1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Performance event support - powerpc architecture code 4 * 5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 6 */ 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/perf_event.h> 11 #include <linux/percpu.h> 12 #include <linux/hardirq.h> 13 #include <linux/uaccess.h> 14 #include <asm/reg.h> 15 #include <asm/pmc.h> 16 #include <asm/machdep.h> 17 #include <asm/firmware.h> 18 #include <asm/ptrace.h> 19 #include <asm/code-patching.h> 20 21 #ifdef CONFIG_PPC64 22 #include "internal.h" 23 #endif 24 25 #define BHRB_MAX_ENTRIES 32 26 #define BHRB_TARGET 0x0000000000000002 27 #define BHRB_PREDICTION 0x0000000000000001 28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 29 30 struct cpu_hw_events { 31 int n_events; 32 int n_percpu; 33 int disabled; 34 int n_added; 35 int n_limited; 36 u8 pmcs_enabled; 37 struct perf_event *event[MAX_HWEVENTS]; 38 u64 events[MAX_HWEVENTS]; 39 unsigned int flags[MAX_HWEVENTS]; 40 /* 41 * The order of the MMCR array is: 42 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 43 * - 32-bit, MMCR0, MMCR1, MMCR2 44 */ 45 unsigned long mmcr[4]; 46 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 47 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 48 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 49 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 50 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 51 52 unsigned int txn_flags; 53 int n_txn_start; 54 55 /* BHRB bits */ 56 u64 bhrb_filter; /* BHRB HW branch filter */ 57 unsigned int bhrb_users; 58 void *bhrb_context; 59 struct perf_branch_stack bhrb_stack; 60 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 61 u64 ic_init; 62 }; 63 64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 65 66 static struct power_pmu *ppmu; 67 68 /* 69 * Normally, to ignore kernel events we set the FCS (freeze counters 70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 71 * hypervisor bit set in the MSR, or if we are running on a processor 72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 73 * then we need to use the FCHV bit to ignore kernel events. 74 */ 75 static unsigned int freeze_events_kernel = MMCR0_FCS; 76 77 /* 78 * 32-bit doesn't have MMCRA but does have an MMCR2, 79 * and a few other names are different. 80 */ 81 #ifdef CONFIG_PPC32 82 83 #define MMCR0_FCHV 0 84 #define MMCR0_PMCjCE MMCR0_PMCnCE 85 #define MMCR0_FC56 0 86 #define MMCR0_PMAO 0 87 #define MMCR0_EBE 0 88 #define MMCR0_BHRBA 0 89 #define MMCR0_PMCC 0 90 #define MMCR0_PMCC_U6 0 91 92 #define SPRN_MMCRA SPRN_MMCR2 93 #define MMCRA_SAMPLE_ENABLE 0 94 95 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 96 { 97 return 0; 98 } 99 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } 100 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 101 { 102 return 0; 103 } 104 static inline void perf_read_regs(struct pt_regs *regs) 105 { 106 regs->result = 0; 107 } 108 static inline int perf_intr_is_nmi(struct pt_regs *regs) 109 { 110 return 0; 111 } 112 113 static inline int siar_valid(struct pt_regs *regs) 114 { 115 return 1; 116 } 117 118 static bool is_ebb_event(struct perf_event *event) { return false; } 119 static int ebb_event_check(struct perf_event *event) { return 0; } 120 static void ebb_event_add(struct perf_event *event) { } 121 static void ebb_switch_out(unsigned long mmcr0) { } 122 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 123 { 124 return cpuhw->mmcr[0]; 125 } 126 127 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 128 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 129 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 130 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} 131 static void pmao_restore_workaround(bool ebb) { } 132 #endif /* CONFIG_PPC32 */ 133 134 bool is_sier_available(void) 135 { 136 if (ppmu->flags & PPMU_HAS_SIER) 137 return true; 138 139 return false; 140 } 141 142 static bool regs_use_siar(struct pt_regs *regs) 143 { 144 /* 145 * When we take a performance monitor exception the regs are setup 146 * using perf_read_regs() which overloads some fields, in particular 147 * regs->result to tell us whether to use SIAR. 148 * 149 * However if the regs are from another exception, eg. a syscall, then 150 * they have not been setup using perf_read_regs() and so regs->result 151 * is something random. 152 */ 153 return ((TRAP(regs) == 0xf00) && regs->result); 154 } 155 156 /* 157 * Things that are specific to 64-bit implementations. 158 */ 159 #ifdef CONFIG_PPC64 160 161 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 162 { 163 unsigned long mmcra = regs->dsisr; 164 165 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 166 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 167 if (slot > 1) 168 return 4 * (slot - 1); 169 } 170 171 return 0; 172 } 173 174 /* 175 * The user wants a data address recorded. 176 * If we're not doing instruction sampling, give them the SDAR 177 * (sampled data address). If we are doing instruction sampling, then 178 * only give them the SDAR if it corresponds to the instruction 179 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 180 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 181 */ 182 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) 183 { 184 unsigned long mmcra = regs->dsisr; 185 bool sdar_valid; 186 187 if (ppmu->flags & PPMU_HAS_SIER) 188 sdar_valid = regs->dar & SIER_SDAR_VALID; 189 else { 190 unsigned long sdsync; 191 192 if (ppmu->flags & PPMU_SIAR_VALID) 193 sdsync = POWER7P_MMCRA_SDAR_VALID; 194 else if (ppmu->flags & PPMU_ALT_SIPR) 195 sdsync = POWER6_MMCRA_SDSYNC; 196 else if (ppmu->flags & PPMU_NO_SIAR) 197 sdsync = MMCRA_SAMPLE_ENABLE; 198 else 199 sdsync = MMCRA_SDSYNC; 200 201 sdar_valid = mmcra & sdsync; 202 } 203 204 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 205 *addrp = mfspr(SPRN_SDAR); 206 207 if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0) 208 *addrp = 0; 209 } 210 211 static bool regs_sihv(struct pt_regs *regs) 212 { 213 unsigned long sihv = MMCRA_SIHV; 214 215 if (ppmu->flags & PPMU_HAS_SIER) 216 return !!(regs->dar & SIER_SIHV); 217 218 if (ppmu->flags & PPMU_ALT_SIPR) 219 sihv = POWER6_MMCRA_SIHV; 220 221 return !!(regs->dsisr & sihv); 222 } 223 224 static bool regs_sipr(struct pt_regs *regs) 225 { 226 unsigned long sipr = MMCRA_SIPR; 227 228 if (ppmu->flags & PPMU_HAS_SIER) 229 return !!(regs->dar & SIER_SIPR); 230 231 if (ppmu->flags & PPMU_ALT_SIPR) 232 sipr = POWER6_MMCRA_SIPR; 233 234 return !!