1462 	u64 now;
1463 	struct hv_24x7_request_buffer *request_buffer;
1464 	struct hv_24x7_hw *h24x7hw;
1465 	int txn_flags;
1466 
1467 	txn_flags = __this_cpu_read(hv_24x7_txn_flags);
1468 
1469 	/*
1470 	 * If in a READ transaction, add this counter to the list of
1471 	 * counters to read during the next HCALL (i.e commit_txn()).
1472 	 * If not in a READ transaction, go ahead and make the HCALL
1473 	 * to read this counter by itself.
1474 	 */
1475 
1476 	if (txn_flags & PERF_PMU_TXN_READ) {
1477 		int i;
1478 		int ret;
1479 
1480 		if (__this_cpu_read(hv_24x7_txn_err))
1481 			return;
1482 
1483 		request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1484 
1485 		ret = add_event_to_24x7_request(event, request_buffer);
1486 		if (ret) {
1487 			__this_cpu_write(hv_24x7_txn_err, ret);
1488 		} else {
1489 			/*
1490 			 * Associate the event with the HCALL request index,
1491 			 * so ->commit_txn() can quickly find/update count.
1492 			 */
1493 			i = request_buffer->num_requests - 1;
1494 
1495 			h24x7hw = &get_cpu_var(hv_24x7_hw);
1496 			h24x7hw->events[i] = event;
1497 			put_cpu_var(h24x7hw);
1498 		}
1499 
1500 		put_cpu_var(hv_24x7_reqb);
1501 	} else {
1502 		now = h_24x7_get_value(event);
1503 		update_event_count(event, now);
1504 	}
1505 }
1506 
1507 static void h_24x7_event_start(struct perf_event *event, int flags)
1508 {
1509 	if (flags & PERF_EF_RELOAD)
1510 		local64_set(&event->hw.prev_count, h_24x7_get_value(event));
1511 }
1512 
1513 static void h_24x7_event_stop(struct perf_event *event, int flags)
1514 {
1515 	h_24x7_event_read(event);
1516 }
1517 
1518 static int h_24x7_event_add(struct perf_event *event, int flags)
1519 {
1520 	if (flags & PERF_EF_START)
1521 		h_24x7_event_start(event, flags);
1522 
1523 	return 0;
1524 }
1525 
1526 /*
1527  * 24x7 counters only support READ transactions. They are
1528  * always counting and dont need/support ADD transactions.
1529  * Cache the flags, but otherwise ignore transactions that
1530  * are not PERF_PMU_TXN_READ.
1531  */
1532 static void h_24x7_event_start_txn(struct pmu *pmu, unsigned int flags)
1533 {
1534 	struct hv_24x7_request_buffer *request_buffer;
1535 	struct hv_24x7_data_result_buffer *result_buffer;
1536 
1537 	/* We should not be called if we are already in a txn */
1538 	WARN_ON_ONCE(__this_cpu_read(hv_24x7_txn_flags));
1539 
1540 	__this_cpu_write(hv_24x7_txn_flags, flags);
1541 	if (flags & ~PERF_PMU_TXN_READ)
1542 		return;
1543 
1544 	request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1545 	result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1546 
1547 	init_24x7_request(request_buffer, result_buffer);
1548 
1549 	put_cpu_var(hv_24x7_resb);
1550 	put_cpu_var(hv_24x7_reqb);
1551 }
1552 
1553 /*
1554  * Clean up transaction state.
1555  *
1556  * NOTE: Ignore state of request and result buffers for now.
1557  *	 We will initialize them during the next read/txn.
1558  */
1559 static void reset_txn(void)
1560 {
1561 	__this_cpu_write(hv_24x7_txn_flags, 0);
1562 	__this_cpu_write(hv_24x7_txn_err, 0);
1563 }
1564 
1565 /*
1566  * 24x7 counters only support READ transactions. They are always counting
1567  * and dont need/support ADD transactions. Clear ->txn_flags but otherwise
1568  * ignore transactions that are not of type PERF_PMU_TXN_READ.
1569  *
1570  * For READ transactions, submit all pending 24x7 requests (i.e requests
1571  * that were queued by h_24x7_event_read()), to the hypervisor and update
1572  * the event counts.
1573  */
1574 static int h_24x7_event_commit_txn(struct pmu *pmu)
1575 {
1576 	struct hv_24x7_request_buffer *request_buffer;
1577 	struct hv_24x7_data_result_buffer *result_buffer;
1578 	struct hv_24x7_result *res, *next_res;
1579 	u64 count;
1580 	int i, ret, txn_flags;
1581 	struct hv_24x7_hw *h24x7hw;
1582 
1583 	txn_flags = __this_cpu_read(hv_24x7_txn_flags);
1584 	WARN_ON_ONCE(!txn_flags);
1585 
1586 	ret = 0;
1587 	if (txn_flags & ~PERF_PMU_TXN_READ)
1588 		goto out;
1589 
1590 	ret = __this_cpu_read(hv_24x7_txn_err);
1591 	if (ret)
1592 		goto out;
1593 
1594 	request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1595 	result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1596 
1597 	ret = make_24x7_request(request_buffer, result_buffer);
1598 	if (ret)
1599 		goto put_reqb;
1600 
1601 	h24x7hw = &get_cpu_var(hv_24x7_hw);
1602 
1603 	/* Go through results in the result buffer to update event counts. */
1604 	for (i = 0, res = result_buffer->results;
1605 	     i < result_buffer->num_results; i++, res = next_res) {
1606 		struct perf_event *event = h24x7hw->events[res->result_ix];
1607 
1608 		ret = get_count_from_result(event, result_buffer, res, &count,
1609 					    &next_res);
1610 		if (ret)
1611 			break;
1612 
1613 		update_event_count(event, count);
1614 	}
1615 
1616 	put_cpu_var(hv_24x7_hw);
1617 
1618 put_reqb:
1619 	put_cpu_var(hv_24x7_resb);
1620 	put_cpu_var(hv_24x7_reqb);
1621 out:
1622 	reset_txn();
1623 	return ret;
1624 }
1625 
1626 /*
1627  * 24x7 counters only support READ transactions. They are always counting
1628  * and dont need/support ADD transactions. However, regardless of type
1629  * of transaction, all we need to do is cleanup, so we don't have to check
1630  * the type of transaction.
