1 /* 2 * Performance event support - powerpc architecture code 3 * 4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/hardirq.h> 16 #include <linux/uaccess.h> 17 #include <asm/reg.h> 18 #include <asm/pmc.h> 19 #include <asm/machdep.h> 20 #include <asm/firmware.h> 21 #include <asm/ptrace.h> 22 #include <asm/code-patching.h> 23 24 #define BHRB_MAX_ENTRIES 32 25 #define BHRB_TARGET 0x0000000000000002 26 #define BHRB_PREDICTION 0x0000000000000001 27 #define BHRB_EA 0xFFFFFFFFFFFFFFFC 28 29 struct cpu_hw_events { 30 int n_events; 31 int n_percpu; 32 int disabled; 33 int n_added; 34 int n_limited; 35 u8 pmcs_enabled; 36 struct perf_event *event[MAX_HWEVENTS]; 37 u64 events[MAX_HWEVENTS]; 38 unsigned int flags[MAX_HWEVENTS]; 39 unsigned long mmcr[3]; 40 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 41 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 42 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 43 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 44 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 45 46 unsigned int group_flag; 47 int n_txn_start; 48 49 /* BHRB bits */ 50 u64 bhrb_filter; /* BHRB HW branch filter */ 51 int bhrb_users; 52 void *bhrb_context; 53 struct perf_branch_stack bhrb_stack; 54 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 55 }; 56 57 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 58 59 struct power_pmu *ppmu; 60 61 /* 62 * Normally, to ignore kernel events we set the FCS (freeze counters 63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 64 * hypervisor bit set in the MSR, or if we are running on a processor 65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 66 * then we need to use the FCHV bit to ignore kernel events. 67 */ 68 static unsigned int freeze_events_kernel = MMCR0_FCS; 69 70 /* 71 * 32-bit doesn't have MMCRA but does have an MMCR2, 72 * and a few other names are different. 73 */ 74 #ifdef CONFIG_PPC32 75 76 #define MMCR0_FCHV 0 77 #define MMCR0_PMCjCE MMCR0_PMCnCE 78 #define MMCR0_FC56 0 79 #define MMCR0_PMAO 0 80 #define MMCR0_EBE 0 81 #define MMCR0_PMCC 0 82 #define MMCR0_PMCC_U6 0 83 84 #define SPRN_MMCRA SPRN_MMCR2 85 #define MMCRA_SAMPLE_ENABLE 0 86 87 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 88 { 89 return 0; 90 } 91 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } 92 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 93 { 94 return 0; 95 } 96 static inline void perf_read_regs(struct pt_regs *regs) 97 { 98 regs->result = 0; 99 } 100 static inline int perf_intr_is_nmi(struct pt_regs *regs) 101 { 102 return 0; 103 } 104 105 static inline int siar_valid(struct pt_regs *regs) 106 { 107 return 1; 108 } 109 110 static bool is_ebb_event(struct perf_event *event) { return false; } 111 static int ebb_event_check(struct perf_event *event) { return 0; } 112 static void ebb_event_add(struct perf_event *event) { } 113 static void ebb_switch_out(unsigned long mmcr0) { } 114 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0) 115 { 116 return mmcr0; 117 } 118 119 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 120 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 121 void power_pmu_flush_branch_stack(void) {} 122 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {} 123 #endif /* CONFIG_PPC32 */ 124 125 static bool regs_use_siar(struct pt_regs *regs) 126 { 127 return !!regs->result; 128 } 129 130 /* 131 * Things that are specific to 64-bit implementations. 132 */ 133 #ifdef CONFIG_PPC64 134 135 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 136 { 137 unsigned long mmcra = regs->dsisr; 138 139 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 140 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 141 if (slot > 1) 142 return 4 * (slot - 1); 143 } 144 145 return 0; 146 } 147 148 /* 149 * The user wants a data address recorded. 150 * If we're not doing instruction sampling, give them the SDAR 151 * (sampled data address). If we are doing instruction sampling, then 152 * only give them the SDAR if it corresponds to the instruction 153 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 154 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 155 */ 156 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) 157 { 158 unsigned long mmcra = regs->dsisr; 159 bool sdar_valid; 160 161 if (ppmu->flags & PPMU_HAS_SIER) 162 sdar_valid = regs->dar & SIER_SDAR_VALID; 163 else { 164 unsigned long sdsync; 165 166 if (ppmu->flags & PPMU_SIAR_VALID) 167 sdsync = POWER7P_MMCRA_SDAR_VALID; 168 else if (ppmu->flags & PPMU_ALT_SIPR) 169 sdsync = POWER6_MMCRA_SDSYNC; 170 else 171 sdsync = MMCRA_SDSYNC; 172 173 sdar_valid = mmcra & sdsync; 174 } 175 176 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 177 *addrp = mfspr(SPRN_SDAR); 178 } 179 180 static bool regs_sihv(struct pt_regs *regs) 181 { 182 unsigned long sihv = MMCRA_SIHV; 183 184 if (ppmu->flags & PPMU_HAS_SIER) 185 return !!(regs->dar & SIER_SIHV); 186 187 if (ppmu->flags & PPMU_ALT_SIPR) 188 sihv = POWER6_MMCRA_SIHV; 189 190 return !!(regs->dsisr & sihv); 191 } 192 193 static bool regs_sipr(struct pt_regs *regs) 194 { 195 unsigned long sipr = MMCRA_SIPR; 196 197 if (ppmu->flags & PPMU_HAS_SIER) 198 return !!(regs->dar & SIER_SIPR); 199 200 if (ppmu->flags & PPMU_ALT_SIPR) 201 sipr = POWER6_MMCRA_SIPR; 202 203 return !!(regs->dsisr & sipr); 204 } 205 206 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 207 { 208 if (regs->msr & MSR_PR) 209 return PERF_RECORD_MISC_USER; 210 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 211 return PERF_RECORD_MISC_HYPERVISOR; 212 return PERF_RECORD_MISC_KERNEL; 213 } 214 215 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 216 { 217 bool use_siar = regs_use_siar(regs); 218 219 if (!use_siar) 220 return perf_flags_from_msr(regs); 221 222 /* 223 * If we don't have flags in MMCRA, rather than using 224 * the MSR, we intuit the flags from the address in 225 * SIAR which should give slightly more reliable 226 * results 227 */ 228 if (ppmu->flags & PPMU_NO_SIPR) { 229 unsigned long siar = mfspr(SPRN_SIAR); 230 if (siar >= PAGE_OFFSET) 231 return PERF_RECORD_MISC_KERNEL; 232 return PERF_RECORD_MISC_USER; 233 } 234 235 /* PR has priority over HV, so order below is important */ 236 if (regs_sipr(regs)) 237 return PERF_RECORD_MISC_USER; 238 239 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 240 return PERF_RECORD_MISC_HYPERVISOR; 241 242 return PERF_RECORD_MISC_KERNEL; 243 } 244 245 /* 246 * Overload regs->dsisr to store MMCRA so we only need to read it once 247 * on each interrupt. 248 * Overload regs->dar to store SIER if we have it. 249 * Overload regs->result to specify whether we should use the MSR (result 250 * is zero) or the SIAR (result is non zero). 