xref: /linux/arch/powerpc/perf/core-book3s.c (revision faabed295cccc2aba2b67f2e7b309f2892d55004)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 
21 #ifdef CONFIG_PPC64
22 #include "internal.h"
23 #endif
24 
25 #define BHRB_MAX_ENTRIES	32
26 #define BHRB_TARGET		0x0000000000000002
27 #define BHRB_PREDICTION		0x0000000000000001
28 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
29 
30 struct cpu_hw_events {
31 	int n_events;
32 	int n_percpu;
33 	int disabled;
34 	int n_added;
35 	int n_limited;
36 	u8  pmcs_enabled;
37 	struct perf_event *event[MAX_HWEVENTS];
38 	u64 events[MAX_HWEVENTS];
39 	unsigned int flags[MAX_HWEVENTS];
40 	/*
41 	 * The order of the MMCR array is:
42 	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
43 	 *  - 32-bit, MMCR0, MMCR1, MMCR2
44 	 */
45 	unsigned long mmcr[4];
46 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
47 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
48 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
51 
52 	unsigned int txn_flags;
53 	int n_txn_start;
54 
55 	/* BHRB bits */
56 	u64				bhrb_filter;	/* BHRB HW branch filter */
57 	unsigned int			bhrb_users;
58 	void				*bhrb_context;
59 	struct	perf_branch_stack	bhrb_stack;
60 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
61 	u64				ic_init;
62 };
63 
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65 
66 static struct power_pmu *ppmu;
67 
68 /*
69  * Normally, to ignore kernel events we set the FCS (freeze counters
70  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71  * hypervisor bit set in the MSR, or if we are running on a processor
72  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73  * then we need to use the FCHV bit to ignore kernel events.
74  */
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
76 
77 /*
78  * 32-bit doesn't have MMCRA but does have an MMCR2,
79  * and a few other names are different.
80  */
81 #ifdef CONFIG_PPC32
82 
83 #define MMCR0_FCHV		0
84 #define MMCR0_PMCjCE		MMCR0_PMCnCE
85 #define MMCR0_FC56		0
86 #define MMCR0_PMAO		0
87 #define MMCR0_EBE		0
88 #define MMCR0_BHRBA		0
89 #define MMCR0_PMCC		0
90 #define MMCR0_PMCC_U6		0
91 
92 #define SPRN_MMCRA		SPRN_MMCR2
93 #define MMCRA_SAMPLE_ENABLE	0
94 
95 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
96 {
97 	return 0;
98 }
99 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
100 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
101 {
102 	return 0;
103 }
104 static inline void perf_read_regs(struct pt_regs *regs)
105 {
106 	regs->result = 0;
107 }
108 static inline int perf_intr_is_nmi(struct pt_regs *regs)
109 {
110 	return 0;
111 }
112 
113 static inline int siar_valid(struct pt_regs *regs)
114 {
115 	return 1;
116 }
117 
118 static bool is_ebb_event(struct perf_event *event) { return false; }
119 static int ebb_event_check(struct perf_event *event) { return 0; }
120 static void ebb_event_add(struct perf_event *event) { }
121 static void ebb_switch_out(unsigned long mmcr0) { }
122 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
123 {
124 	return cpuhw->mmcr[0];
125 }
126 
127 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
128 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
129 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
130 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
131 static void pmao_restore_workaround(bool ebb) { }
132 #endif /* CONFIG_PPC32 */
133 
134 bool is_sier_available(void)
135 {
136 	if (ppmu->flags & PPMU_HAS_SIER)
137 		return true;
138 
139 	return false;
140 }
141 
142 static bool regs_use_siar(struct pt_regs *regs)
143 {
144 	/*
145 	 * When we take a performance monitor exception the regs are setup
146 	 * using perf_read_regs() which overloads some fields, in particular
147 	 * regs->result to tell us whether to use SIAR.
148 	 *
149 	 * However if the regs are from another exception, eg. a syscall, then
150 	 * they have not been setup using perf_read_regs() and so regs->result
151 	 * is something random.
152 	 */
153 	return ((TRAP(regs) == 0xf00) && regs->result);
154 }
155 
156 /*
157  * Things that are specific to 64-bit implementations.
158  */
159 #ifdef CONFIG_PPC64
160 
161 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
162 {
163 	unsigned long mmcra = regs->dsisr;
164 
165 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
166 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
167 		if (slot > 1)
168 			return 4 * (slot - 1);
169 	}
170 
171 	return 0;
172 }
173 
174 /*
175  * The user wants a data address recorded.
176  * If we're not doing instruction sampling, give them the SDAR
177  * (sampled data address).  If we are doing instruction sampling, then
178  * only give them the SDAR if it corresponds to the instruction
179  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
180  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
181  */
182 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
183 {
184 	unsigned long mmcra = regs->dsisr;
185 	bool sdar_valid;
186 
187 	if (ppmu->flags & PPMU_HAS_SIER)
188 		sdar_valid = regs->dar & SIER_SDAR_VALID;
189 	else {
190 		unsigned long sdsync;
191 
192 		if (ppmu->flags & PPMU_SIAR_VALID)
193 			sdsync = POWER7P_MMCRA_SDAR_VALID;
194 		else if (ppmu->flags & PPMU_ALT_SIPR)
195 			sdsync = POWER6_MMCRA_SDSYNC;
196 		else if (ppmu->flags & PPMU_NO_SIAR)
197 			sdsync = MMCRA_SAMPLE_ENABLE;
198 		else
199 			sdsync = MMCRA_SDSYNC;
200 
201 		sdar_valid = mmcra & sdsync;
202 	}
203 
204 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
205 		*addrp = mfspr(SPRN_SDAR);
206 
207 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0)
208 		*addrp = 0;
209 }
210 
211 static bool regs_sihv(struct pt_regs *regs)
212 {
213 	unsigned long sihv = MMCRA_SIHV;
214 
215 	if (ppmu->flags & PPMU_HAS_SIER)
216 		return !!(regs->dar & SIER_SIHV);
217 
218 	if (ppmu->flags & PPMU_ALT_SIPR)
219 		sihv = POWER6_MMCRA_SIHV;
220 
221 	return !!(regs->dsisr & sihv);
222 }
223 
224 static bool regs_sipr(struct pt_regs *regs)
225 {
226 	unsigned long sipr = MMCRA_SIPR;
227 
228 	if (ppmu->flags & PPMU_HAS_SIER)
229 		return !!(regs->dar & SIER_SIPR);
230 
231 	if (ppmu->flags & PPMU_ALT_SIPR)
232 		sipr = POWER6_MMCRA_SIPR;
233 
234 	return !!(regs->dsisr & sipr);
235 }
236 
237 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
238 {
239 	if (regs->msr & MSR_PR)
240 		return PERF_RECORD_MISC_USER;
241 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
242 		return PERF_RECORD_MISC_HYPERVISOR;
243 	return PERF_RECORD_MISC_KERNEL;
244 }
245 
246 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
247 {
248 	bool use_siar = regs_use_siar(regs);
249 
250 	if (!use_siar)
251 		return perf_flags_from_msr(regs);
252 
253 	/*
254 	 * If we don't have flags in MMCRA, rather than using
255 	 * the MSR, we intuit the flags from the address in
256 	 * SIAR which should give slightly more reliable
257 	 * results
258 	 */
259 	if (ppmu->flags & PPMU_NO_SIPR) {
260 		unsigned long siar = mfspr(SPRN_SIAR);
261 		if (is_kernel_addr(siar))
262 			return PERF_RECORD_MISC_KERNEL;
263 		return PERF_RECORD_MISC_USER;
264 	}
265 
266 	/* PR has priority over HV, so order below is important */
267 	if (regs_sipr(regs))
268 		return PERF_RECORD_MISC_USER;
269 
270 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
271 		return PERF_RECORD_MISC_HYPERVISOR;
272 
273 	return PERF_RECORD_MISC_KERNEL;
274 }
275 
276 /*
277  * Overload regs->dsisr to store MMCRA so we only need to read it once
278  * on each interrupt.
279  * Overload regs->dar to store SIER if we have it.
280  * Overload regs->result to specify whether we should use the MSR (result
281  * is zero) or the SIAR (result is non zero).
282  */
283 static inline void perf_read_regs(struct pt_regs *regs)
284 {
285 	unsigned long mmcra = mfspr(SPRN_MMCRA);
286 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
287 	int use_siar;
288 
289 	regs->dsisr = mmcra;
290 
291 	if (ppmu->flags & PPMU_HAS_SIER)
292 		regs->dar = mfspr(SPRN_SIER);
293 
294 	/*
295 	 * If this isn't a PMU exception (eg a software event) the SIAR is
296 	 * not valid. Use pt_regs.
297 	 *
298 	 * If it is a marked event use the SIAR.
299 	 *
300 	 * If the PMU doesn't update the SIAR for non marked events use
301 	 * pt_regs.
302 	 *
303 	 * If the PMU has HV/PR flags then check to see if they
304 	 * place the exception in userspace. If so, use pt_regs. In
305 	 * continuous sampling mode the SIAR and the PMU exception are
306 	 * not synchronised, so they may be many instructions apart.