1631  */
1632 static void h_24x7_event_cancel_txn(struct pmu *pmu)
1633 {
1634 	WARN_ON_ONCE(!__this_cpu_read(hv_24x7_txn_flags));
1635 	reset_txn();
1636 }
1637 
1638 static struct pmu h_24x7_pmu = {
1639 	.task_ctx_nr = perf_invalid_context,
1640 
1641 	.name = "hv_24x7",
1642 	.attr_groups = attr_groups,
1643 	.event_init  = h_24x7_event_init,
1644 	.add         = h_24x7_event_add,
1645 	.del         = h_24x7_event_stop,
1646 	.start       = h_24x7_event_start,
1647 	.stop        = h_24x7_event_stop,
1648 	.read        = h_24x7_event_read,
1649 	.start_txn   = h_24x7_event_start_txn,
1650 	.commit_txn  = h_24x7_event_commit_txn,
1651 	.cancel_txn  = h_24x7_event_cancel_txn,
1652 	.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
1653 };
1654 
1655 static int ppc_hv_24x7_cpu_online(unsigned int cpu)
1656 {
1657 	if (cpumask_empty(&hv_24x7_cpumask))
1658 		cpumask_set_cpu(cpu, &hv_24x7_cpumask);
1659 
1660 	return 0;
1661 }
1662 
1663 static int ppc_hv_24x7_cpu_offline(unsigned int cpu)
1664 {
1665 	int target;
1666 
1667 	/* Check if exiting cpu is used for collecting 24x7 events */
1668 	if (!cpumask_test_and_clear_cpu(cpu, &hv_24x7_cpumask))
1669 		return 0;
1670 
1671 	/* Find a new cpu to collect 24x7 events */
1672 	target = cpumask_last(cpu_active_mask);
1673 
1674 	if (target < 0 || target >= nr_cpu_ids) {
1675 		pr_err("hv_24x7: CPU hotplug init failed\n");
1676 		return -1;
1677 	}
1678 
1679 	/* Migrate 24x7 events to the new target */
1680 	cpumask_set_cpu(target, &hv_24x7_cpumask);
1681 	perf_pmu_migrate_context(&h_24x7_pmu, cpu, target);
1682 
1683 	return 0;
1684 }
1685 
1686 static int hv_24x7_cpu_hotplug_init(void)
1687 {
1688 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_HV_24x7_ONLINE,
1689 			  "perf/powerpc/hv_24x7:online",
1690 			  ppc_hv_24x7_cpu_online,
1691 			  ppc_hv_24x7_cpu_offline);
1692 }
1693 
1694 static int hv_24x7_init(void)
1695 {
1696 	int r;
1697 	unsigned long hret;
1698 	unsigned int pvr = mfspr(SPRN_PVR);
1699 	struct hv_perf_caps caps;
1700 
1701 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1702 		pr_debug("not a virtualized system, not enabling\n");
1703 		return -ENODEV;
1704 	}
1705 
1706 	/* POWER8 only supports v1, while POWER9 only supports v2. */
1707 	if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
1708 	    PVR_VER(pvr) == PVR_POWER8NVL)
1709 		interface_version = 1;
1710 	else {
1711 		interface_version = 2;
1712 
1713 		/* SMT8 in POWER9 needs to aggregate result elements. */
1714 		if (threads_per_core == 8)
1715 			aggregate_result_elements = true;
1716 	}
1717 
1718 	hret = hv_perf_caps_get(&caps);
1719 	if (hret) {
1720 		pr_debug("could not obtain capabilities, not enabling, rc=%ld\n",
1721 				hret);
1722 		return -ENODEV;
1723 	}
1724 
1725 	hv_page_cache = kmem_cache_create("hv-page-4096", 4096, 4096, 0, NULL);
1726 	if (!hv_page_cache)
1727 		return -ENOMEM;
1728 
1729 	/* sampling not supported */
1730 	h_24x7_pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1731 
1732 	r = create_events_from_catalog(&event_group.attrs,
1733 				   &event_desc_group.attrs,
1734 				   &event_long_desc_group.attrs);
1735 
1736 	if (r)
1737 		return r;
1738 
1739 	/* init cpuhotplug */
1740 	r = hv_24x7_cpu_hotplug_init();
1741 	if (r)
1742 		return r;
1743 
1744 	r = perf_pmu_register(&h_24x7_pmu, h_24x7_pmu.name, -1);
1745 	if (r)
1746 		return r;
1747 
1748 	read_24x7_sys_info();
1749 
1750 	return 0;
1751 }
1752 
1753 device_initcall(hv_24x7_init);
1754