251 */ 252 static inline void perf_read_regs(struct pt_regs *regs) 253 { 254 unsigned long mmcra = mfspr(SPRN_MMCRA); 255 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 256 int use_siar; 257 258 regs->dsisr = mmcra; 259 260 if (ppmu->flags & PPMU_HAS_SIER) 261 regs->dar = mfspr(SPRN_SIER); 262 263 /* 264 * If this isn't a PMU exception (eg a software event) the SIAR is 265 * not valid. Use pt_regs. 266 * 267 * If it is a marked event use the SIAR. 268 * 269 * If the PMU doesn't update the SIAR for non marked events use 270 * pt_regs. 271 * 272 * If the PMU has HV/PR flags then check to see if they 273 * place the exception in userspace. If so, use pt_regs. In 274 * continuous sampling mode the SIAR and the PMU exception are 275 * not synchronised, so they may be many instructions apart. 276 * This can result in confusing backtraces. We still want 277 * hypervisor samples as well as samples in the kernel with 278 * interrupts off hence the userspace check. 279 */ 280 if (TRAP(regs) != 0xf00) 281 use_siar = 0; 282 else if (marked) 283 use_siar = 1; 284 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 285 use_siar = 0; 286 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 287 use_siar = 0; 288 else 289 use_siar = 1; 290 291 regs->result = use_siar; 292 } 293 294 /* 295 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 296 * it as an NMI. 297 */ 298 static inline int perf_intr_is_nmi(struct pt_regs *regs) 299 { 300 return !regs->softe; 301 } 302 303 /* 304 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 305 * must be sampled only if the SIAR-valid bit is set. 306 * 307 * For unmarked instructions and for processors that don't have the SIAR-Valid 308 * bit, assume that SIAR is valid. 309 */ 310 static inline int siar_valid(struct pt_regs *regs) 311 { 312 unsigned long mmcra = regs->dsisr; 313 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 314 315 if (marked) { 316 if (ppmu->flags & PPMU_HAS_SIER) 317 return regs->dar & SIER_SIAR_VALID; 318 319 if (ppmu->flags & PPMU_SIAR_VALID) 320 return mmcra & POWER7P_MMCRA_SIAR_VALID; 321 } 322 323 return 1; 324 } 325 326 327 /* Reset all possible BHRB entries */ 328 static void power_pmu_bhrb_reset(void) 329 { 330 asm volatile(PPC_CLRBHRB); 331 } 332 333 static void power_pmu_bhrb_enable(struct perf_event *event) 334 { 335 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 336 337 if (!ppmu->bhrb_nr) 338 return; 339 340 /* Clear BHRB if we changed task context to avoid data leaks */ 341 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 342 power_pmu_bhrb_reset(); 343 cpuhw->bhrb_context = event->ctx; 344 } 345 cpuhw->bhrb_users++; 346 } 347 348 static void power_pmu_bhrb_disable(struct perf_event *event) 349 { 350 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 351 352 if (!ppmu->bhrb_nr) 353 return; 354 355 cpuhw->bhrb_users--; 356 WARN_ON_ONCE(cpuhw->bhrb_users < 0); 357 358 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 359 /* BHRB cannot be turned off when other 360 * events are active on the PMU. 361 */ 362 363 /* avoid stale pointer */ 364 cpuhw->bhrb_context = NULL; 365 } 366 } 367 368 /* Called from ctxsw to prevent one process's branch entries to 369 * mingle with the other process's entries during context switch. 370 */ 371 void power_pmu_flush_branch_stack(void) 372 { 373 if (ppmu->bhrb_nr) 374 power_pmu_bhrb_reset(); 375 } 376 /* Calculate the to address for a branch */ 377 static __u64 power_pmu_bhrb_to(u64 addr) 378 { 379 unsigned int instr; 380 int ret; 381 __u64 target; 382 383 if (is_kernel_addr(addr)) 384 return branch_target((unsigned int *)addr); 385 386 /* Userspace: need copy instruction here then translate it */ 387 pagefault_disable(); 388 ret = __get_user_inatomic(instr, (unsigned int __user *)addr); 389 if (ret) { 390 pagefault_enable(); 391 return 0; 392 } 393 pagefault_enable(); 394 395 target = branch_target(&instr); 396 if ((!target) || (instr & BRANCH_ABSOLUTE)) 397 return target; 398 399 /* Translate relative branch target from kernel to user address */ 400 return target - (unsigned long)&instr + addr; 401 } 402 403 /* Processing BHRB entries */ 404 void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) 405 { 406 u64 val; 407 u64 addr; 408 int r_index, u_index, pred; 409 410 r_index = 0; 411 u_index = 0; 412 while (r_index < ppmu->bhrb_nr) { 413 /* Assembly read function */ 414 val = read_bhrb(r_index++); 415 if (!val) 416 /* Terminal marker: End of valid BHRB entries */ 417 break; 418 else { 419 addr = val & BHRB_EA; 420 pred = val & BHRB_PREDICTION; 421 422 if (!addr) 423 /* invalid entry */ 424 continue; 425 426 /* Branches are read most recent first (ie. mfbhrb 0 is 427 * the most recent branch). 428 * There are two types of valid entries: 429 * 1) a target entry which is the to address of a 430 * computed goto like a blr,bctr,btar. The next 431 * entry read from the bhrb will be branch 432 * corresponding to this target (ie. the actual 433 * blr/bctr/btar instruction). 434 * 2) a from address which is an actual branch. If a 435 * target entry proceeds this, then this is the 436 * matching branch for that target. If this is not 437 * following a target entry, then this is a branch 438 * where the target is given as an immediate field 439 * in the instruction (ie. an i or b form branch). 440 * In this case we need to read the instruction from 441 * memory to determine the target/to address. 442 */ 443 444 if (val & BHRB_TARGET) { 445 /* Target branches use two entries 446 * (ie. computed gotos/XL form) 447 */ 448 cpuhw->bhrb_entries[u_index].to = addr; 449 cpuhw->bhrb_entries[u_index].mispred = pred; 450 cpuhw->bhrb_entries[u_index].predicted = ~pred; 451 452 /* Get from address in next entry */ 453 val = read_bhrb(r_index++); 454 addr = val & BHRB_EA; 455 if (val & BHRB_TARGET) { 456 /* Shouldn't have two targets in a 457 row.. Reset index and try again */ 458 r_index--; 459 addr = 0; 460 } 461 cpuhw->bhrb_entries[u_index].from = addr; 462 } else { 463 /* Branches to immediate field 464 (ie I or B form) */ 465 cpuhw->bhrb_entries[u_index].from = addr; 466 cpuhw->bhrb_entries[u_index].to = 467 power_pmu_bhrb_to(addr); 468 cpuhw->bhrb_entries[u_index].mispred = pred; 469 cpuhw->bhrb_entries[u_index].predicted = ~pred; 470 } 471 u_index++; 472 473 } 474 } 475 cpuhw->bhrb_stack.nr = u_index; 476 return; 477 } 478 479 static bool is_ebb_event(struct perf_event *event) 480 { 481 /* 482 * This could be a per-PMU callback, but we'd rather avoid the cost. We 483 * check that the PMU supports EBB, meaning those that don't can still 484 * use bit 63 of the event code for something else if they wish. 485 */ 486 return (ppmu->flags & PPMU_EBB) && 487 ((event->attr.config >> EVENT_CONFIG_EBB_SHIFT) & 1); 488 } 489 490 static int ebb_event_check(struct perf_event *event) 491 { 492 struct perf_event *leader = event->group_leader; 493 494 /* Event and group leader must agree on EBB */ 495 if (is_ebb_event(leader) != is_ebb_event(event)) 496 return -EINVAL; 497 498 if (is_ebb_event(event)) { 499 if (!