307 	 * This can result in confusing backtraces. We still want
308 	 * hypervisor samples as well as samples in the kernel with
309 	 * interrupts off hence the userspace check.
310 	 */
311 	if (TRAP(regs) != 0xf00)
312 		use_siar = 0;
313 	else if ((ppmu->flags & PPMU_NO_SIAR))
314 		use_siar = 0;
315 	else if (marked)
316 		use_siar = 1;
317 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
318 		use_siar = 0;
319 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
320 		use_siar = 0;
321 	else
322 		use_siar = 1;
323 
324 	regs->result = use_siar;
325 }
326 
327 /*
328  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
329  * it as an NMI.
330  */
331 static inline int perf_intr_is_nmi(struct pt_regs *regs)
332 {
333 	return (regs->softe & IRQS_DISABLED);
334 }
335 
336 /*
337  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
338  * must be sampled only if the SIAR-valid bit is set.
339  *
340  * For unmarked instructions and for processors that don't have the SIAR-Valid
341  * bit, assume that SIAR is valid.
342  */
343 static inline int siar_valid(struct pt_regs *regs)
344 {
345 	unsigned long mmcra = regs->dsisr;
346 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
347 
348 	if (marked) {
349 		if (ppmu->flags & PPMU_HAS_SIER)
350 			return regs->dar & SIER_SIAR_VALID;
351 
352 		if (ppmu->flags & PPMU_SIAR_VALID)
353 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
354 	}
355 
356 	return 1;
357 }
358 
359 
360 /* Reset all possible BHRB entries */
361 static void power_pmu_bhrb_reset(void)
362 {
363 	asm volatile(PPC_CLRBHRB);
364 }
365 
366 static void power_pmu_bhrb_enable(struct perf_event *event)
367 {
368 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
369 
370 	if (!ppmu->bhrb_nr)
371 		return;
372 
373 	/* Clear BHRB if we changed task context to avoid data leaks */
374 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
375 		power_pmu_bhrb_reset();
376 		cpuhw->bhrb_context = event->ctx;
377 	}
378 	cpuhw->bhrb_users++;
379 	perf_sched_cb_inc(event->ctx->pmu);
380 }
381 
382 static void power_pmu_bhrb_disable(struct perf_event *event)
383 {
384 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
385 
386 	if (!ppmu->bhrb_nr)
387 		return;
388 
389 	WARN_ON_ONCE(!cpuhw->bhrb_users);
390 	cpuhw->bhrb_users--;
391 	perf_sched_cb_dec(event->ctx->pmu);
392 
393 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
394 		/* BHRB cannot be turned off when other
395 		 * events are active on the PMU.
396 		 */
397 
398 		/* avoid stale pointer */
399 		cpuhw->bhrb_context = NULL;
400 	}
401 }
402 
403 /* Called from ctxsw to prevent one process's branch entries to
404  * mingle with the other process's entries during context switch.
405  */
406 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
407 {
408 	if (!ppmu->bhrb_nr)
409 		return;
410 
411 	if (sched_in)
412 		power_pmu_bhrb_reset();
413 }
414 /* Calculate the to address for a branch */
415 static __u64 power_pmu_bhrb_to(u64 addr)
416 {
417 	unsigned int instr;
418 	__u64 target;
419 
420 	if (is_kernel_addr(addr)) {
421 		if (copy_from_kernel_nofault(&instr, (void *)addr,
422 				sizeof(instr)))
423 			return 0;
424 
425 		return branch_target((struct ppc_inst *)&instr);
426 	}
427 
428 	/* Userspace: need copy instruction here then translate it */
429 	if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
430 			sizeof(instr)))
431 		return 0;
432 
433 	target = branch_target((struct ppc_inst *)&instr);
434 	if ((!target) || (instr & BRANCH_ABSOLUTE))
435 		return target;
436 
437 	/* Translate relative branch target from kernel to user address */
438 	return target - (unsigned long)&instr + addr;
439 }
440 
441 /* Processing BHRB entries */
442 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
443 {
444 	u64 val;
445 	u64 addr;
446 	int r_index, u_index, pred;
447 
448 	r_index = 0;
449 	u_index = 0;
450 	while (r_index < ppmu->bhrb_nr) {
451 		/* Assembly read function */
452 		val = read_bhrb(r_index++);
453 		if (!val)
454 			/* Terminal marker: End of valid BHRB entries */
455 			break;
456 		else {
457 			addr = val & BHRB_EA;
458 			pred = val & BHRB_PREDICTION;
459 
460 			if (!addr)
461 				/* invalid entry */
462 				continue;
463 
464 			/*
465 			 * BHRB rolling buffer could very much contain the kernel
466 			 * addresses at this point. Check the privileges before
467 			 * exporting it to userspace (avoid exposure of regions
468 			 * where we could have speculative execution)
469 			 */
470 			if (is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0)
471 				continue;
472 
473 			/* Branches are read most recent first (ie. mfbhrb 0 is
474 			 * the most recent branch).
475 			 * There are two types of valid entries:
476 			 * 1) a target entry which is the to address of a
477 			 *    computed goto like a blr,bctr,btar.  The next
478 			 *    entry read from the bhrb will be branch
479 			 *    corresponding to this target (ie. the actual
480 			 *    blr/bctr/btar instruction).
481 			 * 2) a from address which is an actual branch.  If a
482 			 *    target entry proceeds this, then this is the
483 			 *    matching branch for that target.  If this is not
484 			 *    following a target entry, then this is a branch
485 			 *    where the target is given as an immediate field
486 			 *    in the instruction (ie. an i or b form branch).
487 			 *    In this case we need to read the instruction from
488 			 *    memory to determine the target/to address.
489 			 */
490 
491 			if (val & BHRB_TARGET) {
492 				/* Target branches use two entries
493 				 * (ie. computed gotos/XL form)
494 				 */
495 				cpuhw->bhrb_entries[u_index].to = addr;
496 				cpuhw->bhrb_entries[u_index].mispred = pred;
497 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
498 
499 				/* Get from address in next entry */
500 				val = read_bhrb(r_index++);
501 				addr = val & BHRB_EA;
502 				if (val & BHRB_TARGET) {
503 					/* Shouldn't have two targets in a
504 					   row.. Reset index and try again */
505 					r_index--;
506 					addr = 0;
507 				}
508 				cpuhw->bhrb_entries[u_index].from = addr;
509 			} else {
510 				/* Branches to immediate field
511 				   (ie I or B form) */
512 				cpuhw->bhrb_entries[u_index].from = addr;
513 				cpuhw->bhrb_entries[u_index].to =
514 					power_pmu_bhrb_to(addr);
515 				cpuhw->bhrb_entries[u_index].mispred = pred;
516 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
517 			}
518 			u_index++;
519 
520 		}
521 	}
522 	cpuhw->bhrb_stack.nr = u_index;
523 	cpuhw->bhrb_stack.hw_idx = -1ULL;
524 	return;
525 }
526 
527 static bool is_ebb_event(struct perf_event *event)
528 {
529 	/*
530 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
531 	 * check that the PMU supports EBB, meaning those that don't can still
532 	 * use bit 63 of the event code for something else if they wish.
533 	 */
534 	return (ppmu->flags & PPMU_ARCH_207S) &&
535 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
536 }
537 
538 static int ebb_event_check(struct perf_event *event)
539 {
540 	struct perf_event *leader = event->group_leader;
541 
542 	/* Event and group leader must agree on EBB */
543 	if (is_ebb_event(leader) != is_ebb_event(event))
544 		return -EINVAL;
545 
546 	if (is_ebb_event(event)) {
547 		if (!(event->attach_state & PERF_ATTACH_TASK))
548 			return -EINVAL;
549 
550 		if (!leader->attr.pinned || !leader->attr.exclusive)
551 			return -EINVAL;
552 
553 		if (event->attr.freq ||
554 		    event->attr.inherit ||
555 		    event->attr.sample_type ||
556 		    event->attr.sample_period ||
557 		    event->attr.enable_on_exec)
558 			return -EINVAL;
559 	}
560 
561 	return 0;
562 }
563 
564 static void ebb_event_add(struct perf_event *event)
565 {
566 	if (!is_ebb_event(event) || current->thread.used_ebb)
567 		return;
568 
569 	/*
570 	 * IFF this is the first time we've added an EBB event, set
571 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
572 	 * userspace. We need this so that we can context switch while
573 	 * userspace is in the EBB handler (where PMXE is 0).
574 	 */
575 	current->thread.used_ebb = 1;
576 	current->thread.mmcr0 |= MMCR0_PMXE;
577 }
578 
579 static void ebb_switch_out(unsigned long mmcr0)
580 {
581 	if (!(mmcr0 & MMCR0_EBE))
582 		return;
583 
584 	current->thread.siar  = mfspr(SPRN_SIAR);
585 	current->thread.sier  = mfspr(SPRN_SIER);
586 	current->thread.sdar  = mfspr(SPRN_SDAR);
587 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
588 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
589 }
590 
591 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
592 {
593 	unsigned long mmcr0 = cpuhw->mmcr[0];
594 
595 	if (!ebb)
596 		goto out;
597 
598 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
599 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
600 
601 	/*
602 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
603 	 * with pmao_restore_workaround() because we may add PMAO but we never
604 	 * clear it here.