(regs->dsisr & sipr); 235 } 236 237 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 238 { 239 if (regs->msr & MSR_PR) 240 return PERF_RECORD_MISC_USER; 241 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 242 return PERF_RECORD_MISC_HYPERVISOR; 243 return PERF_RECORD_MISC_KERNEL; 244 } 245 246 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 247 { 248 bool use_siar = regs_use_siar(regs); 249 250 if (!use_siar) 251 return perf_flags_from_msr(regs); 252 253 /* 254 * If we don't have flags in MMCRA, rather than using 255 * the MSR, we intuit the flags from the address in 256 * SIAR which should give slightly more reliable 257 * results 258 */ 259 if (ppmu->flags & PPMU_NO_SIPR) { 260 unsigned long siar = mfspr(SPRN_SIAR); 261 if (is_kernel_addr(siar)) 262 return PERF_RECORD_MISC_KERNEL; 263 return PERF_RECORD_MISC_USER; 264 } 265 266 /* PR has priority over HV, so order below is important */ 267 if (regs_sipr(regs)) 268 return PERF_RECORD_MISC_USER; 269 270 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 271 return PERF_RECORD_MISC_HYPERVISOR; 272 273 return PERF_RECORD_MISC_KERNEL; 274 } 275 276 /* 277 * Overload regs->dsisr to store MMCRA so we only need to read it once 278 * on each interrupt. 279 * Overload regs->dar to store SIER if we have it. 280 * Overload regs->result to specify whether we should use the MSR (result 281 * is zero) or the SIAR (result is non zero). 282 */ 283 static inline void perf_read_regs(struct pt_regs *regs) 284 { 285 unsigned long mmcra = mfspr(SPRN_MMCRA); 286 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 287 int use_siar; 288 289 regs->dsisr = mmcra; 290 291 if (ppmu->flags & PPMU_HAS_SIER) 292 regs->dar = mfspr(SPRN_SIER); 293 294 /* 295 * If this isn't a PMU exception (eg a software event) the SIAR is 296 * not valid. Use pt_regs. 297 * 298 * If it is a marked event use the SIAR. 299 * 300 * If the PMU doesn't update the SIAR for non marked events use 301 * pt_regs. 302 * 303 * If the PMU has HV/PR flags then check to see if they 304 * place the exception in userspace. If so, use pt_regs. In 305 * continuous sampling mode the SIAR and the PMU exception are 306 * not synchronised, so they may be many instructions apart. 307 * This can result in confusing backtraces. We still want 308 * hypervisor samples as well as samples in the kernel with 309 * interrupts off hence the userspace check. 310 */ 311 if (TRAP(regs) != 0xf00) 312 use_siar = 0; 313 else if ((ppmu->flags & PPMU_NO_SIAR)) 314 use_siar = 0; 315 else if (marked) 316 use_siar = 1; 317 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 318 use_siar = 0; 319 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 320 use_siar = 0; 321 else 322 use_siar = 1; 323 324 regs->result = use_siar; 325 } 326 327 /* 328 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 329 * it as an NMI. 330 */ 331 static inline int perf_intr_is_nmi(struct pt_regs *regs) 332 { 333 return (regs->softe & IRQS_DISABLED); 334 } 335 336 /* 337 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 338 * must be sampled only if the SIAR-valid bit is set. 339 * 340 * For unmarked instructions and for processors that don't have the SIAR-Valid 341 * bit, assume that SIAR is valid. 342 */ 343 static inline int siar_valid(struct pt_regs *regs) 344 { 345 unsigned long mmcra = regs->dsisr; 346 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 347 348 if (marked) { 349 if (ppmu->flags & PPMU_HAS_SIER) 350 return regs->dar & SIER_SIAR_VALID; 351 352 if (ppmu->flags & PPMU_SIAR_VALID) 353 return mmcra & POWER7P_MMCRA_SIAR_VALID; 354 } 355 356 return 1; 357 } 358 359 360 /* Reset all possible BHRB entries */ 361 static void power_pmu_bhrb_reset(void) 362 { 363 asm volatile(PPC_CLRBHRB); 364 } 365 366 static void power_pmu_bhrb_enable(struct perf_event *event) 367 { 368 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 369 370 if (!ppmu->bhrb_nr) 371 return; 372 373 /* Clear BHRB if we changed task context to avoid data leaks */ 374 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 375 power_pmu_bhrb_reset(); 376 cpuhw->bhrb_context = event->ctx; 377 } 378 cpuhw->bhrb_users++; 379 perf_sched_cb_inc(event->ctx->pmu); 380 } 381 382 static void power_pmu_bhrb_disable(struct perf_event *event) 383 { 384 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 385 386 if (!ppmu->bhrb_nr) 387 return; 388 389 WARN_ON_ONCE(!cpuhw->bhrb_users); 390 cpuhw->bhrb_users--; 391 perf_sched_cb_dec(event->ctx->pmu); 392 393 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 394 /* BHRB cannot be turned off when other 395 * events are active on the PMU. 396 */ 397 398 /* avoid stale pointer */ 399 cpuhw->bhrb_context = NULL; 400 } 401 } 402 403 /* Called from ctxsw to prevent one process's branch entries to 404 * mingle with the other process's entries during context switch. 405 */ 406 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 407 { 408 if (!ppmu->bhrb_nr) 409 return; 410 411 if (sched_in) 412 power_pmu_bhrb_reset(); 413 } 414 /* Calculate the to address for a branch */ 415 static __u64 power_pmu_bhrb_to(u64 addr) 416 { 417 unsigned int instr; 418 int ret; 419 __u64 target; 420 421 if (is_kernel_addr(addr)) { 422 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr))) 423 return 0; 424 425 return branch_target(&instr); 426 } 427 428 /* Userspace: need copy instruction here then translate it */ 429 pagefault_disable(); 430 ret = __get_user_inatomic(instr, (unsigned int __user *)addr); 431 if (ret) { 432 pagefault_enable(); 433 return 0; 434 } 435 pagefault_enable(); 436 437 target = branch_target(&instr); 438 if ((!target) || (instr & BRANCH_ABSOLUTE)) 439 return target; 440 441 /* Translate relative branch target from kernel to user address */ 442 return target - (unsigned long)&instr + addr; 443 } 444 445 /* Processing BHRB entries */ 446 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) 447 { 448 u64 val; 449 u64 addr; 450 int r_index, u_index, pred; 451 452 r_index = 0; 453 u_index = 0; 454 while (r_index < ppmu->bhrb_nr) { 455 /* Assembly read function */ 456 val = read_bhrb(r_index++); 457 if (!val) 458 /* Terminal marker: End of valid BHRB entries */ 459 break; 460 else { 461 addr = val & BHRB_EA; 462 pred = val & BHRB_PREDICTION; 463 464 if (!addr) 465 /* invalid entry */ 466 continue; 467 468 /* 469 * BHRB rolling buffer could very much contain the kernel 470 * addresses at this point. Check the privileges before 471 * exporting it to userspace (avoid exposure of regions 472 * where we could have speculative execution) 473 */ 474 if (is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0) 475 continue; 476 477 /* Branches are read most recent first (ie. mfbhrb 0 is 478 * the most recent branch). 