(event->attach_state & PERF_ATTACH_TASK)) 500 return -EINVAL; 501 502 if (!leader->attr.pinned || !leader->attr.exclusive) 503 return -EINVAL; 504 505 if (event->attr.inherit || event->attr.sample_period || 506 event->attr.enable_on_exec || event->attr.freq) 507 return -EINVAL; 508 } 509 510 return 0; 511 } 512 513 static void ebb_event_add(struct perf_event *event) 514 { 515 if (!is_ebb_event(event) || current->thread.used_ebb) 516 return; 517 518 /* 519 * IFF this is the first time we've added an EBB event, set 520 * PMXE in the user MMCR0 so we can detect when it's cleared by 521 * userspace. We need this so that we can context switch while 522 * userspace is in the EBB handler (where PMXE is 0). 523 */ 524 current->thread.used_ebb = 1; 525 current->thread.mmcr0 |= MMCR0_PMXE; 526 } 527 528 static void ebb_switch_out(unsigned long mmcr0) 529 { 530 if (!(mmcr0 & MMCR0_EBE)) 531 return; 532 533 current->thread.siar = mfspr(SPRN_SIAR); 534 current->thread.sier = mfspr(SPRN_SIER); 535 current->thread.sdar = mfspr(SPRN_SDAR); 536 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 537 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 538 } 539 540 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0) 541 { 542 if (!ebb) 543 goto out; 544 545 /* Enable EBB and read/write to all 6 PMCs for userspace */ 546 mmcr0 |= MMCR0_EBE | MMCR0_PMCC_U6; 547 548 /* Add any bits from the user reg, FC or PMAO */ 549 mmcr0 |= current->thread.mmcr0; 550 551 /* Be careful not to set PMXE if userspace had it cleared */ 552 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 553 mmcr0 &= ~MMCR0_PMXE; 554 555 mtspr(SPRN_SIAR, current->thread.siar); 556 mtspr(SPRN_SIER, current->thread.sier); 557 mtspr(SPRN_SDAR, current->thread.sdar); 558 mtspr(SPRN_MMCR2, current->thread.mmcr2); 559 out: 560 return mmcr0; 561 } 562 #endif /* CONFIG_PPC64 */ 563 564 static void perf_event_interrupt(struct pt_regs *regs); 565 566 void perf_event_print_debug(void) 567 { 568 } 569 570 /* 571 * Read one performance monitor counter (PMC). 572 */ 573 static unsigned long read_pmc(int idx) 574 { 575 unsigned long val; 576 577 switch (idx) { 578 case 1: 579 val = mfspr(SPRN_PMC1); 580 break; 581 case 2: 582 val = mfspr(SPRN_PMC2); 583 break; 584 case 3: 585 val = mfspr(SPRN_PMC3); 586 break; 587 case 4: 588 val = mfspr(SPRN_PMC4); 589 break; 590 case 5: 591 val = mfspr(SPRN_PMC5); 592 break; 593 case 6: 594 val = mfspr(SPRN_PMC6); 595 break; 596 #ifdef CONFIG_PPC64 597 case 7: 598 val = mfspr(SPRN_PMC7); 599 break; 600 case 8: 601 val = mfspr(SPRN_PMC8); 602 break; 603 #endif /* CONFIG_PPC64 */ 604 default: 605 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 606 val = 0; 607 } 608 return val; 609 } 610 611 /* 612 * Write one PMC. 613 */ 614 static void write_pmc(int idx, unsigned long val) 615 { 616 switch (idx) { 617 case 1: 618 mtspr(SPRN_PMC1, val); 619 break; 620 case 2: 621 mtspr(SPRN_PMC2, val); 622 break; 623 case 3: 624 mtspr(SPRN_PMC3, val); 625 break; 626 case 4: 627 mtspr(SPRN_PMC4, val); 628 break; 629 case 5: 630 mtspr(SPRN_PMC5, val); 631 break; 632 case 6: 633 mtspr(SPRN_PMC6, val); 634 break; 635 #ifdef CONFIG_PPC64 636 case 7: 637 mtspr(SPRN_PMC7, val); 638 break; 639 case 8: 640 mtspr(SPRN_PMC8, val); 641 break; 642 #endif /* CONFIG_PPC64 */ 643 default: 644 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 645 } 646 } 647 648 /* 649 * Check if a set of events can all go on the PMU at once. 650 * If they can't, this will look at alternative codes for the events 651 * and see if any combination of alternative codes is feasible. 652 * The feasible set is returned in event_id[]. 653 */ 654 static int power_check_constraints(struct cpu_hw_events *cpuhw, 655 u64 event_id[], unsigned int cflags[], 656 int n_ev) 657 { 658 unsigned long mask, value, nv; 659 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 660 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 661 int i, j; 662 unsigned long addf = ppmu->add_fields; 663 unsigned long tadd = ppmu->test_adder; 664 665 if (n_ev > ppmu->n_counter) 666 return -1; 667 668 /* First see if the events will go on as-is */ 669 for (i = 0; i < n_ev; ++i) { 670 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 671 && !ppmu->limited_pmc_event(event_id[i])) { 672 ppmu->get_alternatives(event_id[i], cflags[i], 673 cpuhw->alternatives[i]); 674 event_id[i] = cpuhw->alternatives[i][0]; 675 } 676 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 677 &cpuhw->avalues[i][0])) 678 return -1; 679 } 680 value = mask = 0; 681 for (i = 0; i < n_ev; ++i) { 682 nv = (value | cpuhw->avalues[i][0]) + 683 (value & cpuhw->avalues[i][0] & addf); 684 if ((((nv + tadd) ^ value) & mask) != 0 || 685 (((nv + tadd) ^ cpuhw->avalues[i][0]) & 686 cpuhw->amasks[i][0]) != 0) 687 break; 688 value = nv; 689 mask |= cpuhw->amasks[i][0]; 690 } 691 if (i == n_ev) 692 return 0; /* all OK */ 693 694 /* doesn't work, gather alternatives... */ 695 if (!ppmu->get_alternatives) 696 return -1; 697 for (i = 0; i < n_ev; ++i) { 698 choice[i] = 0; 699 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 700 cpuhw->alternatives[i]); 701 for (j = 1; j < n_alt[i]; ++j) 702 ppmu->get_constraint(cpuhw->alternatives[i][j], 703 &cpuhw->amasks[i][j], 704 &cpuhw->avalues[i][j]); 705 } 706 707 /* enumerate all possibilities and see if any will work */ 708 i = 0; 709 j = -1; 710 value = mask = nv = 0; 711 while (i < n_ev) { 712 if (j >= 0) { 713 /* we're backtracking, restore context */ 714 value = svalues[i]; 715 mask = smasks[i]; 716 j = choice[i]; 717 } 718 /* 719 * See if any alternative k for event_id i, 720 * where k > j, will satisfy the constraints. 721 */ 722 while (++j < n_alt[i]) { 723 nv = (value | cpuhw->avalues[i][j]) + 724 (value & cpuhw->avalues[i][j] & addf); 725 if ((((nv + tadd) ^ value) & mask) == 0 && 726 (((nv + tadd) ^ cpuhw->avalues[i][j]) 727 & cpuhw->amasks[i][j]) == 0) 728 break; 729 } 730 if (j >= n_alt[i]) { 731 /* 732 * No feasible alternative, backtrack 733 * to event_id i-1 and continue enumerating its 734 * alternatives from where we got up to. 735 */ 736 if (--i < 0) 737 return -1; 738 } else { 739 /* 740 * Found a feasible alternative for event_id i, 741 * remember where we got up to with this event_id, 742 * go on to the next event_id, and start with 743 * the first alternative for it. 744 */ 745 choice[i] = j; 746 svalues[i] = value; 747 smasks[i] = mask; 748 value = nv; 749 mask |= cpuhw->amasks[i][j]; 750 ++i; 751 j = -1; 752 } 753 } 754 755 /* OK, we have a feasible combination, tell the caller the solution */ 756 for (i = 0; i < n_ev; ++i) 757 event_id[i] = cpuhw->alternatives[i][choice[i]]; 758 return 0; 759 } 760 761 /* 762 * Check if newly-added events have consistent settings for 763 * exclude_{user,kernel,hv} with each other and any previously 764 * added events. 