605 	 */
606 	mmcr0 |= current->thread.mmcr0;
607 
608 	/*
609 	 * Be careful not to set PMXE if userspace had it cleared. This is also
610 	 * compatible with pmao_restore_workaround() because it has already
611 	 * cleared PMXE and we leave PMAO alone.
612 	 */
613 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
614 		mmcr0 &= ~MMCR0_PMXE;
615 
616 	mtspr(SPRN_SIAR, current->thread.siar);
617 	mtspr(SPRN_SIER, current->thread.sier);
618 	mtspr(SPRN_SDAR, current->thread.sdar);
619 
620 	/*
621 	 * Merge the kernel & user values of MMCR2. The semantics we implement
622 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
623 	 * but not clear bits. If a task wants to be able to clear bits, ie.
624 	 * unfreeze counters, it should not set exclude_xxx in its events and
625 	 * instead manage the MMCR2 entirely by itself.
626 	 */
627 	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
628 out:
629 	return mmcr0;
630 }
631 
632 static void pmao_restore_workaround(bool ebb)
633 {
634 	unsigned pmcs[6];
635 
636 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
637 		return;
638 
639 	/*
640 	 * On POWER8E there is a hardware defect which affects the PMU context
641 	 * switch logic, ie. power_pmu_disable/enable().
642 	 *
643 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
644 	 * by the hardware. Sometime later the actual PMU exception is
645 	 * delivered.
646 	 *
647 	 * If we context switch, or simply disable/enable, the PMU prior to the
648 	 * exception arriving, the exception will be lost when we clear PMAO.
649 	 *
650 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
651 	 * set, and this _should_ generate an exception. However because of the
652 	 * defect no exception is generated when we write PMAO, and we get
653 	 * stuck with no counters counting but no exception delivered.
654 	 *
655 	 * The workaround is to detect this case and tweak the hardware to
656 	 * create another pending PMU exception.
657 	 *
658 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
659 	 * enabling the PMU. That causes a new exception to be generated in the
660 	 * chip, but we don't take it yet because we have interrupts hard
661 	 * disabled. We then write back the PMU state as we want it to be seen
662 	 * by the exception handler. When we reenable interrupts the exception
663 	 * handler will be called and see the correct state.
664 	 *
665 	 * The logic is the same for EBB, except that the exception is gated by
666 	 * us having interrupts hard disabled as well as the fact that we are
667 	 * not in userspace. The exception is finally delivered when we return
668 	 * to userspace.
669 	 */
670 
671 	/* Only if PMAO is set and PMAO_SYNC is clear */
672 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
673 		return;
674 
675 	/* If we're doing EBB, only if BESCR[GE] is set */
676 	if (ebb && !(current->thread.bescr & BESCR_GE))
677 		return;
678 
679 	/*
680 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
681 	 * disable to actually prevent the PMU exception from firing.
682 	 */
683 	hard_irq_disable();
684 
685 	/*
686 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
687 	 * Using read/write_pmc() in a for loop adds 12 function calls and
688 	 * almost doubles our code size.
689 	 */
690 	pmcs[0] = mfspr(SPRN_PMC1);
691 	pmcs[1] = mfspr(SPRN_PMC2);
692 	pmcs[2] = mfspr(SPRN_PMC3);
693 	pmcs[3] = mfspr(SPRN_PMC4);
694 	pmcs[4] = mfspr(SPRN_PMC5);
695 	pmcs[5] = mfspr(SPRN_PMC6);
696 
697 	/* Ensure all freeze bits are unset */
698 	mtspr(SPRN_MMCR2, 0);
699 
700 	/* Set up PMC6 to overflow in one cycle */
701 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
702 
703 	/* Enable exceptions and unfreeze PMC6 */
704 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
705 
706 	/* Now we need to refreeze and restore the PMCs */
707 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
708 
709 	mtspr(SPRN_PMC1, pmcs[0]);
710 	mtspr(SPRN_PMC2, pmcs[1]);
711 	mtspr(SPRN_PMC3, pmcs[2]);
712 	mtspr(SPRN_PMC4, pmcs[3]);
713 	mtspr(SPRN_PMC5, pmcs[4]);
714 	mtspr(SPRN_PMC6, pmcs[5]);
715 }
716 
717 #endif /* CONFIG_PPC64 */
718 
719 static void perf_event_interrupt(struct pt_regs *regs);
720 
721 /*
722  * Read one performance monitor counter (PMC).
723  */
724 static unsigned long read_pmc(int idx)
725 {
726 	unsigned long val;
727 
728 	switch (idx) {
729 	case 1:
730 		val = mfspr(SPRN_PMC1);
731 		break;
732 	case 2:
733 		val = mfspr(SPRN_PMC2);
734 		break;
735 	case 3:
736 		val = mfspr(SPRN_PMC3);
737 		break;
738 	case 4:
739 		val = mfspr(SPRN_PMC4);
740 		break;
741 	case 5:
742 		val = mfspr(SPRN_PMC5);
743 		break;
744 	case 6:
745 		val = mfspr(SPRN_PMC6);
746 		break;
747 #ifdef CONFIG_PPC64
748 	case 7:
749 		val = mfspr(SPRN_PMC7);
750 		break;
751 	case 8:
752 		val = mfspr(SPRN_PMC8);
753 		break;
754 #endif /* CONFIG_PPC64 */
755 	default:
756 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
757 		val = 0;
758 	}
759 	return val;
760 }
761 
762 /*
763  * Write one PMC.
764  */
765 static void write_pmc(int idx, unsigned long val)
766 {
767 	switch (idx) {
768 	case 1:
769 		mtspr(SPRN_PMC1, val);
770 		break;
771 	case 2:
772 		mtspr(SPRN_PMC2, val);
773 		break;
774 	case 3:
775 		mtspr(SPRN_PMC3, val);
776 		break;
777 	case 4:
778 		mtspr(SPRN_PMC4, val);
779 		break;
780 	case 5:
781 		mtspr(SPRN_PMC5, val);
782 		break;
783 	case 6:
784 		mtspr(SPRN_PMC6, val);
785 		break;
786 #ifdef CONFIG_PPC64
787 	case 7:
788 		mtspr(SPRN_PMC7, val);
789 		break;
790 	case 8:
791 		mtspr(SPRN_PMC8, val);
792 		break;
793 #endif /* CONFIG_PPC64 */
794 	default:
795 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
796 	}
797 }
798 
799 /* Called from sysrq_handle_showregs() */
800 void perf_event_print_debug(void)
801 {
802 	unsigned long sdar, sier, flags;
803 	u32 pmcs[MAX_HWEVENTS];
804 	int i;
805 
806 	if (!ppmu) {
807 		pr_info("Performance monitor hardware not registered.\n");
808 		return;
809 	}
810 
811 	if (!ppmu->n_counter)
812 		return;
813 
814 	local_irq_save(flags);
815 
816 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
817 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
818 
819 	for (i = 0; i < ppmu->n_counter; i++)
820 		pmcs[i] = read_pmc(i + 1);
821 
822 	for (; i < MAX_HWEVENTS; i++)
823 		pmcs[i] = 0xdeadbeef;
824 
825 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
826 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
827 
828 	if (ppmu->n_counter > 4)
829 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
830 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
831 
832 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
833 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
834 
835 	sdar = sier = 0;
836 #ifdef CONFIG_PPC64
837 	sdar = mfspr(SPRN_SDAR);
838 
839 	if (ppmu->flags & PPMU_HAS_SIER)
840 		sier = mfspr(SPRN_SIER);
841 
842 	if (ppmu->flags & PPMU_ARCH_207S) {
843 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
844 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
845 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
846 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
847 	}
848 #endif
849 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
850 		mfspr(SPRN_SIAR), sdar, sier);
851 
852 	local_irq_restore(flags);
853 }
854 
855 /*
856  * Check if a set of events can all go on the PMU at once.
857  * If they can't, this will look at alternative codes for the events
858  * and see if any combination of alternative codes is feasible.
859  * The feasible set is returned in event_id[].