479 * There are two types of valid entries: 480 * 1) a target entry which is the to address of a 481 * computed goto like a blr,bctr,btar. The next 482 * entry read from the bhrb will be branch 483 * corresponding to this target (ie. the actual 484 * blr/bctr/btar instruction). 485 * 2) a from address which is an actual branch. If a 486 * target entry proceeds this, then this is the 487 * matching branch for that target. If this is not 488 * following a target entry, then this is a branch 489 * where the target is given as an immediate field 490 * in the instruction (ie. an i or b form branch). 491 * In this case we need to read the instruction from 492 * memory to determine the target/to address. 493 */ 494 495 if (val & BHRB_TARGET) { 496 /* Target branches use two entries 497 * (ie. computed gotos/XL form) 498 */ 499 cpuhw->bhrb_entries[u_index].to = addr; 500 cpuhw->bhrb_entries[u_index].mispred = pred; 501 cpuhw->bhrb_entries[u_index].predicted = ~pred; 502 503 /* Get from address in next entry */ 504 val = read_bhrb(r_index++); 505 addr = val & BHRB_EA; 506 if (val & BHRB_TARGET) { 507 /* Shouldn't have two targets in a 508 row.. Reset index and try again */ 509 r_index--; 510 addr = 0; 511 } 512 cpuhw->bhrb_entries[u_index].from = addr; 513 } else { 514 /* Branches to immediate field 515 (ie I or B form) */ 516 cpuhw->bhrb_entries[u_index].from = addr; 517 cpuhw->bhrb_entries[u_index].to = 518 power_pmu_bhrb_to(addr); 519 cpuhw->bhrb_entries[u_index].mispred = pred; 520 cpuhw->bhrb_entries[u_index].predicted = ~pred; 521 } 522 u_index++; 523 524 } 525 } 526 cpuhw->bhrb_stack.nr = u_index; 527 return; 528 } 529 530 static bool is_ebb_event(struct perf_event *event) 531 { 532 /* 533 * This could be a per-PMU callback, but we'd rather avoid the cost. We 534 * check that the PMU supports EBB, meaning those that don't can still 535 * use bit 63 of the event code for something else if they wish. 536 */ 537 return (ppmu->flags & PPMU_ARCH_207S) && 538 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 539 } 540 541 static int ebb_event_check(struct perf_event *event) 542 { 543 struct perf_event *leader = event->group_leader; 544 545 /* Event and group leader must agree on EBB */ 546 if (is_ebb_event(leader) != is_ebb_event(event)) 547 return -EINVAL; 548 549 if (is_ebb_event(event)) { 550 if (!(event->attach_state & PERF_ATTACH_TASK)) 551 return -EINVAL; 552 553 if (!leader->attr.pinned || !leader->attr.exclusive) 554 return -EINVAL; 555 556 if (event->attr.freq || 557 event->attr.inherit || 558 event->attr.sample_type || 559 event->attr.sample_period || 560 event->attr.enable_on_exec) 561 return -EINVAL; 562 } 563 564 return 0; 565 } 566 567 static void ebb_event_add(struct perf_event *event) 568 { 569 if (!is_ebb_event(event) || current->thread.used_ebb) 570 return; 571 572 /* 573 * IFF this is the first time we've added an EBB event, set 574 * PMXE in the user MMCR0 so we can detect when it's cleared by 575 * userspace. We need this so that we can context switch while 576 * userspace is in the EBB handler (where PMXE is 0). 577 */ 578 current->thread.used_ebb = 1; 579 current->thread.mmcr0 |= MMCR0_PMXE; 580 } 581 582 static void ebb_switch_out(unsigned long mmcr0) 583 { 584 if (!(mmcr0 & MMCR0_EBE)) 585 return; 586 587 current->thread.siar = mfspr(SPRN_SIAR); 588 current->thread.sier = mfspr(SPRN_SIER); 589 current->thread.sdar = mfspr(SPRN_SDAR); 590 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 591 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 592 } 593 594 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 595 { 596 unsigned long mmcr0 = cpuhw->mmcr[0]; 597 598 if (!ebb) 599 goto out; 600 601 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 602 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 603 604 /* 605 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 606 * with pmao_restore_workaround() because we may add PMAO but we never 607 * clear it here. 608 */ 609 mmcr0 |= current->thread.mmcr0; 610 611 /* 612 * Be careful not to set PMXE if userspace had it cleared. This is also 613 * compatible with pmao_restore_workaround() because it has already 614 * cleared PMXE and we leave PMAO alone. 615 */ 616 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 617 mmcr0 &= ~MMCR0_PMXE; 618 619 mtspr(SPRN_SIAR, current->thread.siar); 620 mtspr(SPRN_SIER, current->thread.sier); 621 mtspr(SPRN_SDAR, current->thread.sdar); 622 623 /* 624 * Merge the kernel & user values of MMCR2. The semantics we implement 625 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 626 * but not clear bits. If a task wants to be able to clear bits, ie. 627 * unfreeze counters, it should not set exclude_xxx in its events and 628 * instead manage the MMCR2 entirely by itself. 629 */ 630 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); 631 out: 632 return mmcr0; 633 } 634 635 static void pmao_restore_workaround(bool ebb) 636 { 637 unsigned pmcs[6]; 638 639 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 640 return; 641 642 /* 643 * On POWER8E there is a hardware defect which affects the PMU context 644 * switch logic, ie. power_pmu_disable/enable(). 645 * 646 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 647 * by the hardware. Sometime later the actual PMU exception is 648 * delivered. 649 * 650 * If we context switch, or simply disable/enable, the PMU prior to the 651 * exception arriving, the exception will be lost when we clear PMAO. 652 * 653 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 654 * set, and this _should_ generate an exception. However because of the 655 * defect no exception is generated when we write PMAO, and we get 656 * stuck with no counters counting but no exception delivered. 657 * 658 * The workaround is to detect this case and tweak the hardware to 659 * create another pending PMU exception. 660 * 661 * We do that by setting up PMC6 (cycles) for an imminent overflow and 662 * enabling the PMU. That causes a new exception to be generated in the 663 * chip, but we don't take it yet because we have interrupts hard 664 * disabled. We then write back the PMU state as we want it to be seen 665 * by the exception handler. When we reenable interrupts the exception 666 * handler will be called and see the correct state. 667 * 668 * The logic is the same for EBB, except that the exception is gated by 669 * us having interrupts hard disabled as well as the fact that we are 670 * not in userspace. The exception is finally delivered when we return 671 * to userspace. 