765 */ 766 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 767 int n_prev, int n_new) 768 { 769 int eu = 0, ek = 0, eh = 0; 770 int i, n, first; 771 struct perf_event *event; 772 773 n = n_prev + n_new; 774 if (n <= 1) 775 return 0; 776 777 first = 1; 778 for (i = 0; i < n; ++i) { 779 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 780 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 781 continue; 782 } 783 event = ctrs[i]; 784 if (first) { 785 eu = event->attr.exclude_user; 786 ek = event->attr.exclude_kernel; 787 eh = event->attr.exclude_hv; 788 first = 0; 789 } else if (event->attr.exclude_user != eu || 790 event->attr.exclude_kernel != ek || 791 event->attr.exclude_hv != eh) { 792 return -EAGAIN; 793 } 794 } 795 796 if (eu || ek || eh) 797 for (i = 0; i < n; ++i) 798 if (cflags[i] & PPMU_LIMITED_PMC_OK) 799 cflags[i] |= PPMU_LIMITED_PMC_REQD; 800 801 return 0; 802 } 803 804 static u64 check_and_compute_delta(u64 prev, u64 val) 805 { 806 u64 delta = (val - prev) & 0xfffffffful; 807 808 /* 809 * POWER7 can roll back counter values, if the new value is smaller 810 * than the previous value it will cause the delta and the counter to 811 * have bogus values unless we rolled a counter over. If a coutner is 812 * rolled back, it will be smaller, but within 256, which is the maximum 813 * number of events to rollback at once. If we dectect a rollback 814 * return 0. This can lead to a small lack of precision in the 815 * counters. 816 */ 817 if (prev > val && (prev - val) < 256) 818 delta = 0; 819 820 return delta; 821 } 822 823 static void power_pmu_read(struct perf_event *event) 824 { 825 s64 val, delta, prev; 826 827 if (event->hw.state & PERF_HES_STOPPED) 828 return; 829 830 if (!event->hw.idx) 831 return; 832 833 if (is_ebb_event(event)) { 834 val = read_pmc(event->hw.idx); 835 local64_set(&event->hw.prev_count, val); 836 return; 837 } 838 839 /* 840 * Performance monitor interrupts come even when interrupts 841 * are soft-disabled, as long as interrupts are hard-enabled. 842 * Therefore we treat them like NMIs. 843 */ 844 do { 845 prev = local64_read(&event->hw.prev_count); 846 barrier(); 847 val = read_pmc(event->hw.idx); 848 delta = check_and_compute_delta(prev, val); 849 if (!delta) 850 return; 851 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 852 853 local64_add(delta, &event->count); 854 local64_sub(delta, &event->hw.period_left); 855 } 856 857 /* 858 * On some machines, PMC5 and PMC6 can't be written, don't respect 859 * the freeze conditions, and don't generate interrupts. This tells 860 * us if `event' is using such a PMC. 861 */ 862 static int is_limited_pmc(int pmcnum) 863 { 864 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 865 && (pmcnum == 5 || pmcnum == 6); 866 } 867 868 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 869 unsigned long pmc5, unsigned long pmc6) 870 { 871 struct perf_event *event; 872 u64 val, prev, delta; 873 int i; 874 875 for (i = 0; i < cpuhw->n_limited; ++i) { 876 event = cpuhw->limited_counter[i]; 877 if (!event->hw.idx) 878 continue; 879 val = (event->hw.idx == 5) ? pmc5 : pmc6; 880 prev = local64_read(&event->hw.prev_count); 881 event->hw.idx = 0; 882 delta = check_and_compute_delta(prev, val); 883 if (delta) 884 local64_add(delta, &event->count); 885 } 886 } 887 888 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 889 unsigned long pmc5, unsigned long pmc6) 890 { 891 struct perf_event *event; 892 u64 val, prev; 893 int i; 894 895 for (i = 0; i < cpuhw->n_limited; ++i) { 896 event = cpuhw->limited_counter[i]; 897 event->hw.idx = cpuhw->limited_hwidx[i]; 898 val = (event->hw.idx == 5) ? pmc5 : pmc6; 899 prev = local64_read(&event->hw.prev_count); 900 if (check_and_compute_delta(prev, val)) 901 local64_set(&event->hw.prev_count, val); 902 perf_event_update_userpage(event); 903 } 904 } 905 906 /* 907 * Since limited events don't respect the freeze conditions, we 908 * have to read them immediately after freezing or unfreezing the 909 * other events. We try to keep the values from the limited 910 * events as consistent as possible by keeping the delay (in 911 * cycles and instructions) between freezing/unfreezing and reading 912 * the limited events as small and consistent as possible. 913 * Therefore, if any limited events are in use, we read them 914 * both, and always in the same order, to minimize variability, 915 * and do it inside the same asm that writes MMCR0. 916 */ 917 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 918 { 919 unsigned long pmc5, pmc6; 920 921 if (!cpuhw->n_limited) { 922 mtspr(SPRN_MMCR0, mmcr0); 923 return; 924 } 925 926 /* 927 * Write MMCR0, then read PMC5 and PMC6 immediately. 928 * To ensure we don't get a performance monitor interrupt 929 * between writing MMCR0 and freezing/thawing the limited 930 * events, we first write MMCR0 with the event overflow 931 * interrupt enable bits turned off. 932 */ 933 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 934 : "=&r" (pmc5), "=&r" (pmc6) 935 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 936 "i" (SPRN_MMCR0), 937 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 938 939 if (mmcr0 & MMCR0_FC) 940 freeze_limited_counters(cpuhw, pmc5, pmc6); 941 else 942 thaw_limited_counters(cpuhw, pmc5, pmc6); 943 944 /* 945 * Write the full MMCR0 including the event overflow interrupt 946 * enable bits, if necessary. 947 */ 948 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 949 mtspr(SPRN_MMCR0, mmcr0); 950 } 951 952 /* 953 * Disable all events to prevent PMU interrupts and to allow 954 * events to be added or removed. 955 */ 956 static void power_pmu_disable(struct pmu *pmu) 957 { 958 struct cpu_hw_events *cpuhw; 959 unsigned long flags, mmcr0, val; 960 961 if (!ppmu) 962 return; 963 local_irq_save(flags); 964 cpuhw = &__get_cpu_var(cpu_hw_events); 965 966 if (!cpuhw->disabled) { 967 /* 968 * Check if we ever enabled the PMU on this cpu. 969 */ 970 if (!cpuhw->pmcs_enabled) { 971 ppc_enable_pmcs(); 972 cpuhw->pmcs_enabled = 1; 973 } 974 975 /* 976 * Set the 'freeze counters' bit, clear EBE/PMCC/PMAO/FC56. 977 */ 978 val = mmcr0 = mfspr(SPRN_MMCR0); 979 val |= MMCR0_FC; 980 val &= ~(MMCR0_EBE | MMCR0_PMCC | MMCR0_PMAO | MMCR0_FC56); 981 982 /* 983 * The barrier is to make sure the mtspr has been 984 * executed and the PMU has frozen the events etc. 985 * before we return. 