860  */
861 static int power_check_constraints(struct cpu_hw_events *cpuhw,
862 				   u64 event_id[], unsigned int cflags[],
863 				   int n_ev)
864 {
865 	unsigned long mask, value, nv;
866 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
867 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
868 	int i, j;
869 	unsigned long addf = ppmu->add_fields;
870 	unsigned long tadd = ppmu->test_adder;
871 	unsigned long grp_mask = ppmu->group_constraint_mask;
872 	unsigned long grp_val = ppmu->group_constraint_val;
873 
874 	if (n_ev > ppmu->n_counter)
875 		return -1;
876 
877 	/* First see if the events will go on as-is */
878 	for (i = 0; i < n_ev; ++i) {
879 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
880 		    && !ppmu->limited_pmc_event(event_id[i])) {
881 			ppmu->get_alternatives(event_id[i], cflags[i],
882 					       cpuhw->alternatives[i]);
883 			event_id[i] = cpuhw->alternatives[i][0];
884 		}
885 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
886 					 &cpuhw->avalues[i][0]))
887 			return -1;
888 	}
889 	value = mask = 0;
890 	for (i = 0; i < n_ev; ++i) {
891 		nv = (value | cpuhw->avalues[i][0]) +
892 			(value & cpuhw->avalues[i][0] & addf);
893 
894 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
895 			break;
896 
897 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
898 			& (~grp_mask)) != 0)
899 			break;
900 
901 		value = nv;
902 		mask |= cpuhw->amasks[i][0];
903 	}
904 	if (i == n_ev) {
905 		if ((value & mask & grp_mask) != (mask & grp_val))
906 			return -1;
907 		else
908 			return 0;	/* all OK */
909 	}
910 
911 	/* doesn't work, gather alternatives... */
912 	if (!ppmu->get_alternatives)
913 		return -1;
914 	for (i = 0; i < n_ev; ++i) {
915 		choice[i] = 0;
916 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
917 						  cpuhw->alternatives[i]);
918 		for (j = 1; j < n_alt[i]; ++j)
919 			ppmu->get_constraint(cpuhw->alternatives[i][j],
920 					     &cpuhw->amasks[i][j],
921 					     &cpuhw->avalues[i][j]);
922 	}
923 
924 	/* enumerate all possibilities and see if any will work */
925 	i = 0;
926 	j = -1;
927 	value = mask = nv = 0;
928 	while (i < n_ev) {
929 		if (j >= 0) {
930 			/* we're backtracking, restore context */
931 			value = svalues[i];
932 			mask = smasks[i];
933 			j = choice[i];
934 		}
935 		/*
936 		 * See if any alternative k for event_id i,
937 		 * where k > j, will satisfy the constraints.
938 		 */
939 		while (++j < n_alt[i]) {
940 			nv = (value | cpuhw->avalues[i][j]) +
941 				(value & cpuhw->avalues[i][j] & addf);
942 			if ((((nv + tadd) ^ value) & mask) == 0 &&
943 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
944 			     & cpuhw->amasks[i][j]) == 0)
945 				break;
946 		}
947 		if (j >= n_alt[i]) {
948 			/*
949 			 * No feasible alternative, backtrack
950 			 * to event_id i-1 and continue enumerating its
951 			 * alternatives from where we got up to.
952 			 */
953 			if (--i < 0)
954 				return -1;
955 		} else {
956 			/*
957 			 * Found a feasible alternative for event_id i,
958 			 * remember where we got up to with this event_id,
959 			 * go on to the next event_id, and start with
960 			 * the first alternative for it.
961 			 */
962 			choice[i] = j;
963 			svalues[i] = value;
964 			smasks[i] = mask;
965 			value = nv;
966 			mask |= cpuhw->amasks[i][j];
967 			++i;
968 			j = -1;
969 		}
970 	}
971 
972 	/* OK, we have a feasible combination, tell the caller the solution */
973 	for (i = 0; i < n_ev; ++i)
974 		event_id[i] = cpuhw->alternatives[i][choice[i]];
975 	return 0;
976 }
977 
978 /*
979  * Check if newly-added events have consistent settings for
980  * exclude_{user,kernel,hv} with each other and any previously
981  * added events.
982  */
983 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
984 			  int n_prev, int n_new)
985 {
986 	int eu = 0, ek = 0, eh = 0;
987 	int i, n, first;
988 	struct perf_event *event;
989 
990 	/*
991 	 * If the PMU we're on supports per event exclude settings then we
992 	 * don't need to do any of this logic. NB. This assumes no PMU has both
993 	 * per event exclude and limited PMCs.
994 	 */
995 	if (ppmu->flags & PPMU_ARCH_207S)
996 		return 0;
997 
998 	n = n_prev + n_new;
999 	if (n <= 1)
1000 		return 0;
1001 
1002 	first = 1;
1003 	for (i = 0; i < n; ++i) {
1004 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1005 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1006 			continue;
1007 		}
1008 		event = ctrs[i];
1009 		if (first) {
1010 			eu = event->attr.exclude_user;
1011 			ek = event->attr.exclude_kernel;
1012 			eh = event->attr.exclude_hv;
1013 			first = 0;
1014 		} else if (event->attr.exclude_user != eu ||
1015 			   event->attr.exclude_kernel != ek ||
1016 			   event->attr.exclude_hv != eh) {
1017 			return -EAGAIN;
1018 		}
1019 	}
1020 
1021 	if (eu || ek || eh)
1022 		for (i = 0; i < n; ++i)
1023 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1024 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1025 
1026 	return 0;
1027 }
1028 
1029 static u64 check_and_compute_delta(u64 prev, u64 val)
1030 {
1031 	u64 delta = (val - prev) & 0xfffffffful;
1032 
1033 	/*
1034 	 * POWER7 can roll back counter values, if the new value is smaller
1035 	 * than the previous value it will cause the delta and the counter to
1036 	 * have bogus values unless we rolled a counter over.  If a coutner is
1037 	 * rolled back, it will be smaller, but within 256, which is the maximum
1038 	 * number of events to rollback at once.  If we detect a rollback
1039 	 * return 0.  This can lead to a small lack of precision in the
1040 	 * counters.
1041 	 */
1042 	if (prev > val && (prev - val) < 256)
1043 		delta = 0;
1044 
1045 	return delta;
1046 }
1047 
1048 static void power_pmu_read(struct perf_event *event)
1049 {
1050 	s64 val, delta, prev;
1051 
1052 	if (event->hw.state & PERF_HES_STOPPED)
1053 		return;
1054 
1055 	if (!event->hw.idx)
1056 		return;
1057 
1058 	if (is_ebb_event(event)) {
1059 		val = read_pmc(event->hw.idx);
1060 		local64_set(&event->hw.prev_count, val);
1061 		return;
1062 	}
1063 
1064 	/*
1065 	 * Performance monitor interrupts come even when interrupts
1066 	 * are soft-disabled, as long as interrupts are hard-enabled.
1067 	 * Therefore we treat them like NMIs.
1068 	 */
1069 	do {
1070 		prev = local64_read(&event->hw.prev_count);
1071 		barrier();
1072 		val = read_pmc(event->hw.idx);
1073 		delta = check_and_compute_delta(prev, val);
1074 		if (!delta)
1075 			return;
1076 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1077 
1078 	local64_add(delta, &event->count);
1079 
1080 	/*
1081 	 * A number of places program the PMC with (0x80000000 - period_left).
1082 	 * We never want period_left to be less than 1 because we will program
1083 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1084 	 * roll around to 0 before taking an exception. We have seen this
1085 	 * on POWER8.
1086 	 *
1087 	 * To fix this, clamp the minimum value of period_left to 1.
1088 	 */
1089 	do {
1090 		prev = local64_read(&event->hw.period_left);
1091 		val = prev - delta;
1092 		if (val < 1)
1093 			val = 1;
1094 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1095 }
1096 
1097 /*
1098  * On some machines, PMC5 and PMC6 can't be written, don't respect
1099  * the freeze conditions, and don't generate interrupts.  This tells
1100  * us if `event' is using such a PMC.
1101  */
1102 static int is_limited_pmc(int pmcnum)
1103 {
1104 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1105 		&& (pmcnum == 5 || pmcnum == 6);
1106 }
1107 
1108 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1109 				    unsigned long pmc5, unsigned long pmc6)
1110 {
1111 	struct perf_event *event;
1112 	u64 val, prev, delta;
1113 	int i;
1114 
1115 	for (i = 0; i < cpuhw->n_limited; ++i) {
1116 		event = cpuhw->limited_counter[i];
1117 		if (!event->hw.idx)
1118 			continue;
1119 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1120 		prev = local64_read(&event->hw.prev_count);
1121 		event->hw.idx = 0;
1122 		delta = check_and_compute_delta(prev, val);
1123 		if (delta)
1124 			local64_add(delta, &event->count);
1125 	}
1126 }
1127 
1128 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1129 				  unsigned long pmc5, unsigned long pmc6)
1130 {
1131 	struct perf_event *event;
1132 	u64 val, prev;
1133 	int i;
1134 
1135 	for (i = 0; i < cpuhw->n_limited; ++i) {
1136 		event = cpuhw->limited_counter[i];
1137 		event->hw.idx = cpuhw->limited_hwidx[i];
1138 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1139 		prev = local64_read(&event->hw.prev_count);
1140 		if (check_and_compute_delta(prev, val))
1141 			local64_set(&event->hw.prev_count, val);
1142 		perf_event_update_userpage(event);
1143 	}
1144 }
1145 
1146 /*
1147  * Since limited events don't respect the freeze conditions, we
1148  * have to read them immediately after freezing or unfreezing the
1149  * other events.  We try to keep the values from the limited
1150  * events as consistent as possible by keeping the delay (in
1151  * cycles and instructions) between freezing/unfreezing and reading
1152  * the limited events as small and consistent as possible.
1153  * Therefore, if any limited events are in use, we read them
1154  * both, and always in the same order, to minimize variability,
1155  * and do it inside the same asm that writes MMCR0.