672 */ 673 674 /* Only if PMAO is set and PMAO_SYNC is clear */ 675 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 676 return; 677 678 /* If we're doing EBB, only if BESCR[GE] is set */ 679 if (ebb && !(current->thread.bescr & BESCR_GE)) 680 return; 681 682 /* 683 * We are already soft-disabled in power_pmu_enable(). We need to hard 684 * disable to actually prevent the PMU exception from firing. 685 */ 686 hard_irq_disable(); 687 688 /* 689 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 690 * Using read/write_pmc() in a for loop adds 12 function calls and 691 * almost doubles our code size. 692 */ 693 pmcs[0] = mfspr(SPRN_PMC1); 694 pmcs[1] = mfspr(SPRN_PMC2); 695 pmcs[2] = mfspr(SPRN_PMC3); 696 pmcs[3] = mfspr(SPRN_PMC4); 697 pmcs[4] = mfspr(SPRN_PMC5); 698 pmcs[5] = mfspr(SPRN_PMC6); 699 700 /* Ensure all freeze bits are unset */ 701 mtspr(SPRN_MMCR2, 0); 702 703 /* Set up PMC6 to overflow in one cycle */ 704 mtspr(SPRN_PMC6, 0x7FFFFFFE); 705 706 /* Enable exceptions and unfreeze PMC6 */ 707 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 708 709 /* Now we need to refreeze and restore the PMCs */ 710 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 711 712 mtspr(SPRN_PMC1, pmcs[0]); 713 mtspr(SPRN_PMC2, pmcs[1]); 714 mtspr(SPRN_PMC3, pmcs[2]); 715 mtspr(SPRN_PMC4, pmcs[3]); 716 mtspr(SPRN_PMC5, pmcs[4]); 717 mtspr(SPRN_PMC6, pmcs[5]); 718 } 719 720 #endif /* CONFIG_PPC64 */ 721 722 static void perf_event_interrupt(struct pt_regs *regs); 723 724 /* 725 * Read one performance monitor counter (PMC). 726 */ 727 static unsigned long read_pmc(int idx) 728 { 729 unsigned long val; 730 731 switch (idx) { 732 case 1: 733 val = mfspr(SPRN_PMC1); 734 break; 735 case 2: 736 val = mfspr(SPRN_PMC2); 737 break; 738 case 3: 739 val = mfspr(SPRN_PMC3); 740 break; 741 case 4: 742 val = mfspr(SPRN_PMC4); 743 break; 744 case 5: 745 val = mfspr(SPRN_PMC5); 746 break; 747 case 6: 748 val = mfspr(SPRN_PMC6); 749 break; 750 #ifdef CONFIG_PPC64 751 case 7: 752 val = mfspr(SPRN_PMC7); 753 break; 754 case 8: 755 val = mfspr(SPRN_PMC8); 756 break; 757 #endif /* CONFIG_PPC64 */ 758 default: 759 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 760 val = 0; 761 } 762 return val; 763 } 764 765 /* 766 * Write one PMC. 767 */ 768 static void write_pmc(int idx, unsigned long val) 769 { 770 switch (idx) { 771 case 1: 772 mtspr(SPRN_PMC1, val); 773 break; 774 case 2: 775 mtspr(SPRN_PMC2, val); 776 break; 777 case 3: 778 mtspr(SPRN_PMC3, val); 779 break; 780 case 4: 781 mtspr(SPRN_PMC4, val); 782 break; 783 case 5: 784 mtspr(SPRN_PMC5, val); 785 break; 786 case 6: 787 mtspr(SPRN_PMC6, val); 788 break; 789 #ifdef CONFIG_PPC64 790 case 7: 791 mtspr(SPRN_PMC7, val); 792 break; 793 case 8: 794 mtspr(SPRN_PMC8, val); 795 break; 796 #endif /* CONFIG_PPC64 */ 797 default: 798 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 799 } 800 } 801 802 /* Called from sysrq_handle_showregs() */ 803 void perf_event_print_debug(void) 804 { 805 unsigned long sdar, sier, flags; 806 u32 pmcs[MAX_HWEVENTS]; 807 int i; 808 809 if (!ppmu) { 810 pr_info("Performance monitor hardware not registered.\n"); 811 return; 812 } 813 814 if (!ppmu->n_counter) 815 return; 816 817 local_irq_save(flags); 818 819 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 820 smp_processor_id(), ppmu->name, ppmu->n_counter); 821 822 for (i = 0; i < ppmu->n_counter; i++) 823 pmcs[i] = read_pmc(i + 1); 824 825 for (; i < MAX_HWEVENTS; i++) 826 pmcs[i] = 0xdeadbeef; 827 828 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 829 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 830 831 if (ppmu->n_counter > 4) 832 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 833 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 834 835 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 836 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 837 838 sdar = sier = 0; 839 #ifdef CONFIG_PPC64 840 sdar = mfspr(SPRN_SDAR); 841 842 if (ppmu->flags & PPMU_HAS_SIER) 843 sier = mfspr(SPRN_SIER); 844 845 if (ppmu->flags & PPMU_ARCH_207S) { 846 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 847 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 848 pr_info("EBBRR: %016lx BESCR: %016lx\n", 849 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 850 } 851 #endif 852 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 853 mfspr(SPRN_SIAR), sdar, sier); 854 855 local_irq_restore(flags); 856 } 857 858 /* 859 * Check if a set of events can all go on the PMU at once. 860 * If they can't, this will look at alternative codes for the events 861 * and see if any combination of alternative codes is feasible. 862 * The feasible set is returned in event_id[]. 863 */ 864 static int power_check_constraints(struct cpu_hw_events *cpuhw, 865 u64 event_id[], unsigned int cflags[], 866 int n_ev) 867 { 868 unsigned long mask, value, nv; 869 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 870 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 871 int i, j; 872 unsigned long addf = ppmu->add_fields; 873 unsigned long tadd = ppmu->test_adder; 874 unsigned long grp_mask = ppmu->group_constraint_mask; 875 unsigned long grp_val = ppmu->group_constraint_val; 876 877 if (n_ev > ppmu->n_counter) 878 return -1; 879 880 /* First see if the events will go on as-is */ 881 for (i = 0; i < n_ev; ++i) { 882 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 883 && !ppmu->limited_pmc_event(event_id[i])) { 884 ppmu->get_alternatives(event_id[i], cflags[i], 885 cpuhw->alternatives[i]); 886 event_id[i] = cpuhw->alternatives[i][0]; 887 } 888 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 889 &cpuhw->avalues[i][0])) 890 return -1; 891 } 892 value = mask = 0; 893 for (i = 0; i < n_ev; ++i) { 894 nv = (value | cpuhw->avalues[i][0]) + 895 (value & cpuhw->avalues[i][0] & addf); 896 897 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) 898 break; 899 900 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) 901 & (~grp_mask)) != 0) 902 break; 903 904 value = nv; 905 mask |= cpuhw->amasks[i][0]; 906 } 907 if (i == n_ev) { 908 if ((value & mask & grp_mask) != (mask & grp_val)) 909 return -1; 910 else 911 return 0; /* all OK */ 912 } 913 914 /* doesn't work, gather alternatives... */ 915 if (!ppmu->get_alternatives) 916 return -1; 917 for (i = 0; i < n_ev; ++i) { 918 choice[i] = 0; 919 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 920 cpuhw->alternatives[i]); 921 for (j = 1; j < n_alt[i]; ++j) 922 ppmu->get_constraint(cpuhw->alternatives[i][j], 923 &cpuhw->amasks[i][j], 924 &cpuhw->avalues[i][j]); 925 } 926 927 /* enumerate all possibilities and see if any will work */ 928 i = 0; 929 j = -1; 930 value = mask = nv = 0; 931 while (i < n_ev) { 932 if (j >= 0) { 933 /* we're backtracking, restore context */ 934 value = svalues[i]; 935 mask = smasks[i]; 936 j = choice[i]; 937 } 938 /* 939 * See if any alternative k for event_id i, 940 * where k > j, will satisfy the constraints. 