986 */ 987 write_mmcr0(cpuhw, val); 988 mb(); 989 990 /* 991 * Disable instruction sampling if it was enabled 992 */ 993 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 994 mtspr(SPRN_MMCRA, 995 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 996 mb(); 997 } 998 999 cpuhw->disabled = 1; 1000 cpuhw->n_added = 0; 1001 1002 ebb_switch_out(mmcr0); 1003 } 1004 1005 local_irq_restore(flags); 1006 } 1007 1008 /* 1009 * Re-enable all events if disable == 0. 1010 * If we were previously disabled and events were added, then 1011 * put the new config on the PMU. 1012 */ 1013 static void power_pmu_enable(struct pmu *pmu) 1014 { 1015 struct perf_event *event; 1016 struct cpu_hw_events *cpuhw; 1017 unsigned long flags; 1018 long i; 1019 unsigned long val, mmcr0; 1020 s64 left; 1021 unsigned int hwc_index[MAX_HWEVENTS]; 1022 int n_lim; 1023 int idx; 1024 bool ebb; 1025 1026 if (!ppmu) 1027 return; 1028 local_irq_save(flags); 1029 1030 cpuhw = &__get_cpu_var(cpu_hw_events); 1031 if (!cpuhw->disabled) 1032 goto out; 1033 1034 if (cpuhw->n_events == 0) { 1035 ppc_set_pmu_inuse(0); 1036 goto out; 1037 } 1038 1039 cpuhw->disabled = 0; 1040 1041 /* 1042 * EBB requires an exclusive group and all events must have the EBB 1043 * flag set, or not set, so we can just check a single event. Also we 1044 * know we have at least one event. 1045 */ 1046 ebb = is_ebb_event(cpuhw->event[0]); 1047 1048 /* 1049 * If we didn't change anything, or only removed events, 1050 * no need to recalculate MMCR* settings and reset the PMCs. 1051 * Just reenable the PMU with the current MMCR* settings 1052 * (possibly updated for removal of events). 1053 */ 1054 if (!cpuhw->n_added) { 1055 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1056 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1057 goto out_enable; 1058 } 1059 1060 /* 1061 * Compute MMCR* values for the new set of events 1062 */ 1063 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1064 cpuhw->mmcr)) { 1065 /* shouldn't ever get here */ 1066 printk(KERN_ERR "oops compute_mmcr failed\n"); 1067 goto out; 1068 } 1069 1070 /* 1071 * Add in MMCR0 freeze bits corresponding to the 1072 * attr.exclude_* bits for the first event. 1073 * We have already checked that all events have the 1074 * same values for these bits as the first event. 1075 */ 1076 event = cpuhw->event[0]; 1077 if (event->attr.exclude_user) 1078 cpuhw->mmcr[0] |= MMCR0_FCP; 1079 if (event->attr.exclude_kernel) 1080 cpuhw->mmcr[0] |= freeze_events_kernel; 1081 if (event->attr.exclude_hv) 1082 cpuhw->mmcr[0] |= MMCR0_FCHV; 1083 1084 /* 1085 * Write the new configuration to MMCR* with the freeze 1086 * bit set and set the hardware events to their initial values. 1087 * Then unfreeze the events. 1088 */ 1089 ppc_set_pmu_inuse(1); 1090 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1091 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1092 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1093 | MMCR0_FC); 1094 1095 /* 1096 * Read off any pre-existing events that need to move 1097 * to another PMC. 1098 */ 1099 for (i = 0; i < cpuhw->n_events; ++i) { 1100 event = cpuhw->event[i]; 1101 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1102 power_pmu_read(event); 1103 write_pmc(event->hw.idx, 0); 1104 event->hw.idx = 0; 1105 } 1106 } 1107 1108 /* 1109 * Initialize the PMCs for all the new and moved events. 1110 */ 1111 cpuhw->n_limited = n_lim = 0; 1112 for (i = 0; i < cpuhw->n_events; ++i) { 1113 event = cpuhw->event[i]; 1114 if (event->hw.idx) 1115 continue; 1116 idx = hwc_index[i] + 1; 1117 if (is_limited_pmc(idx)) { 1118 cpuhw->limited_counter[n_lim] = event; 1119 cpuhw->limited_hwidx[n_lim] = idx; 1120 ++n_lim; 1121 continue; 1122 } 1123 1124 if (ebb) 1125 val = local64_read(&event->hw.prev_count); 1126 else { 1127 val = 0; 1128 if (event->hw.sample_period) { 1129 left = local64_read(&event->hw.period_left); 1130 if (left < 0x80000000L) 1131 val = 0x80000000L - left; 1132 } 1133 local64_set(&event->hw.prev_count, val); 1134 } 1135 1136 event->hw.idx = idx; 1137 if (event->hw.state & PERF_HES_STOPPED) 1138 val = 0; 1139 write_pmc(idx, val); 1140 1141 perf_event_update_userpage(event); 1142 } 1143 cpuhw->n_limited = n_lim; 1144 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1145 1146 out_enable: 1147 mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]); 1148 1149 mb(); 1150 write_mmcr0(cpuhw, mmcr0); 1151 1152 /* 1153 * Enable instruction sampling if necessary 1154 */ 1155 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1156 mb(); 1157 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1158 } 1159 1160 out: 1161 if (cpuhw->bhrb_users) 1162 ppmu->config_bhrb(cpuhw->bhrb_filter); 1163 1164 local_irq_restore(flags); 1165 } 1166 1167 static int collect_events(struct perf_event *group, int max_count, 1168 struct perf_event *ctrs[], u64 *events, 1169 unsigned int *flags) 1170 { 1171 int n = 0; 1172 struct perf_event *event; 1173 1174 if (!is_software_event(group)) { 1175 if (n >= max_count) 1176 return -1; 1177 ctrs[n] = group; 1178 flags[n] = group->hw.event_base; 1179 events[n++] = group->hw.config; 1180 } 1181 list_for_each_entry(event, &group->sibling_list, group_entry) { 1182 if (!is_software_event(event) && 1183 event->state != PERF_EVENT_STATE_OFF) { 1184 if (n >= max_count) 1185 return -1; 1186 ctrs[n] = event; 1187 flags[n] = event->hw.event_base; 1188 events[n++] = event->hw.config; 1189 } 1190 } 1191 return n; 1192 } 1193 1194 /* 1195 * Add a event to the PMU. 1196 * If all events are not already frozen, then we disable and 1197 * re-enable the PMU in order to get hw_perf_enable to do the 1198 * actual work of reconfiguring the PMU. 1199 */ 1200 static int power_pmu_add(struct perf_event *event, int ef_flags) 1201 { 1202 struct cpu_hw_events *cpuhw; 1203 unsigned long flags; 1204 int n0; 1205 int ret = -EAGAIN; 1206 1207 local_irq_save(flags); 1208 perf_pmu_disable(event->pmu); 1209 1210 /* 1211 * Add the event to the list (if there is room) 1212 * and check whether the total set is still feasible. 1213 */ 1214 cpuhw = &__get_cpu_var(cpu_hw_events); 1215 n0 = cpuhw->n_events; 1216 if (n0 >= ppmu->n_counter) 1217 goto out; 1218 cpuhw->event[n0] = event; 1219 cpuhw->events[n0] = event->hw.config; 1220 cpuhw->flags[n0] = event->hw.event_base; 1221 1222 /* 1223 * This event may have been disabled/stopped in record_and_restart() 1224 * because we exceeded the ->event_limit. If re-starting the event, 1225 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1226 * notification is re-enabled. 1227 */ 1228 if (!