1156  */
1157 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1158 {
1159 	unsigned long pmc5, pmc6;
1160 
1161 	if (!cpuhw->n_limited) {
1162 		mtspr(SPRN_MMCR0, mmcr0);
1163 		return;
1164 	}
1165 
1166 	/*
1167 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1168 	 * To ensure we don't get a performance monitor interrupt
1169 	 * between writing MMCR0 and freezing/thawing the limited
1170 	 * events, we first write MMCR0 with the event overflow
1171 	 * interrupt enable bits turned off.
1172 	 */
1173 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1174 		     : "=&r" (pmc5), "=&r" (pmc6)
1175 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1176 		       "i" (SPRN_MMCR0),
1177 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1178 
1179 	if (mmcr0 & MMCR0_FC)
1180 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1181 	else
1182 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1183 
1184 	/*
1185 	 * Write the full MMCR0 including the event overflow interrupt
1186 	 * enable bits, if necessary.
1187 	 */
1188 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1189 		mtspr(SPRN_MMCR0, mmcr0);
1190 }
1191 
1192 /*
1193  * Disable all events to prevent PMU interrupts and to allow
1194  * events to be added or removed.
1195  */
1196 static void power_pmu_disable(struct pmu *pmu)
1197 {
1198 	struct cpu_hw_events *cpuhw;
1199 	unsigned long flags, mmcr0, val;
1200 
1201 	if (!ppmu)
1202 		return;
1203 	local_irq_save(flags);
1204 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1205 
1206 	if (!cpuhw->disabled) {
1207 		/*
1208 		 * Check if we ever enabled the PMU on this cpu.
1209 		 */
1210 		if (!cpuhw->pmcs_enabled) {
1211 			ppc_enable_pmcs();
1212 			cpuhw->pmcs_enabled = 1;
1213 		}
1214 
1215 		/*
1216 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1217 		 */
1218 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1219 		val |= MMCR0_FC;
1220 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1221 			 MMCR0_FC56);
1222 
1223 		/*
1224 		 * The barrier is to make sure the mtspr has been
1225 		 * executed and the PMU has frozen the events etc.
1226 		 * before we return.
1227 		 */
1228 		write_mmcr0(cpuhw, val);
1229 		mb();
1230 		isync();
1231 
1232 		/*
1233 		 * Disable instruction sampling if it was enabled
1234 		 */
1235 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1236 			mtspr(SPRN_MMCRA,
1237 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1238 			mb();
1239 			isync();
1240 		}
1241 
1242 		cpuhw->disabled = 1;
1243 		cpuhw->n_added = 0;
1244 
1245 		ebb_switch_out(mmcr0);
1246 
1247 #ifdef CONFIG_PPC64
1248 		/*
1249 		 * These are readable by userspace, may contain kernel
1250 		 * addresses and are not switched by context switch, so clear
1251 		 * them now to avoid leaking anything to userspace in general
1252 		 * including to another process.
1253 		 */
1254 		if (ppmu->flags & PPMU_ARCH_207S) {
1255 			mtspr(SPRN_SDAR, 0);
1256 			mtspr(SPRN_SIAR, 0);
1257 		}
1258 #endif
1259 	}
1260 
1261 	local_irq_restore(flags);
1262 }
1263 
1264 /*
1265  * Re-enable all events if disable == 0.
1266  * If we were previously disabled and events were added, then
1267  * put the new config on the PMU.
1268  */
1269 static void power_pmu_enable(struct pmu *pmu)
1270 {
1271 	struct perf_event *event;
1272 	struct cpu_hw_events *cpuhw;
1273 	unsigned long flags;
1274 	long i;
1275 	unsigned long val, mmcr0;
1276 	s64 left;
1277 	unsigned int hwc_index[MAX_HWEVENTS];
1278 	int n_lim;
1279 	int idx;
1280 	bool ebb;
1281 
1282 	if (!ppmu)
1283 		return;
1284 	local_irq_save(flags);
1285 
1286 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1287 	if (!cpuhw->disabled)
1288 		goto out;
1289 
1290 	if (cpuhw->n_events == 0) {
1291 		ppc_set_pmu_inuse(0);
1292 		goto out;
1293 	}
1294 
1295 	cpuhw->disabled = 0;
1296 
1297 	/*
1298 	 * EBB requires an exclusive group and all events must have the EBB
1299 	 * flag set, or not set, so we can just check a single event. Also we
1300 	 * know we have at least one event.
1301 	 */
1302 	ebb = is_ebb_event(cpuhw->event[0]);
1303 
1304 	/*
1305 	 * If we didn't change anything, or only removed events,
1306 	 * no need to recalculate MMCR* settings and reset the PMCs.
1307 	 * Just reenable the PMU with the current MMCR* settings
1308 	 * (possibly updated for removal of events).
1309 	 */
1310 	if (!cpuhw->n_added) {
1311 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1312 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1313 		goto out_enable;
1314 	}
1315 
1316 	/*
1317 	 * Clear all MMCR settings and recompute them for the new set of events.
1318 	 */
1319 	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1320 
1321 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1322 			       cpuhw->mmcr, cpuhw->event)) {
1323 		/* shouldn't ever get here */
1324 		printk(KERN_ERR "oops compute_mmcr failed\n");
1325 		goto out;
1326 	}
1327 
1328 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1329 		/*
1330 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1331 		 * bits for the first event. We have already checked that all
1332 		 * events have the same value for these bits as the first event.
1333 		 */
1334 		event = cpuhw->event[0];
1335 		if (event->attr.exclude_user)
1336 			cpuhw->mmcr[0] |= MMCR0_FCP;
1337 		if (event->attr.exclude_kernel)
1338 			cpuhw->mmcr[0] |= freeze_events_kernel;
1339 		if (event->attr.exclude_hv)
1340 			cpuhw->mmcr[0] |= MMCR0_FCHV;
1341 	}
1342 
1343 	/*
1344 	 * Write the new configuration to MMCR* with the freeze
1345 	 * bit set and set the hardware events to their initial values.
1346 	 * Then unfreeze the events.
1347 	 */
1348 	ppc_set_pmu_inuse(1);
1349 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1350 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1351 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1352 				| MMCR0_FC);
1353 	if (ppmu->flags & PPMU_ARCH_207S)
1354 		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1355 
1356 	/*
1357 	 * Read off any pre-existing events that need to move
1358 	 * to another PMC.
1359 	 */
1360 	for (i = 0; i < cpuhw->n_events; ++i) {
1361 		event = cpuhw->event[i];
1362 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1363 			power_pmu_read(event);
1364 			write_pmc(event->hw.idx, 0);
1365 			event->hw.idx = 0;
1366 		}
1367 	}
1368 
1369 	/*
1370 	 * Initialize the PMCs for all the new and moved events.
1371 	 */
1372 	cpuhw->n_limited = n_lim = 0;
1373 	for (i = 0; i < cpuhw->n_events; ++i) {
1374 		event = cpuhw->event[i];
1375 		if (event->hw.idx)
1376 			continue;
1377 		idx = hwc_index[i] + 1;
1378 		if (is_limited_pmc(idx)) {
1379 			cpuhw->limited_counter[n_lim] = event;
1380 			cpuhw->limited_hwidx[n_lim] = idx;
1381 			++n_lim;
1382 			continue;
1383 		}
1384 
1385 		if (ebb)
1386 			val = local64_read(&event->hw.prev_count);
1387 		else {
1388 			val = 0;
1389 			if (event->hw.sample_period) {
1390 				left = local64_read(&event->hw.period_left);
1391 				if (left < 0x80000000L)
1392 					val = 0x80000000L - left;
1393 			}
1394 			local64_set(&event->hw.prev_count, val);
1395 		}
1396 
1397 		event->hw.idx = idx;
1398 		if (event->hw.state & PERF_HES_STOPPED)
1399 			val = 0;
1400 		write_pmc(idx, val);
1401 
1402 		perf_event_update_userpage(event);
1403 	}
1404 	cpuhw->n_limited = n_lim;
1405 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1406 
1407  out_enable:
1408 	pmao_restore_workaround(ebb);
1409 
1410 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1411 
1412 	mb();
1413 	if (cpuhw->bhrb_users)
1414 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1415 
1416 	write_mmcr0(cpuhw, mmcr0);
1417 
1418 	/*
1419 	 * Enable instruction sampling if necessary
1420 	 */
1421 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1422 		mb();
1423 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1424 	}
1425 
1426  out:
1427 
1428 	local_irq_restore(flags);
1429 }
1430 
1431 static int collect_events(struct perf_event *group, int max_count,
1432 			  struct perf_event *ctrs[], u64 *events,
1433 			  unsigned int *flags)
1434 {
1435 	int n = 0;
1436 	struct perf_event *event;
1437 
1438 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1439 		if (n >= max_count)
1440 			return -1;
1441 		ctrs[n] = group;
1442 		flags[n] = group->hw.event_base;
1443 		events[n++] = group->hw.config;
1444 	}
1445 	for_each_sibling_event(event, group) {
1446 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1447 		    event->state != PERF_EVENT_STATE_OFF) {
1448 			if (n >= max_count)
1449 				return -1;
1450 			ctrs[n] = event;
1451 			flags[n] = event->hw.event_base;
1452 			events[n++] = event->hw.config;
1453 		}
1454 	}
1455 	return n;
1456 }
1457 
1458 /*
1459  * Add an event to the PMU.