941 */ 942 while (++j < n_alt[i]) { 943 nv = (value | cpuhw->avalues[i][j]) + 944 (value & cpuhw->avalues[i][j] & addf); 945 if ((((nv + tadd) ^ value) & mask) == 0 && 946 (((nv + tadd) ^ cpuhw->avalues[i][j]) 947 & cpuhw->amasks[i][j]) == 0) 948 break; 949 } 950 if (j >= n_alt[i]) { 951 /* 952 * No feasible alternative, backtrack 953 * to event_id i-1 and continue enumerating its 954 * alternatives from where we got up to. 955 */ 956 if (--i < 0) 957 return -1; 958 } else { 959 /* 960 * Found a feasible alternative for event_id i, 961 * remember where we got up to with this event_id, 962 * go on to the next event_id, and start with 963 * the first alternative for it. 964 */ 965 choice[i] = j; 966 svalues[i] = value; 967 smasks[i] = mask; 968 value = nv; 969 mask |= cpuhw->amasks[i][j]; 970 ++i; 971 j = -1; 972 } 973 } 974 975 /* OK, we have a feasible combination, tell the caller the solution */ 976 for (i = 0; i < n_ev; ++i) 977 event_id[i] = cpuhw->alternatives[i][choice[i]]; 978 return 0; 979 } 980 981 /* 982 * Check if newly-added events have consistent settings for 983 * exclude_{user,kernel,hv} with each other and any previously 984 * added events. 985 */ 986 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 987 int n_prev, int n_new) 988 { 989 int eu = 0, ek = 0, eh = 0; 990 int i, n, first; 991 struct perf_event *event; 992 993 /* 994 * If the PMU we're on supports per event exclude settings then we 995 * don't need to do any of this logic. NB. This assumes no PMU has both 996 * per event exclude and limited PMCs. 997 */ 998 if (ppmu->flags & PPMU_ARCH_207S) 999 return 0; 1000 1001 n = n_prev + n_new; 1002 if (n <= 1) 1003 return 0; 1004 1005 first = 1; 1006 for (i = 0; i < n; ++i) { 1007 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 1008 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 1009 continue; 1010 } 1011 event = ctrs[i]; 1012 if (first) { 1013 eu = event->attr.exclude_user; 1014 ek = event->attr.exclude_kernel; 1015 eh = event->attr.exclude_hv; 1016 first = 0; 1017 } else if (event->attr.exclude_user != eu || 1018 event->attr.exclude_kernel != ek || 1019 event->attr.exclude_hv != eh) { 1020 return -EAGAIN; 1021 } 1022 } 1023 1024 if (eu || ek || eh) 1025 for (i = 0; i < n; ++i) 1026 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1027 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1028 1029 return 0; 1030 } 1031 1032 static u64 check_and_compute_delta(u64 prev, u64 val) 1033 { 1034 u64 delta = (val - prev) & 0xfffffffful; 1035 1036 /* 1037 * POWER7 can roll back counter values, if the new value is smaller 1038 * than the previous value it will cause the delta and the counter to 1039 * have bogus values unless we rolled a counter over. If a coutner is 1040 * rolled back, it will be smaller, but within 256, which is the maximum 1041 * number of events to rollback at once. If we detect a rollback 1042 * return 0. This can lead to a small lack of precision in the 1043 * counters. 1044 */ 1045 if (prev > val && (prev - val) < 256) 1046 delta = 0; 1047 1048 return delta; 1049 } 1050 1051 static void power_pmu_read(struct perf_event *event) 1052 { 1053 s64 val, delta, prev; 1054 1055 if (event->hw.state & PERF_HES_STOPPED) 1056 return; 1057 1058 if (!event->hw.idx) 1059 return; 1060 1061 if (is_ebb_event(event)) { 1062 val = read_pmc(event->hw.idx); 1063 local64_set(&event->hw.prev_count, val); 1064 return; 1065 } 1066 1067 /* 1068 * Performance monitor interrupts come even when interrupts 1069 * are soft-disabled, as long as interrupts are hard-enabled. 1070 * Therefore we treat them like NMIs. 1071 */ 1072 do { 1073 prev = local64_read(&event->hw.prev_count); 1074 barrier(); 1075 val = read_pmc(event->hw.idx); 1076 delta = check_and_compute_delta(prev, val); 1077 if (!delta) 1078 return; 1079 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1080 1081 local64_add(delta, &event->count); 1082 1083 /* 1084 * A number of places program the PMC with (0x80000000 - period_left). 1085 * We never want period_left to be less than 1 because we will program 1086 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1087 * roll around to 0 before taking an exception. We have seen this 1088 * on POWER8. 1089 * 1090 * To fix this, clamp the minimum value of period_left to 1. 1091 */ 1092 do { 1093 prev = local64_read(&event->hw.period_left); 1094 val = prev - delta; 1095 if (val < 1) 1096 val = 1; 1097 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1098 } 1099 1100 /* 1101 * On some machines, PMC5 and PMC6 can't be written, don't respect 1102 * the freeze conditions, and don't generate interrupts. This tells 1103 * us if `event' is using such a PMC. 1104 */ 1105 static int is_limited_pmc(int pmcnum) 1106 { 1107 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1108 && (pmcnum == 5 || pmcnum == 6); 1109 } 1110 1111 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1112 unsigned long pmc5, unsigned long pmc6) 1113 { 1114 struct perf_event *event; 1115 u64 val, prev, delta; 1116 int i; 1117 1118 for (i = 0; i < cpuhw->n_limited; ++i) { 1119 event = cpuhw->limited_counter[i]; 1120 if (!event->hw.idx) 1121 continue; 1122 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1123 prev = local64_read(&event->hw.prev_count); 1124 event->hw.idx = 0; 1125 delta = check_and_compute_delta(prev, val); 1126 if (delta) 1127 local64_add(delta, &event->count); 1128 } 1129 } 1130 1131 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1132 unsigned long pmc5, unsigned long pmc6) 1133 { 1134 struct perf_event *event; 1135 u64 val, prev; 1136 int i; 1137 1138 for (i = 0; i < cpuhw->n_limited; ++i) { 1139 event = cpuhw->limited_counter[i]; 1140 event->hw.idx = cpuhw->limited_hwidx[i]; 1141 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1142 prev = local64_read(&event->hw.prev_count); 1143 if (check_and_compute_delta(prev, val)) 1144 local64_set(&event->hw.prev_count, val); 1145 perf_event_update_userpage(event); 1146 } 1147 } 1148 1149 /* 1150 * Since limited events don't respect the freeze conditions, we 1151 * have to read them immediately after freezing or unfreezing the 1152 * other events. We try to keep the values from the limited 1153 * events as consistent as possible by keeping the delay (in 1154 * cycles and instructions) between freezing/unfreezing and reading 1155 * the limited events as small and consistent as possible. 