(ef_flags & PERF_EF_START)) 1229 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1230 else 1231 event->hw.state = 0; 1232 1233 /* 1234 * If group events scheduling transaction was started, 1235 * skip the schedulability test here, it will be performed 1236 * at commit time(->commit_txn) as a whole 1237 */ 1238 if (cpuhw->group_flag & PERF_EVENT_TXN) 1239 goto nocheck; 1240 1241 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1242 goto out; 1243 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1244 goto out; 1245 event->hw.config = cpuhw->events[n0]; 1246 1247 nocheck: 1248 ebb_event_add(event); 1249 1250 ++cpuhw->n_events; 1251 ++cpuhw->n_added; 1252 1253 ret = 0; 1254 out: 1255 if (has_branch_stack(event)) 1256 power_pmu_bhrb_enable(event); 1257 1258 perf_pmu_enable(event->pmu); 1259 local_irq_restore(flags); 1260 return ret; 1261 } 1262 1263 /* 1264 * Remove a event from the PMU. 1265 */ 1266 static void power_pmu_del(struct perf_event *event, int ef_flags) 1267 { 1268 struct cpu_hw_events *cpuhw; 1269 long i; 1270 unsigned long flags; 1271 1272 local_irq_save(flags); 1273 perf_pmu_disable(event->pmu); 1274 1275 power_pmu_read(event); 1276 1277 cpuhw = &__get_cpu_var(cpu_hw_events); 1278 for (i = 0; i < cpuhw->n_events; ++i) { 1279 if (event == cpuhw->event[i]) { 1280 while (++i < cpuhw->n_events) { 1281 cpuhw->event[i-1] = cpuhw->event[i]; 1282 cpuhw->events[i-1] = cpuhw->events[i]; 1283 cpuhw->flags[i-1] = cpuhw->flags[i]; 1284 } 1285 --cpuhw->n_events; 1286 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1287 if (event->hw.idx) { 1288 write_pmc(event->hw.idx, 0); 1289 event->hw.idx = 0; 1290 } 1291 perf_event_update_userpage(event); 1292 break; 1293 } 1294 } 1295 for (i = 0; i < cpuhw->n_limited; ++i) 1296 if (event == cpuhw->limited_counter[i]) 1297 break; 1298 if (i < cpuhw->n_limited) { 1299 while (++i < cpuhw->n_limited) { 1300 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1301 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1302 } 1303 --cpuhw->n_limited; 1304 } 1305 if (cpuhw->n_events == 0) { 1306 /* disable exceptions if no events are running */ 1307 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1308 } 1309 1310 if (has_branch_stack(event)) 1311 power_pmu_bhrb_disable(event); 1312 1313 perf_pmu_enable(event->pmu); 1314 local_irq_restore(flags); 1315 } 1316 1317 /* 1318 * POWER-PMU does not support disabling individual counters, hence 1319 * program their cycle counter to their max value and ignore the interrupts. 1320 */ 1321 1322 static void power_pmu_start(struct perf_event *event, int ef_flags) 1323 { 1324 unsigned long flags; 1325 s64 left; 1326 unsigned long val; 1327 1328 if (!event->hw.idx || !event->hw.sample_period) 1329 return; 1330 1331 if (!(event->hw.state & PERF_HES_STOPPED)) 1332 return; 1333 1334 if (ef_flags & PERF_EF_RELOAD) 1335 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1336 1337 local_irq_save(flags); 1338 perf_pmu_disable(event->pmu); 1339 1340 event->hw.state = 0; 1341 left = local64_read(&event->hw.period_left); 1342 1343 val = 0; 1344 if (left < 0x80000000L) 1345 val = 0x80000000L - left; 1346 1347 write_pmc(event->hw.idx, val); 1348 1349 perf_event_update_userpage(event); 1350 perf_pmu_enable(event->pmu); 1351 local_irq_restore(flags); 1352 } 1353 1354 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1355 { 1356 unsigned long flags; 1357 1358 if (!event->hw.idx || !event->hw.sample_period) 1359 return; 1360 1361 if (event->hw.state & PERF_HES_STOPPED) 1362 return; 1363 1364 local_irq_save(flags); 1365 perf_pmu_disable(event->pmu); 1366 1367 power_pmu_read(event); 1368 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1369 write_pmc(event->hw.idx, 0); 1370 1371 perf_event_update_userpage(event); 1372 perf_pmu_enable(event->pmu); 1373 local_irq_restore(flags); 1374 } 1375 1376 /* 1377 * Start group events scheduling transaction 1378 * Set the flag to make pmu::enable() not perform the 1379 * schedulability test, it will be performed at commit time 1380 */ 1381 void power_pmu_start_txn(struct pmu *pmu) 1382 { 1383 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1384 1385 perf_pmu_disable(pmu); 1386 cpuhw->group_flag |= PERF_EVENT_TXN; 1387 cpuhw->n_txn_start = cpuhw->n_events; 1388 } 1389 1390 /* 1391 * Stop group events scheduling transaction 1392 * Clear the flag and pmu::enable() will perform the 1393 * schedulability test. 1394 */ 1395 void power_pmu_cancel_txn(struct pmu *pmu) 1396 { 1397 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1398 1399 cpuhw->group_flag &= ~PERF_EVENT_TXN; 1400 perf_pmu_enable(pmu); 1401 } 1402 1403 /* 1404 * Commit group events scheduling transaction 1405 * Perform the group schedulability test as a whole 1406 * Return 0 if success 1407 */ 1408 int power_pmu_commit_txn(struct pmu *pmu) 1409 { 1410 struct cpu_hw_events *cpuhw; 1411 long i, n; 1412 1413 if (!ppmu) 1414 return -EAGAIN; 1415 cpuhw = &__get_cpu_var(cpu_hw_events); 1416 n = cpuhw->n_events; 1417 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1418 return -EAGAIN; 1419 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1420 if (i < 0) 1421 return -EAGAIN; 1422 1423 for (i = cpuhw->n_txn_start; i < n; ++i) 1424 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1425 1426 cpuhw->group_flag &= ~PERF_EVENT_TXN; 1427 perf_pmu_enable(pmu); 1428 return 0; 1429 } 1430 1431 /* 1432 * Return 1 if we might be able to put event on a limited PMC, 1433 * or 0 if not. 1434 * A event can only go on a limited PMC if it counts something 1435 * that a limited PMC can count, doesn't require interrupts, and 1436 * doesn't exclude any processor mode. 1437 */ 1438 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1439 unsigned int flags) 1440 { 1441 int n; 1442 u64 alt[MAX_EVENT_ALTERNATIVES]; 1443 1444 if (event->attr.exclude_user 1445 || event->attr.exclude_kernel 1446 || event->attr.exclude_hv 1447 || event->attr.sample_period) 1448 return 0; 1449 1450 if (ppmu->limited_pmc_event(ev)) 1451 return 1; 1452 1453 /* 1454 * The requested event_id isn't on a limited PMC already; 1455 * see if any alternative code goes on a limited PMC. 1456 */ 1457 if (!ppmu->get_alternatives) 1458 return 0; 1459 1460 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1461 n = ppmu->get_alternatives(ev, flags, alt); 1462 1463 return n > 0; 1464 } 1465 1466 /* 1467 * Find an alternative event_id that goes on a normal PMC, if possible, 1468 * and return the event_id code, or 0 if there is no such alternative. 1469 * (Note: event_id code 0 is "don't count" on all machines.) 1470 */ 1471 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1472 { 1473 u64 alt[MAX_EVENT_ALTERNATIVES]; 1474 int n; 1475 1476 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1477 n = ppmu->get_alternatives(ev, flags, alt); 1478 if (!n) 1479 return 0; 1480 return alt[0]; 1481 } 1482 1483 /* Number of perf_events counting hardware events */ 1484 static atomic_t num_events; 1485 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1486 static DEFINE_MUTEX(pmc_reserve_mutex); 1487 1488 /* 1489 * Release the PMU if this is the last perf_event. 