1460  * If all events are not already frozen, then we disable and
1461  * re-enable the PMU in order to get hw_perf_enable to do the
1462  * actual work of reconfiguring the PMU.
1463  */
1464 static int power_pmu_add(struct perf_event *event, int ef_flags)
1465 {
1466 	struct cpu_hw_events *cpuhw;
1467 	unsigned long flags;
1468 	int n0;
1469 	int ret = -EAGAIN;
1470 
1471 	local_irq_save(flags);
1472 	perf_pmu_disable(event->pmu);
1473 
1474 	/*
1475 	 * Add the event to the list (if there is room)
1476 	 * and check whether the total set is still feasible.
1477 	 */
1478 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1479 	n0 = cpuhw->n_events;
1480 	if (n0 >= ppmu->n_counter)
1481 		goto out;
1482 	cpuhw->event[n0] = event;
1483 	cpuhw->events[n0] = event->hw.config;
1484 	cpuhw->flags[n0] = event->hw.event_base;
1485 
1486 	/*
1487 	 * This event may have been disabled/stopped in record_and_restart()
1488 	 * because we exceeded the ->event_limit. If re-starting the event,
1489 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1490 	 * notification is re-enabled.
1491 	 */
1492 	if (!(ef_flags & PERF_EF_START))
1493 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1494 	else
1495 		event->hw.state = 0;
1496 
1497 	/*
1498 	 * If group events scheduling transaction was started,
1499 	 * skip the schedulability test here, it will be performed
1500 	 * at commit time(->commit_txn) as a whole
1501 	 */
1502 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1503 		goto nocheck;
1504 
1505 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1506 		goto out;
1507 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1508 		goto out;
1509 	event->hw.config = cpuhw->events[n0];
1510 
1511 nocheck:
1512 	ebb_event_add(event);
1513 
1514 	++cpuhw->n_events;
1515 	++cpuhw->n_added;
1516 
1517 	ret = 0;
1518  out:
1519 	if (has_branch_stack(event)) {
1520 		power_pmu_bhrb_enable(event);
1521 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1522 					event->attr.branch_sample_type);
1523 	}
1524 
1525 	perf_pmu_enable(event->pmu);
1526 	local_irq_restore(flags);
1527 	return ret;
1528 }
1529 
1530 /*
1531  * Remove an event from the PMU.
1532  */
1533 static void power_pmu_del(struct perf_event *event, int ef_flags)
1534 {
1535 	struct cpu_hw_events *cpuhw;
1536 	long i;
1537 	unsigned long flags;
1538 
1539 	local_irq_save(flags);
1540 	perf_pmu_disable(event->pmu);
1541 
1542 	power_pmu_read(event);
1543 
1544 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1545 	for (i = 0; i < cpuhw->n_events; ++i) {
1546 		if (event == cpuhw->event[i]) {
1547 			while (++i < cpuhw->n_events) {
1548 				cpuhw->event[i-1] = cpuhw->event[i];
1549 				cpuhw->events[i-1] = cpuhw->events[i];
1550 				cpuhw->flags[i-1] = cpuhw->flags[i];
1551 			}
1552 			--cpuhw->n_events;
1553 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1554 			if (event->hw.idx) {
1555 				write_pmc(event->hw.idx, 0);
1556 				event->hw.idx = 0;
1557 			}
1558 			perf_event_update_userpage(event);
1559 			break;
1560 		}
1561 	}
1562 	for (i = 0; i < cpuhw->n_limited; ++i)
1563 		if (event == cpuhw->limited_counter[i])
1564 			break;
1565 	if (i < cpuhw->n_limited) {
1566 		while (++i < cpuhw->n_limited) {
1567 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1568 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1569 		}
1570 		--cpuhw->n_limited;
1571 	}
1572 	if (cpuhw->n_events == 0) {
1573 		/* disable exceptions if no events are running */
1574 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1575 	}
1576 
1577 	if (has_branch_stack(event))
1578 		power_pmu_bhrb_disable(event);
1579 
1580 	perf_pmu_enable(event->pmu);
1581 	local_irq_restore(flags);
1582 }
1583 
1584 /*
1585  * POWER-PMU does not support disabling individual counters, hence
1586  * program their cycle counter to their max value and ignore the interrupts.
1587  */
1588 
1589 static void power_pmu_start(struct perf_event *event, int ef_flags)
1590 {
1591 	unsigned long flags;
1592 	s64 left;
1593 	unsigned long val;
1594 
1595 	if (!event->hw.idx || !event->hw.sample_period)
1596 		return;
1597 
1598 	if (!(event->hw.state & PERF_HES_STOPPED))
1599 		return;
1600 
1601 	if (ef_flags & PERF_EF_RELOAD)
1602 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1603 
1604 	local_irq_save(flags);
1605 	perf_pmu_disable(event->pmu);
1606 
1607 	event->hw.state = 0;
1608 	left = local64_read(&event->hw.period_left);
1609 
1610 	val = 0;
1611 	if (left < 0x80000000L)
1612 		val = 0x80000000L - left;
1613 
1614 	write_pmc(event->hw.idx, val);
1615 
1616 	perf_event_update_userpage(event);
1617 	perf_pmu_enable(event->pmu);
1618 	local_irq_restore(flags);
1619 }
1620 
1621 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1622 {
1623 	unsigned long flags;
1624 
1625 	if (!event->hw.idx || !event->hw.sample_period)
1626 		return;
1627 
1628 	if (event->hw.state & PERF_HES_STOPPED)
1629 		return;
1630 
1631 	local_irq_save(flags);
1632 	perf_pmu_disable(event->pmu);
1633 
1634 	power_pmu_read(event);
1635 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1636 	write_pmc(event->hw.idx, 0);
1637 
1638 	perf_event_update_userpage(event);
1639 	perf_pmu_enable(event->pmu);
1640 	local_irq_restore(flags);
1641 }
1642 
1643 /*
1644  * Start group events scheduling transaction
1645  * Set the flag to make pmu::enable() not perform the
1646  * schedulability test, it will be performed at commit time
1647  *
1648  * We only support PERF_PMU_TXN_ADD transactions. Save the
1649  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1650  * transactions.
1651  */
1652 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1653 {
1654 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1655 
1656 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1657 
1658 	cpuhw->txn_flags = txn_flags;
1659 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1660 		return;
1661 
1662 	perf_pmu_disable(pmu);
1663 	cpuhw->n_txn_start = cpuhw->n_events;
1664 }
1665 
1666 /*
1667  * Stop group events scheduling transaction
1668  * Clear the flag and pmu::enable() will perform the
1669  * schedulability test.
1670  */
1671 static void power_pmu_cancel_txn(struct pmu *pmu)
1672 {
1673 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1674 	unsigned int txn_flags;
1675 
1676 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1677 
1678 	txn_flags = cpuhw->txn_flags;
1679 	cpuhw->txn_flags = 0;
1680 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1681 		return;
1682 
1683 	perf_pmu_enable(pmu);
1684 }
1685 
1686 /*
1687  * Commit group events scheduling transaction
1688  * Perform the group schedulability test as a whole
1689  * Return 0 if success
1690  */
1691 static int power_pmu_commit_txn(struct pmu *pmu)
1692 {
1693 	struct cpu_hw_events *cpuhw;
1694 	long i, n;
1695 
1696 	if (!ppmu)
1697 		return -EAGAIN;
1698 
1699 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1700 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1701 
1702 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1703 		cpuhw->txn_flags = 0;
1704 		return 0;
1705 	}
1706 
1707 	n = cpuhw->n_events;
1708 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1709 		return -EAGAIN;
1710 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1711 	if (i < 0)
1712 		return -EAGAIN;
1713 
1714 	for (i = cpuhw->n_txn_start; i < n; ++i)
1715 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1716 
1717 	cpuhw->txn_flags = 0;
1718 	perf_pmu_enable(pmu);
1719 	return 0;
1720 }
1721 
1722 /*
1723  * Return 1 if we might be able to put event on a limited PMC,
1724  * or 0 if not.
1725  * An event can only go on a limited PMC if it counts something
1726  * that a limited PMC can count, doesn't require interrupts, and
1727  * doesn't exclude any processor mode.
1728  */
1729 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1730 				 unsigned int flags)
1731 {
1732 	int n;
1733 	u64 alt[MAX_EVENT_ALTERNATIVES];
1734 
1735 	if (event->attr.exclude_user
1736 	    || event->attr.exclude_kernel
1737 	    || event->attr.exclude_hv
1738 	    || event->attr.sample_period)
1739 		return 0;
1740 
1741 	if (ppmu->limited_pmc_event(ev))
1742 		return 1;
1743 
1744 	/*
1745 	 * The requested event_id isn't on a limited PMC already;
1746 	 * see if any alternative code goes on a limited PMC.
1747 	 */
1748 	if (!ppmu->get_alternatives)
1749 		return 0;
1750 
1751 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1752 	n = ppmu->get_alternatives(ev, flags, alt);
1753 
1754 	return n > 0;
1755 }
1756 
1757 /*
1758  * Find an alternative event_id that goes on a normal PMC, if possible,
1759  * and return the event_id code, or 0 if there is no such alternative.