1156 * Therefore, if any limited events are in use, we read them 1157 * both, and always in the same order, to minimize variability, 1158 * and do it inside the same asm that writes MMCR0. 1159 */ 1160 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1161 { 1162 unsigned long pmc5, pmc6; 1163 1164 if (!cpuhw->n_limited) { 1165 mtspr(SPRN_MMCR0, mmcr0); 1166 return; 1167 } 1168 1169 /* 1170 * Write MMCR0, then read PMC5 and PMC6 immediately. 1171 * To ensure we don't get a performance monitor interrupt 1172 * between writing MMCR0 and freezing/thawing the limited 1173 * events, we first write MMCR0 with the event overflow 1174 * interrupt enable bits turned off. 1175 */ 1176 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1177 : "=&r" (pmc5), "=&r" (pmc6) 1178 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1179 "i" (SPRN_MMCR0), 1180 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1181 1182 if (mmcr0 & MMCR0_FC) 1183 freeze_limited_counters(cpuhw, pmc5, pmc6); 1184 else 1185 thaw_limited_counters(cpuhw, pmc5, pmc6); 1186 1187 /* 1188 * Write the full MMCR0 including the event overflow interrupt 1189 * enable bits, if necessary. 1190 */ 1191 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1192 mtspr(SPRN_MMCR0, mmcr0); 1193 } 1194 1195 /* 1196 * Disable all events to prevent PMU interrupts and to allow 1197 * events to be added or removed. 1198 */ 1199 static void power_pmu_disable(struct pmu *pmu) 1200 { 1201 struct cpu_hw_events *cpuhw; 1202 unsigned long flags, mmcr0, val; 1203 1204 if (!ppmu) 1205 return; 1206 local_irq_save(flags); 1207 cpuhw = this_cpu_ptr(&cpu_hw_events); 1208 1209 if (!cpuhw->disabled) { 1210 /* 1211 * Check if we ever enabled the PMU on this cpu. 1212 */ 1213 if (!cpuhw->pmcs_enabled) { 1214 ppc_enable_pmcs(); 1215 cpuhw->pmcs_enabled = 1; 1216 } 1217 1218 /* 1219 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1220 */ 1221 val = mmcr0 = mfspr(SPRN_MMCR0); 1222 val |= MMCR0_FC; 1223 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1224 MMCR0_FC56); 1225 1226 /* 1227 * The barrier is to make sure the mtspr has been 1228 * executed and the PMU has frozen the events etc. 1229 * before we return. 1230 */ 1231 write_mmcr0(cpuhw, val); 1232 mb(); 1233 isync(); 1234 1235 /* 1236 * Disable instruction sampling if it was enabled 1237 */ 1238 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1239 mtspr(SPRN_MMCRA, 1240 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1241 mb(); 1242 isync(); 1243 } 1244 1245 cpuhw->disabled = 1; 1246 cpuhw->n_added = 0; 1247 1248 ebb_switch_out(mmcr0); 1249 1250 #ifdef CONFIG_PPC64 1251 /* 1252 * These are readable by userspace, may contain kernel 1253 * addresses and are not switched by context switch, so clear 1254 * them now to avoid leaking anything to userspace in general 1255 * including to another process. 1256 */ 1257 if (ppmu->flags & PPMU_ARCH_207S) { 1258 mtspr(SPRN_SDAR, 0); 1259 mtspr(SPRN_SIAR, 0); 1260 } 1261 #endif 1262 } 1263 1264 local_irq_restore(flags); 1265 } 1266 1267 /* 1268 * Re-enable all events if disable == 0. 1269 * If we were previously disabled and events were added, then 1270 * put the new config on the PMU. 1271 */ 1272 static void power_pmu_enable(struct pmu *pmu) 1273 { 1274 struct perf_event *event; 1275 struct cpu_hw_events *cpuhw; 1276 unsigned long flags; 1277 long i; 1278 unsigned long val, mmcr0; 1279 s64 left; 1280 unsigned int hwc_index[MAX_HWEVENTS]; 1281 int n_lim; 1282 int idx; 1283 bool ebb; 1284 1285 if (!ppmu) 1286 return; 1287 local_irq_save(flags); 1288 1289 cpuhw = this_cpu_ptr(&cpu_hw_events); 1290 if (!cpuhw->disabled) 1291 goto out; 1292 1293 if (cpuhw->n_events == 0) { 1294 ppc_set_pmu_inuse(0); 1295 goto out; 1296 } 1297 1298 cpuhw->disabled = 0; 1299 1300 /* 1301 * EBB requires an exclusive group and all events must have the EBB 1302 * flag set, or not set, so we can just check a single event. Also we 1303 * know we have at least one event. 1304 */ 1305 ebb = is_ebb_event(cpuhw->event[0]); 1306 1307 /* 1308 * If we didn't change anything, or only removed events, 1309 * no need to recalculate MMCR* settings and reset the PMCs. 1310 * Just reenable the PMU with the current MMCR* settings 1311 * (possibly updated for removal of events). 1312 */ 1313 if (!cpuhw->n_added) { 1314 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1315 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1316 goto out_enable; 1317 } 1318 1319 /* 1320 * Clear all MMCR settings and recompute them for the new set of events. 1321 */ 1322 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1323 1324 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1325 cpuhw->mmcr, cpuhw->event)) { 1326 /* shouldn't ever get here */ 1327 printk(KERN_ERR "oops compute_mmcr failed\n"); 1328 goto out; 1329 } 1330 1331 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1332 /* 1333 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1334 * bits for the first event. We have already checked that all 1335 * events have the same value for these bits as the first event. 1336 */ 1337 event = cpuhw->event[0]; 1338 if (event->attr.exclude_user) 1339 cpuhw->mmcr[0] |= MMCR0_FCP; 1340 if (event->attr.exclude_kernel) 1341 cpuhw->mmcr[0] |= freeze_events_kernel; 1342 if (event->attr.exclude_hv) 1343 cpuhw->mmcr[0] |= MMCR0_FCHV; 1344 } 1345 1346 /* 1347 * Write the new configuration to MMCR* with the freeze 1348 * bit set and set the hardware events to their initial values. 1349 * Then unfreeze the events. 1350 */ 1351 ppc_set_pmu_inuse(1); 1352 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1353 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1354 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1355 | MMCR0_FC); 1356 if (ppmu->flags & PPMU_ARCH_207S) 1357 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); 1358 1359 /* 1360 * Read off any pre-existing events that need to move 1361 * to another PMC. 1362 */ 1363 for (i = 0; i < cpuhw->n_events; ++i) { 1364 event = cpuhw->event[i]; 1365 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1366 power_pmu_read(event); 1367 write_pmc(event->hw.idx, 0); 1368 event->hw.idx = 0; 1369 } 1370 } 1371 1372 /* 1373 * Initialize the PMCs for all the new and moved events. 