1490 */ 1491 static void hw_perf_event_destroy(struct perf_event *event) 1492 { 1493 if (!atomic_add_unless(&num_events, -1, 1)) { 1494 mutex_lock(&pmc_reserve_mutex); 1495 if (atomic_dec_return(&num_events) == 0) 1496 release_pmc_hardware(); 1497 mutex_unlock(&pmc_reserve_mutex); 1498 } 1499 } 1500 1501 /* 1502 * Translate a generic cache event_id config to a raw event_id code. 1503 */ 1504 static int hw_perf_cache_event(u64 config, u64 *eventp) 1505 { 1506 unsigned long type, op, result; 1507 int ev; 1508 1509 if (!ppmu->cache_events) 1510 return -EINVAL; 1511 1512 /* unpack config */ 1513 type = config & 0xff; 1514 op = (config >> 8) & 0xff; 1515 result = (config >> 16) & 0xff; 1516 1517 if (type >= PERF_COUNT_HW_CACHE_MAX || 1518 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1519 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1520 return -EINVAL; 1521 1522 ev = (*ppmu->cache_events)[type][op][result]; 1523 if (ev == 0) 1524 return -EOPNOTSUPP; 1525 if (ev == -1) 1526 return -EINVAL; 1527 *eventp = ev; 1528 return 0; 1529 } 1530 1531 static int power_pmu_event_init(struct perf_event *event) 1532 { 1533 u64 ev; 1534 unsigned long flags; 1535 struct perf_event *ctrs[MAX_HWEVENTS]; 1536 u64 events[MAX_HWEVENTS]; 1537 unsigned int cflags[MAX_HWEVENTS]; 1538 int n; 1539 int err; 1540 struct cpu_hw_events *cpuhw; 1541 1542 if (!ppmu) 1543 return -ENOENT; 1544 1545 if (has_branch_stack(event)) { 1546 /* PMU has BHRB enabled */ 1547 if (!(ppmu->flags & PPMU_BHRB)) 1548 return -EOPNOTSUPP; 1549 } 1550 1551 switch (event->attr.type) { 1552 case PERF_TYPE_HARDWARE: 1553 ev = event->attr.config; 1554 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1555 return -EOPNOTSUPP; 1556 ev = ppmu->generic_events[ev]; 1557 break; 1558 case PERF_TYPE_HW_CACHE: 1559 err = hw_perf_cache_event(event->attr.config, &ev); 1560 if (err) 1561 return err; 1562 break; 1563 case PERF_TYPE_RAW: 1564 ev = event->attr.config; 1565 break; 1566 default: 1567 return -ENOENT; 1568 } 1569 1570 event->hw.config_base = ev; 1571 event->hw.idx = 0; 1572 1573 /* 1574 * If we are not running on a hypervisor, force the 1575 * exclude_hv bit to 0 so that we don't care what 1576 * the user set it to. 1577 */ 1578 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1579 event->attr.exclude_hv = 0; 1580 1581 /* 1582 * If this is a per-task event, then we can use 1583 * PM_RUN_* events interchangeably with their non RUN_* 1584 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1585 * XXX we should check if the task is an idle task. 1586 */ 1587 flags = 0; 1588 if (event->attach_state & PERF_ATTACH_TASK) 1589 flags |= PPMU_ONLY_COUNT_RUN; 1590 1591 /* 1592 * If this machine has limited events, check whether this 1593 * event_id could go on a limited event. 1594 */ 1595 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1596 if (can_go_on_limited_pmc(event, ev, flags)) { 1597 flags |= PPMU_LIMITED_PMC_OK; 1598 } else if (ppmu->limited_pmc_event(ev)) { 1599 /* 1600 * The requested event_id is on a limited PMC, 1601 * but we can't use a limited PMC; see if any 1602 * alternative goes on a normal PMC. 1603 */ 1604 ev = normal_pmc_alternative(ev, flags); 1605 if (!ev) 1606 return -EINVAL; 1607 } 1608 } 1609 1610 /* Extra checks for EBB */ 1611 err = ebb_event_check(event); 1612 if (err) 1613 return err; 1614 1615 /* 1616 * If this is in a group, check if it can go on with all the 1617 * other hardware events in the group. We assume the event 1618 * hasn't been linked into its leader's sibling list at this point. 1619 */ 1620 n = 0; 1621 if (event->group_leader != event) { 1622 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1623 ctrs, events, cflags); 1624 if (n < 0) 1625 return -EINVAL; 1626 } 1627 events[n] = ev; 1628 ctrs[n] = event; 1629 cflags[n] = flags; 1630 if (check_excludes(ctrs, cflags, n, 1)) 1631 return -EINVAL; 1632 1633 cpuhw = &get_cpu_var(cpu_hw_events); 1634 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1635 1636 if (has_branch_stack(event)) { 1637 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1638 event->attr.branch_sample_type); 1639 1640 if(cpuhw->bhrb_filter == -1) 1641 return -EOPNOTSUPP; 1642 } 1643 1644 put_cpu_var(cpu_hw_events); 1645 if (err) 1646 return -EINVAL; 1647 1648 event->hw.config = events[n]; 1649 event->hw.event_base = cflags[n]; 1650 event->hw.last_period = event->hw.sample_period; 1651 local64_set(&event->hw.period_left, event->hw.last_period); 1652 1653 /* 1654 * For EBB events we just context switch the PMC value, we don't do any 1655 * of the sample_period logic. We use hw.prev_count for this. 1656 */ 1657 if (is_ebb_event(event)) 1658 local64_set(&event->hw.prev_count, 0); 1659 1660 /* 1661 * See if we need to reserve the PMU. 1662 * If no events are currently in use, then we have to take a 1663 * mutex to ensure that we don't race with another task doing 1664 * reserve_pmc_hardware or release_pmc_hardware. 1665 */ 1666 err = 0; 1667 if (!atomic_inc_not_zero(&num_events)) { 1668 mutex_lock(&pmc_reserve_mutex); 1669 if (atomic_read(&num_events) == 0 && 1670 reserve_pmc_hardware(perf_event_interrupt)) 1671 err = -EBUSY; 1672 else 1673 atomic_inc(&num_events); 1674 mutex_unlock(&pmc_reserve_mutex); 1675 } 1676 event->destroy = hw_perf_event_destroy; 1677 1678 return err; 1679 } 1680 1681 static int power_pmu_event_idx(struct perf_event *event) 1682 { 1683 return event->hw.idx; 1684 } 1685 1686 ssize_t power_events_sysfs_show(struct device *dev, 1687 struct device_attribute *attr, char *page) 1688 { 1689 struct perf_pmu_events_attr *pmu_attr; 1690 1691 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 1692 1693 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 1694 } 1695 1696 struct pmu power_pmu = { 1697 .pmu_enable = power_pmu_enable, 1698 .pmu_disable = power_pmu_disable, 1699 .event_init = power_pmu_event_init, 1700 .add = power_pmu_add, 1701 .del = power_pmu_del, 1702 .start = power_pmu_start, 1703 .stop = power_pmu_stop, 1704 .read = power_pmu_read, 1705 .start_txn = power_pmu_start_txn, 1706 .cancel_txn = power_pmu_cancel_txn, 1707 .commit_txn = power_pmu_commit_txn, 1708 .event_idx = power_pmu_event_idx, 1709 .flush_branch_stack = power_pmu_flush_branch_stack, 1710 }; 1711 1712 /* 1713 * A counter has overflowed; update its count and record 1714 * things if requested. Note that interrupts are hard-disabled 1715 * here so there is no possibility of being interrupted. 