1760  * (Note: event_id code 0 is "don't count" on all machines.)
1761  */
1762 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1763 {
1764 	u64 alt[MAX_EVENT_ALTERNATIVES];
1765 	int n;
1766 
1767 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1768 	n = ppmu->get_alternatives(ev, flags, alt);
1769 	if (!n)
1770 		return 0;
1771 	return alt[0];
1772 }
1773 
1774 /* Number of perf_events counting hardware events */
1775 static atomic_t num_events;
1776 /* Used to avoid races in calling reserve/release_pmc_hardware */
1777 static DEFINE_MUTEX(pmc_reserve_mutex);
1778 
1779 /*
1780  * Release the PMU if this is the last perf_event.
1781  */
1782 static void hw_perf_event_destroy(struct perf_event *event)
1783 {
1784 	if (!atomic_add_unless(&num_events, -1, 1)) {
1785 		mutex_lock(&pmc_reserve_mutex);
1786 		if (atomic_dec_return(&num_events) == 0)
1787 			release_pmc_hardware();
1788 		mutex_unlock(&pmc_reserve_mutex);
1789 	}
1790 }
1791 
1792 /*
1793  * Translate a generic cache event_id config to a raw event_id code.
1794  */
1795 static int hw_perf_cache_event(u64 config, u64 *eventp)
1796 {
1797 	unsigned long type, op, result;
1798 	int ev;
1799 
1800 	if (!ppmu->cache_events)
1801 		return -EINVAL;
1802 
1803 	/* unpack config */
1804 	type = config & 0xff;
1805 	op = (config >> 8) & 0xff;
1806 	result = (config >> 16) & 0xff;
1807 
1808 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1809 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1810 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1811 		return -EINVAL;
1812 
1813 	ev = (*ppmu->cache_events)[type][op][result];
1814 	if (ev == 0)
1815 		return -EOPNOTSUPP;
1816 	if (ev == -1)
1817 		return -EINVAL;
1818 	*eventp = ev;
1819 	return 0;
1820 }
1821 
1822 static bool is_event_blacklisted(u64 ev)
1823 {
1824 	int i;
1825 
1826 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1827 		if (ppmu->blacklist_ev[i] == ev)
1828 			return true;
1829 	}
1830 
1831 	return false;
1832 }
1833 
1834 static int power_pmu_event_init(struct perf_event *event)
1835 {
1836 	u64 ev;
1837 	unsigned long flags;
1838 	struct perf_event *ctrs[MAX_HWEVENTS];
1839 	u64 events[MAX_HWEVENTS];
1840 	unsigned int cflags[MAX_HWEVENTS];
1841 	int n;
1842 	int err;
1843 	struct cpu_hw_events *cpuhw;
1844 	u64 bhrb_filter;
1845 
1846 	if (!ppmu)
1847 		return -ENOENT;
1848 
1849 	if (has_branch_stack(event)) {
1850 	        /* PMU has BHRB enabled */
1851 		if (!(ppmu->flags & PPMU_ARCH_207S))
1852 			return -EOPNOTSUPP;
1853 	}
1854 
1855 	switch (event->attr.type) {
1856 	case PERF_TYPE_HARDWARE:
1857 		ev = event->attr.config;
1858 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1859 			return -EOPNOTSUPP;
1860 
1861 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1862 			return -EINVAL;
1863 		ev = ppmu->generic_events[ev];
1864 		break;
1865 	case PERF_TYPE_HW_CACHE:
1866 		err = hw_perf_cache_event(event->attr.config, &ev);
1867 		if (err)
1868 			return err;
1869 
1870 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1871 			return -EINVAL;
1872 		break;
1873 	case PERF_TYPE_RAW:
1874 		ev = event->attr.config;
1875 
1876 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1877 			return -EINVAL;
1878 		break;
1879 	default:
1880 		return -ENOENT;
1881 	}
1882 
1883 	event->hw.config_base = ev;
1884 	event->hw.idx = 0;
1885 
1886 	/*
1887 	 * If we are not running on a hypervisor, force the
1888 	 * exclude_hv bit to 0 so that we don't care what
1889 	 * the user set it to.
1890 	 */
1891 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1892 		event->attr.exclude_hv = 0;
1893 
1894 	/*
1895 	 * If this is a per-task event, then we can use
1896 	 * PM_RUN_* events interchangeably with their non RUN_*
1897 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1898 	 * XXX we should check if the task is an idle task.
1899 	 */
1900 	flags = 0;
1901 	if (event->attach_state & PERF_ATTACH_TASK)
1902 		flags |= PPMU_ONLY_COUNT_RUN;
1903 
1904 	/*
1905 	 * If this machine has limited events, check whether this
1906 	 * event_id could go on a limited event.
1907 	 */
1908 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1909 		if (can_go_on_limited_pmc(event, ev, flags)) {
1910 			flags |= PPMU_LIMITED_PMC_OK;
1911 		} else if (ppmu->limited_pmc_event(ev)) {
1912 			/*
1913 			 * The requested event_id is on a limited PMC,
1914 			 * but we can't use a limited PMC; see if any
1915 			 * alternative goes on a normal PMC.
1916 			 */
1917 			ev = normal_pmc_alternative(ev, flags);
1918 			if (!ev)
1919 				return -EINVAL;
1920 		}
1921 	}
1922 
1923 	/* Extra checks for EBB */
1924 	err = ebb_event_check(event);
1925 	if (err)
1926 		return err;
1927 
1928 	/*
1929 	 * If this is in a group, check if it can go on with all the
1930 	 * other hardware events in the group.  We assume the event
1931 	 * hasn't been linked into its leader's sibling list at this point.
1932 	 */
1933 	n = 0;
1934 	if (event->group_leader != event) {
1935 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1936 				   ctrs, events, cflags);
1937 		if (n < 0)
1938 			return -EINVAL;
1939 	}
1940 	events[n] = ev;
1941 	ctrs[n] = event;
1942 	cflags[n] = flags;
1943 	if (check_excludes(ctrs, cflags, n, 1))
1944 		return -EINVAL;
1945 
1946 	cpuhw = &get_cpu_var(cpu_hw_events);
1947 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1948 
1949 	if (has_branch_stack(event)) {
1950 		bhrb_filter = ppmu->bhrb_filter_map(
1951 					event->attr.branch_sample_type);
1952 
1953 		if (bhrb_filter == -1) {
1954 			put_cpu_var(cpu_hw_events);
1955 			return -EOPNOTSUPP;
1956 		}
1957 		cpuhw->bhrb_filter = bhrb_filter;
1958 	}
1959 
1960 	put_cpu_var(cpu_hw_events);
1961 	if (err)
1962 		return -EINVAL;
1963 
1964 	event->hw.config = events[n];
1965 	event->hw.event_base = cflags[n];
1966 	event->hw.last_period = event->hw.sample_period;
1967 	local64_set(&event->hw.period_left, event->hw.last_period);
1968 
1969 	/*
1970 	 * For EBB events we just context switch the PMC value, we don't do any
1971 	 * of the sample_period logic. We use hw.prev_count for this.
1972 	 */
1973 	if (is_ebb_event(event))
1974 		local64_set(&event->hw.prev_count, 0);
1975 
1976 	/*
1977 	 * See if we need to reserve the PMU.
1978 	 * If no events are currently in use, then we have to take a
1979 	 * mutex to ensure that we don't race with another task doing
1980 	 * reserve_pmc_hardware or release_pmc_hardware.
1981 	 */
1982 	err = 0;
1983 	if (!atomic_inc_not_zero(&num_events)) {
1984 		mutex_lock(&pmc_reserve_mutex);
1985 		if (atomic_read(&num_events) == 0 &&
1986 		    reserve_pmc_hardware(perf_event_interrupt))
1987 			err = -EBUSY;
1988 		else
1989 			atomic_inc(&num_events);
1990 		mutex_unlock(&pmc_reserve_mutex);
1991 	}
1992 	event->destroy = hw_perf_event_destroy;
1993 
1994 	return err;
1995 }
1996 
1997 static int power_pmu_event_idx(struct perf_event *event)
1998 {
1999 	return event->hw.idx;
2000 }
2001 
2002 ssize_t power_events_sysfs_show(struct device *dev,
2003 				struct device_attribute *attr, char *page)
2004 {
2005 	struct perf_pmu_events_attr *pmu_attr;
2006 
2007 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2008 
2009 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2010 }
2011 
2012 static struct pmu power_pmu = {
2013 	.pmu_enable	= power_pmu_enable,
2014 	.pmu_disable	= power_pmu_disable,
2015 	.event_init	= power_pmu_event_init,
2016 	.add		= power_pmu_add,
2017 	.del		= power_pmu_del,
2018 	.start		= power_pmu_start,
2019 	.stop		= power_pmu_stop,
2020 	.read		= power_pmu_read,
2021 	.start_txn	= power_pmu_start_txn,
2022 	.cancel_txn	= power_pmu_cancel_txn,
2023 	.commit_txn	= power_pmu_commit_txn,
2024 	.event_idx	= power_pmu_event_idx,
2025 	.sched_task	= power_pmu_sched_task,
2026 };
2027 
2028 /*
2029  * A counter has overflowed; update its count and record
2030  * things if requested.  Note that interrupts are hard-disabled
2031  * here so there is no possibility of being interrupted.