1374 */ 1375 cpuhw->n_limited = n_lim = 0; 1376 for (i = 0; i < cpuhw->n_events; ++i) { 1377 event = cpuhw->event[i]; 1378 if (event->hw.idx) 1379 continue; 1380 idx = hwc_index[i] + 1; 1381 if (is_limited_pmc(idx)) { 1382 cpuhw->limited_counter[n_lim] = event; 1383 cpuhw->limited_hwidx[n_lim] = idx; 1384 ++n_lim; 1385 continue; 1386 } 1387 1388 if (ebb) 1389 val = local64_read(&event->hw.prev_count); 1390 else { 1391 val = 0; 1392 if (event->hw.sample_period) { 1393 left = local64_read(&event->hw.period_left); 1394 if (left < 0x80000000L) 1395 val = 0x80000000L - left; 1396 } 1397 local64_set(&event->hw.prev_count, val); 1398 } 1399 1400 event->hw.idx = idx; 1401 if (event->hw.state & PERF_HES_STOPPED) 1402 val = 0; 1403 write_pmc(idx, val); 1404 1405 perf_event_update_userpage(event); 1406 } 1407 cpuhw->n_limited = n_lim; 1408 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1409 1410 out_enable: 1411 pmao_restore_workaround(ebb); 1412 1413 mmcr0 = ebb_switch_in(ebb, cpuhw); 1414 1415 mb(); 1416 if (cpuhw->bhrb_users) 1417 ppmu->config_bhrb(cpuhw->bhrb_filter); 1418 1419 write_mmcr0(cpuhw, mmcr0); 1420 1421 /* 1422 * Enable instruction sampling if necessary 1423 */ 1424 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1425 mb(); 1426 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1427 } 1428 1429 out: 1430 1431 local_irq_restore(flags); 1432 } 1433 1434 static int collect_events(struct perf_event *group, int max_count, 1435 struct perf_event *ctrs[], u64 *events, 1436 unsigned int *flags) 1437 { 1438 int n = 0; 1439 struct perf_event *event; 1440 1441 if (group->pmu->task_ctx_nr == perf_hw_context) { 1442 if (n >= max_count) 1443 return -1; 1444 ctrs[n] = group; 1445 flags[n] = group->hw.event_base; 1446 events[n++] = group->hw.config; 1447 } 1448 for_each_sibling_event(event, group) { 1449 if (event->pmu->task_ctx_nr == perf_hw_context && 1450 event->state != PERF_EVENT_STATE_OFF) { 1451 if (n >= max_count) 1452 return -1; 1453 ctrs[n] = event; 1454 flags[n] = event->hw.event_base; 1455 events[n++] = event->hw.config; 1456 } 1457 } 1458 return n; 1459 } 1460 1461 /* 1462 * Add an event to the PMU. 1463 * If all events are not already frozen, then we disable and 1464 * re-enable the PMU in order to get hw_perf_enable to do the 1465 * actual work of reconfiguring the PMU. 1466 */ 1467 static int power_pmu_add(struct perf_event *event, int ef_flags) 1468 { 1469 struct cpu_hw_events *cpuhw; 1470 unsigned long flags; 1471 int n0; 1472 int ret = -EAGAIN; 1473 1474 local_irq_save(flags); 1475 perf_pmu_disable(event->pmu); 1476 1477 /* 1478 * Add the event to the list (if there is room) 1479 * and check whether the total set is still feasible. 1480 */ 1481 cpuhw = this_cpu_ptr(&cpu_hw_events); 1482 n0 = cpuhw->n_events; 1483 if (n0 >= ppmu->n_counter) 1484 goto out; 1485 cpuhw->event[n0] = event; 1486 cpuhw->events[n0] = event->hw.config; 1487 cpuhw->flags[n0] = event->hw.event_base; 1488 1489 /* 1490 * This event may have been disabled/stopped in record_and_restart() 1491 * because we exceeded the ->event_limit. If re-starting the event, 1492 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1493 * notification is re-enabled. 1494 */ 1495 if (!(ef_flags & PERF_EF_START)) 1496 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1497 else 1498 event->hw.state = 0; 1499 1500 /* 1501 * If group events scheduling transaction was started, 1502 * skip the schedulability test here, it will be performed 1503 * at commit time(->commit_txn) as a whole 1504 */ 1505 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1506 goto nocheck; 1507 1508 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1509 goto out; 1510 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1511 goto out; 1512 event->hw.config = cpuhw->events[n0]; 1513 1514 nocheck: 1515 ebb_event_add(event); 1516 1517 ++cpuhw->n_events; 1518 ++cpuhw->n_added; 1519 1520 ret = 0; 1521 out: 1522 if (has_branch_stack(event)) { 1523 power_pmu_bhrb_enable(event); 1524 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1525 event->attr.branch_sample_type); 1526 } 1527 1528 perf_pmu_enable(event->pmu); 1529 local_irq_restore(flags); 1530 return ret; 1531 } 1532 1533 /* 1534 * Remove an event from the PMU. 1535 */ 1536 static void power_pmu_del(struct perf_event *event, int ef_flags) 1537 { 1538 struct cpu_hw_events *cpuhw; 1539 long i; 1540 unsigned long flags; 1541 1542 local_irq_save(flags); 1543 perf_pmu_disable(event->pmu); 1544 1545 power_pmu_read(event); 1546 1547 cpuhw = this_cpu_ptr(&cpu_hw_events); 1548 for (i = 0; i < cpuhw->n_events; ++i) { 1549 if (event == cpuhw->event[i]) { 1550 while (++i < cpuhw->n_events) { 1551 cpuhw->event[i-1] = cpuhw->event[i]; 1552 cpuhw->events[i-1] = cpuhw->events[i]; 1553 cpuhw->flags[i-1] = cpuhw->flags[i]; 1554 } 1555 --cpuhw->n_events; 1556 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1557 if (event->hw.idx) { 1558 write_pmc(event->hw.idx, 0); 1559 event->hw.idx = 0; 1560 } 1561 perf_event_update_userpage(event); 1562 break; 1563 } 1564 } 1565 for (i = 0; i < cpuhw->n_limited; ++i) 1566 if (event == cpuhw->limited_counter[i]) 1567 break; 1568 if (i < cpuhw->n_limited) { 1569 while (++i < cpuhw->n_limited) { 1570 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1571 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1572 } 1573 --cpuhw->n_limited; 1574 } 1575 if (cpuhw->n_events == 0) { 1576 /* disable exceptions if no events are running */ 1577 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1578 } 1579 1580 if (has_branch_stack(event)) 1581 power_pmu_bhrb_disable(event); 1582 1583 perf_pmu_enable(event->pmu); 1584 local_irq_restore(flags); 1585 } 1586 1587 /* 1588 * POWER-PMU does not support disabling individual counters, hence 1589 * program their cycle counter to their max value and ignore the interrupts. 1590 */ 1591 1592 static void power_pmu_start(struct perf_event *event, int ef_flags) 1593 { 1594 unsigned long flags; 1595 s64 left; 1596 unsigned long val; 1597 1598 if (!event->hw.idx || !event->hw.sample_period) 1599 return; 1600 1601 if (!