1716 */ 1717 static void record_and_restart(struct perf_event *event, unsigned long val, 1718 struct pt_regs *regs) 1719 { 1720 u64 period = event->hw.sample_period; 1721 s64 prev, delta, left; 1722 int record = 0; 1723 1724 if (event->hw.state & PERF_HES_STOPPED) { 1725 write_pmc(event->hw.idx, 0); 1726 return; 1727 } 1728 1729 /* we don't have to worry about interrupts here */ 1730 prev = local64_read(&event->hw.prev_count); 1731 delta = check_and_compute_delta(prev, val); 1732 local64_add(delta, &event->count); 1733 1734 /* 1735 * See if the total period for this event has expired, 1736 * and update for the next period. 1737 */ 1738 val = 0; 1739 left = local64_read(&event->hw.period_left) - delta; 1740 if (delta == 0) 1741 left++; 1742 if (period) { 1743 if (left <= 0) { 1744 left += period; 1745 if (left <= 0) 1746 left = period; 1747 record = siar_valid(regs); 1748 event->hw.last_period = event->hw.sample_period; 1749 } 1750 if (left < 0x80000000LL) 1751 val = 0x80000000LL - left; 1752 } 1753 1754 write_pmc(event->hw.idx, val); 1755 local64_set(&event->hw.prev_count, val); 1756 local64_set(&event->hw.period_left, left); 1757 perf_event_update_userpage(event); 1758 1759 /* 1760 * Finally record data if requested. 1761 */ 1762 if (record) { 1763 struct perf_sample_data data; 1764 1765 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 1766 1767 if (event->attr.sample_type & PERF_SAMPLE_ADDR) 1768 perf_get_data_addr(regs, &data.addr); 1769 1770 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 1771 struct cpu_hw_events *cpuhw; 1772 cpuhw = &__get_cpu_var(cpu_hw_events); 1773 power_pmu_bhrb_read(cpuhw); 1774 data.br_stack = &cpuhw->bhrb_stack; 1775 } 1776 1777 if (perf_event_overflow(event, &data, regs)) 1778 power_pmu_stop(event, 0); 1779 } 1780 } 1781 1782 /* 1783 * Called from generic code to get the misc flags (i.e. processor mode) 1784 * for an event_id. 1785 */ 1786 unsigned long perf_misc_flags(struct pt_regs *regs) 1787 { 1788 u32 flags = perf_get_misc_flags(regs); 1789 1790 if (flags) 1791 return flags; 1792 return user_mode(regs) ? PERF_RECORD_MISC_USER : 1793 PERF_RECORD_MISC_KERNEL; 1794 } 1795 1796 /* 1797 * Called from generic code to get the instruction pointer 1798 * for an event_id. 1799 */ 1800 unsigned long perf_instruction_pointer(struct pt_regs *regs) 1801 { 1802 bool use_siar = regs_use_siar(regs); 1803 1804 if (use_siar && siar_valid(regs)) 1805 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 1806 else if (use_siar) 1807 return 0; // no valid instruction pointer 1808 else 1809 return regs->nip; 1810 } 1811 1812 static bool pmc_overflow_power7(unsigned long val) 1813 { 1814 /* 1815 * Events on POWER7 can roll back if a speculative event doesn't 1816 * eventually complete. Unfortunately in some rare cases they will 1817 * raise a performance monitor exception. We need to catch this to 1818 * ensure we reset the PMC. In all cases the PMC will be 256 or less 1819 * cycles from overflow. 1820 * 1821 * We only do this if the first pass fails to find any overflowing 1822 * PMCs because a user might set a period of less than 256 and we 1823 * don't want to mistakenly reset them. 1824 */ 1825 if ((0x80000000 - val) <= 256) 1826 return true; 1827 1828 return false; 1829 } 1830 1831 static bool pmc_overflow(unsigned long val) 1832 { 1833 if ((int)val < 0) 1834 return true; 1835 1836 return false; 1837 } 1838 1839 /* 1840 * Performance monitor interrupt stuff 1841 */ 1842 static void perf_event_interrupt(struct pt_regs *regs) 1843 { 1844 int i, j; 1845 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1846 struct perf_event *event; 1847 unsigned long val[8]; 1848 int found, active; 1849 int nmi; 1850 1851 if (cpuhw->n_limited) 1852 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 1853 mfspr(SPRN_PMC6)); 1854 1855 perf_read_regs(regs); 1856 1857 nmi = perf_intr_is_nmi(regs); 1858 if (nmi) 1859 nmi_enter(); 1860 else 1861 irq_enter(); 1862 1863 /* Read all the PMCs since we'll need them a bunch of times */ 1864 for (i = 0; i < ppmu->n_counter; ++i) 1865 val[i] = read_pmc(i + 1); 1866 1867 /* Try to find what caused the IRQ */ 1868 found = 0; 1869 for (i = 0; i < ppmu->n_counter; ++i) { 1870 if (!pmc_overflow(val[i])) 1871 continue; 1872 if (is_limited_pmc(i + 1)) 1873 continue; /* these won't generate IRQs */ 1874 /* 1875 * We've found one that's overflowed. For active 1876 * counters we need to log this. For inactive 1877 * counters, we need to reset it anyway 1878 */ 1879 found = 1; 1880 active = 0; 1881 for (j = 0; j < cpuhw->n_events; ++j) { 1882 event = cpuhw->event[j]; 1883 if (event->hw.idx == (i + 1)) { 1884 active = 1; 1885 record_and_restart(event, val[i], regs); 1886 break; 1887 } 1888 } 1889 if (!active) 1890 /* reset non active counters that have overflowed */ 1891 write_pmc(i + 1, 0); 1892 } 1893 if (!found && pvr_version_is(PVR_POWER7)) { 1894 /* check active counters for special buggy p7 overflow */ 1895 for (i = 0; i < cpuhw->n_events; ++i) { 1896 event = cpuhw->event[i]; 1897 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 1898 continue; 1899 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 1900 /* event has overflowed in a buggy way*/ 1901 found = 1; 1902 record_and_restart(event, 1903 val[event->hw.idx - 1], 1904 regs); 1905 } 1906 } 1907 } 1908 if (!found && !nmi && printk_ratelimit()) 1909 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 1910 1911 /* 1912 * Reset MMCR0 to its normal value. This will set PMXE and 1913 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 1914 * and thus allow interrupts to occur again. 1915 * XXX might want to use MSR.PM to keep the events frozen until 1916 * we get back out of this interrupt. 1917 */ 1918 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 1919 1920 if (nmi) 1921 nmi_exit(); 1922 else 1923 irq_exit(); 1924 } 1925 1926 static void power_pmu_setup(int cpu) 1927 { 1928 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 1929 1930 if (!ppmu) 1931 return; 1932 memset(cpuhw, 0, sizeof(*cpuhw)); 1933 cpuhw->mmcr[0] = MMCR0_FC; 1934 } 1935 1936 static int 1937 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) 1938 { 1939 unsigned int cpu = (long)hcpu; 1940 1941 switch (action & ~CPU_TASKS_FROZEN) { 1942 case CPU_UP_PREPARE: 1943 power_pmu_setup(cpu); 1944 break; 1945 1946 default: 1947 break; 1948 } 1949 1950 return NOTIFY_OK; 1951 } 1952 1953 int register_power_pmu(struct power_pmu *pmu) 1954 { 1955 if (ppmu) 1956 return -EBUSY; /* something's already registered */ 1957 1958 ppmu = pmu; 1959 pr_info("%s performance monitor hardware support registered\n", 1960 pmu->name); 1961 1962 power_pmu.attr_groups = ppmu->attr_groups; 1963 1964 #ifdef MSR_HV 1965 /* 1966 * Use FCHV to ignore kernel events if MSR.HV is set. 1967 */ 1968 if (mfmsr() & MSR_HV) 1969 freeze_events_kernel = MMCR0_FCHV; 1970 #endif /* CONFIG_PPC64 */ 1971 1972 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 1973 perf_cpu_notifier(power_pmu_notifier); 1974 1975 return 0; 1976 } 1977