2032  */
2033 static void record_and_restart(struct perf_event *event, unsigned long val,
2034 			       struct pt_regs *regs)
2035 {
2036 	u64 period = event->hw.sample_period;
2037 	s64 prev, delta, left;
2038 	int record = 0;
2039 
2040 	if (event->hw.state & PERF_HES_STOPPED) {
2041 		write_pmc(event->hw.idx, 0);
2042 		return;
2043 	}
2044 
2045 	/* we don't have to worry about interrupts here */
2046 	prev = local64_read(&event->hw.prev_count);
2047 	delta = check_and_compute_delta(prev, val);
2048 	local64_add(delta, &event->count);
2049 
2050 	/*
2051 	 * See if the total period for this event has expired,
2052 	 * and update for the next period.
2053 	 */
2054 	val = 0;
2055 	left = local64_read(&event->hw.period_left) - delta;
2056 	if (delta == 0)
2057 		left++;
2058 	if (period) {
2059 		if (left <= 0) {
2060 			left += period;
2061 			if (left <= 0)
2062 				left = period;
2063 			record = siar_valid(regs);
2064 			event->hw.last_period = event->hw.sample_period;
2065 		}
2066 		if (left < 0x80000000LL)
2067 			val = 0x80000000LL - left;
2068 	}
2069 
2070 	write_pmc(event->hw.idx, val);
2071 	local64_set(&event->hw.prev_count, val);
2072 	local64_set(&event->hw.period_left, left);
2073 	perf_event_update_userpage(event);
2074 
2075 	/*
2076 	 * Finally record data if requested.
2077 	 */
2078 	if (record) {
2079 		struct perf_sample_data data;
2080 
2081 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2082 
2083 		if (event->attr.sample_type &
2084 		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2085 			perf_get_data_addr(event, regs, &data.addr);
2086 
2087 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2088 			struct cpu_hw_events *cpuhw;
2089 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2090 			power_pmu_bhrb_read(event, cpuhw);
2091 			data.br_stack = &cpuhw->bhrb_stack;
2092 		}
2093 
2094 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2095 						ppmu->get_mem_data_src)
2096 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2097 
2098 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2099 						ppmu->get_mem_weight)
2100 			ppmu->get_mem_weight(&data.weight);
2101 
2102 		if (perf_event_overflow(event, &data, regs))
2103 			power_pmu_stop(event, 0);
2104 	}
2105 }
2106 
2107 /*
2108  * Called from generic code to get the misc flags (i.e. processor mode)
2109  * for an event_id.
2110  */
2111 unsigned long perf_misc_flags(struct pt_regs *regs)
2112 {
2113 	u32 flags = perf_get_misc_flags(regs);
2114 
2115 	if (flags)
2116 		return flags;
2117 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2118 		PERF_RECORD_MISC_KERNEL;
2119 }
2120 
2121 /*
2122  * Called from generic code to get the instruction pointer
2123  * for an event_id.
2124  */
2125 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2126 {
2127 	bool use_siar = regs_use_siar(regs);
2128 
2129 	if (use_siar && siar_valid(regs))
2130 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2131 	else if (use_siar)
2132 		return 0;		// no valid instruction pointer
2133 	else
2134 		return regs->nip;
2135 }
2136 
2137 static bool pmc_overflow_power7(unsigned long val)
2138 {
2139 	/*
2140 	 * Events on POWER7 can roll back if a speculative event doesn't
2141 	 * eventually complete. Unfortunately in some rare cases they will
2142 	 * raise a performance monitor exception. We need to catch this to
2143 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2144 	 * cycles from overflow.
2145 	 *
2146 	 * We only do this if the first pass fails to find any overflowing
2147 	 * PMCs because a user might set a period of less than 256 and we
2148 	 * don't want to mistakenly reset them.
2149 	 */
2150 	if ((0x80000000 - val) <= 256)
2151 		return true;
2152 
2153 	return false;
2154 }
2155 
2156 static bool pmc_overflow(unsigned long val)
2157 {
2158 	if ((int)val < 0)
2159 		return true;
2160 
2161 	return false;
2162 }
2163 
2164 /*
2165  * Performance monitor interrupt stuff
2166  */
2167 static void __perf_event_interrupt(struct pt_regs *regs)
2168 {
2169 	int i, j;
2170 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2171 	struct perf_event *event;
2172 	unsigned long val[8];
2173 	int found, active;
2174 	int nmi;
2175 
2176 	if (cpuhw->n_limited)
2177 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2178 					mfspr(SPRN_PMC6));
2179 
2180 	perf_read_regs(regs);
2181 
2182 	nmi = perf_intr_is_nmi(regs);
2183 	if (nmi)
2184 		nmi_enter();
2185 	else
2186 		irq_enter();
2187 
2188 	/* Read all the PMCs since we'll need them a bunch of times */
2189 	for (i = 0; i < ppmu->n_counter; ++i)
2190 		val[i] = read_pmc(i + 1);
2191 
2192 	/* Try to find what caused the IRQ */
2193 	found = 0;
2194 	for (i = 0; i < ppmu->n_counter; ++i) {
2195 		if (!pmc_overflow(val[i]))
2196 			continue;
2197 		if (is_limited_pmc(i + 1))
2198 			continue; /* these won't generate IRQs */
2199 		/*
2200 		 * We've found one that's overflowed.  For active
2201 		 * counters we need to log this.  For inactive
2202 		 * counters, we need to reset it anyway
2203 		 */
2204 		found = 1;
2205 		active = 0;
2206 		for (j = 0; j < cpuhw->n_events; ++j) {
2207 			event = cpuhw->event[j];
2208 			if (event->hw.idx == (i + 1)) {
2209 				active = 1;
2210 				record_and_restart(event, val[i], regs);
2211 				break;
2212 			}
2213 		}
2214 		if (!active)
2215 			/* reset non active counters that have overflowed */
2216 			write_pmc(i + 1, 0);
2217 	}
2218 	if (!found && pvr_version_is(PVR_POWER7)) {
2219 		/* check active counters for special buggy p7 overflow */
2220 		for (i = 0; i < cpuhw->n_events; ++i) {
2221 			event = cpuhw->event[i];
2222 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2223 				continue;
2224 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2225 				/* event has overflowed in a buggy way*/
2226 				found = 1;
2227 				record_and_restart(event,
2228 						   val[event->hw.idx - 1],
2229 						   regs);
2230 			}
2231 		}
2232 	}
2233 	if (!found && !nmi && printk_ratelimit())
2234 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2235 
2236 	/*
2237 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2238 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2239 	 * and thus allow interrupts to occur again.
2240 	 * XXX might want to use MSR.PM to keep the events frozen until
2241 	 * we get back out of this interrupt.
2242 	 */
2243 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2244 
2245 	if (nmi)
2246 		nmi_exit();
2247 	else
2248 		irq_exit();
2249 }
2250 
2251 static void perf_event_interrupt(struct pt_regs *regs)
2252 {
2253 	u64 start_clock = sched_clock();
2254 
2255 	__perf_event_interrupt(regs);
2256 	perf_sample_event_took(sched_clock() - start_clock);
2257 }
2258 
2259 static int power_pmu_prepare_cpu(unsigned int cpu)
2260 {
2261 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2262 
2263 	if (ppmu) {
2264 		memset(cpuhw, 0, sizeof(*cpuhw));
2265 		cpuhw->mmcr[0] = MMCR0_FC;
2266 	}
2267 	return 0;
2268 }
2269 
2270 int register_power_pmu(struct power_pmu *pmu)
2271 {
2272 	if (ppmu)
2273 		return -EBUSY;		/* something's already registered */
2274 
2275 	ppmu = pmu;
2276 	pr_info("%s performance monitor hardware support registered\n",
2277 		pmu->name);
2278 
2279 	power_pmu.attr_groups = ppmu->attr_groups;
2280 
2281 #ifdef MSR_HV
2282 	/*
2283 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2284 	 */
2285 	if (mfmsr() & MSR_HV)
2286 		freeze_events_kernel = MMCR0_FCHV;
2287 #endif /* CONFIG_PPC64 */
2288 
2289 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2290 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2291 			  power_pmu_prepare_cpu, NULL);
2292 	return 0;
2293 }
2294 
2295 #ifdef CONFIG_PPC64
2296 static int __init init_ppc64_pmu(void)
2297 {
2298 	/* run through all the pmu drivers one at a time */
2299 	if (!init_power5_pmu())
2300 		return 0;
2301 	else if (!init_power5p_pmu())
2302 		return 0;
2303 	else if (!init_power6_pmu())
2304 		return 0;
2305 	else if (!init_power7_pmu())
2306 		return 0;
2307 	else if (!init_power8_pmu())
2308 		return 0;
2309 	else if (!init_power9_pmu())
2310 		return 0;
2311 	else if (!init_ppc970_pmu())
2312 		return 0;
2313 	else
2314 		return init_generic_compat_pmu();
2315 }
2316 early_initcall(init_ppc64_pmu);
2317 #endif
2318