(event->hw.state & PERF_HES_STOPPED)) 1602 return; 1603 1604 if (ef_flags & PERF_EF_RELOAD) 1605 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1606 1607 local_irq_save(flags); 1608 perf_pmu_disable(event->pmu); 1609 1610 event->hw.state = 0; 1611 left = local64_read(&event->hw.period_left); 1612 1613 val = 0; 1614 if (left < 0x80000000L) 1615 val = 0x80000000L - left; 1616 1617 write_pmc(event->hw.idx, val); 1618 1619 perf_event_update_userpage(event); 1620 perf_pmu_enable(event->pmu); 1621 local_irq_restore(flags); 1622 } 1623 1624 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1625 { 1626 unsigned long flags; 1627 1628 if (!event->hw.idx || !event->hw.sample_period) 1629 return; 1630 1631 if (event->hw.state & PERF_HES_STOPPED) 1632 return; 1633 1634 local_irq_save(flags); 1635 perf_pmu_disable(event->pmu); 1636 1637 power_pmu_read(event); 1638 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1639 write_pmc(event->hw.idx, 0); 1640 1641 perf_event_update_userpage(event); 1642 perf_pmu_enable(event->pmu); 1643 local_irq_restore(flags); 1644 } 1645 1646 /* 1647 * Start group events scheduling transaction 1648 * Set the flag to make pmu::enable() not perform the 1649 * schedulability test, it will be performed at commit time 1650 * 1651 * We only support PERF_PMU_TXN_ADD transactions. Save the 1652 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1653 * transactions. 1654 */ 1655 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1656 { 1657 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1658 1659 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1660 1661 cpuhw->txn_flags = txn_flags; 1662 if (txn_flags & ~PERF_PMU_TXN_ADD) 1663 return; 1664 1665 perf_pmu_disable(pmu); 1666 cpuhw->n_txn_start = cpuhw->n_events; 1667 } 1668 1669 /* 1670 * Stop group events scheduling transaction 1671 * Clear the flag and pmu::enable() will perform the 1672 * schedulability test. 1673 */ 1674 static void power_pmu_cancel_txn(struct pmu *pmu) 1675 { 1676 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1677 unsigned int txn_flags; 1678 1679 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1680 1681 txn_flags = cpuhw->txn_flags; 1682 cpuhw->txn_flags = 0; 1683 if (txn_flags & ~PERF_PMU_TXN_ADD) 1684 return; 1685 1686 perf_pmu_enable(pmu); 1687 } 1688 1689 /* 1690 * Commit group events scheduling transaction 1691 * Perform the group schedulability test as a whole 1692 * Return 0 if success 1693 */ 1694 static int power_pmu_commit_txn(struct pmu *pmu) 1695 { 1696 struct cpu_hw_events *cpuhw; 1697 long i, n; 1698 1699 if (!ppmu) 1700 return -EAGAIN; 1701 1702 cpuhw = this_cpu_ptr(&cpu_hw_events); 1703 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1704 1705 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1706 cpuhw->txn_flags = 0; 1707 return 0; 1708 } 1709 1710 n = cpuhw->n_events; 1711 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1712 return -EAGAIN; 1713 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1714 if (i < 0) 1715 return -EAGAIN; 1716 1717 for (i = cpuhw->n_txn_start; i < n; ++i) 1718 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1719 1720 cpuhw->txn_flags = 0; 1721 perf_pmu_enable(pmu); 1722 return 0; 1723 } 1724 1725 /* 1726 * Return 1 if we might be able to put event on a limited PMC, 1727 * or 0 if not. 1728 * An event can only go on a limited PMC if it counts something 1729 * that a limited PMC can count, doesn't require interrupts, and 1730 * doesn't exclude any processor mode. 1731 */ 1732 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1733 unsigned int flags) 1734 { 1735 int n; 1736 u64 alt[MAX_EVENT_ALTERNATIVES]; 1737 1738 if (event->attr.exclude_user 1739 || event->attr.exclude_kernel 1740 || event->attr.exclude_hv 1741 || event->attr.sample_period) 1742 return 0; 1743 1744 if (ppmu->limited_pmc_event(ev)) 1745 return 1; 1746 1747 /* 1748 * The requested event_id isn't on a limited PMC already; 1749 * see if any alternative code goes on a limited PMC. 1750 */ 1751 if (!ppmu->get_alternatives) 1752 return 0; 1753 1754 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1755 n = ppmu->get_alternatives(ev, flags, alt); 1756 1757 return n > 0; 1758 } 1759 1760 /* 1761 * Find an alternative event_id that goes on a normal PMC, if possible, 1762 * and return the event_id code, or 0 if there is no such alternative. 1763 * (Note: event_id code 0 is "don't count" on all machines.) 1764 */ 1765 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1766 { 1767 u64 alt[MAX_EVENT_ALTERNATIVES]; 1768 int n; 1769 1770 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1771 n = ppmu->get_alternatives(ev, flags, alt); 1772 if (!n) 1773 return 0; 1774 return alt[0]; 1775 } 1776 1777 /* Number of perf_events counting hardware events */ 1778 static atomic_t num_events; 1779 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1780 static DEFINE_MUTEX(pmc_reserve_mutex); 1781 1782 /* 1783 * Release the PMU if this is the last perf_event. 1784 */ 1785 static void hw_perf_event_destroy(struct perf_event *event) 1786 { 1787 if (!atomic_add_unless(&num_events, -1, 1)) { 1788 mutex_lock(&pmc_reserve_mutex); 1789 if (atomic_dec_return(&num_events) == 0) 1790 release_pmc_hardware(); 1791 mutex_unlock(&pmc_reserve_mutex); 1792 } 1793 } 1794 1795 /* 1796 * Translate a generic cache event_id config to a raw event_id code. 1797 */ 1798 static int hw_perf_cache_event(u64 config, u64 *eventp) 1799 { 1800 unsigned long type, op, result; 1801 int ev; 1802 1803 if (!ppmu->cache_events) 1804 return -EINVAL; 1805 1806 /* unpack config */ 1807 type = config & 0xff; 1808 op = (config >> 8) & 0xff; 1809 result = (config >> 16) & 0xff; 1810 1811 if (type >= PERF_COUNT_HW_CACHE_MAX || 1812 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1813 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1814 return -EINVAL; 1815 1816 ev = (*ppmu->cache_events)[type][op][result]; 1817 if (ev == 0) 1818 return -EOPNOTSUPP; 1819 if (ev == -1) 1820 return -EINVAL; 1821 *eventp = ev; 1822 return 0; 1823 } 1824 1825 static bool is_event_blacklisted(u64 ev) 1826 { 1827 int i; 1828 1829 for (i=0; i < ppmu->n_blacklist_ev; i++) { 1830 if (ppmu->blacklist_ev[i] == ev) 1831 return true; 1832 } 1833 1834 return false; 1835 } 1836 1837 static int power_pmu_event_init(struct perf_event *event) 1838 { 1839 u64 ev; 1840 unsigned long flags; 1841 struct perf_event *ctrs[MAX_HWEVENTS]; 1842 u64 events[MAX_HWEVENTS]; 1843 unsigned int cflags[MAX_HWEVENTS]; 1844 int n; 1845 int err; 1846 struct cpu_hw_events *cpuhw; 1847 u64 bhrb_filter; 1848 1849 if (!ppmu) 1850 return -ENOENT; 1851 1852 if (has_branch_stack(event)) { 1853 /* PMU has BHRB enabled */ 1854 if (!(ppmu->flags & PPMU_ARCH_207S)) 1855 return -EOPNOTSUPP; 1856 } 1857 1858 switch (event->attr.type) { 1859 case PERF_TYPE_HARDWARE: 1860 ev = event->attr.config; 1861 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1862 return -EOPNOTSUPP; 1863 1864 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1865 return -EINVAL; 1866 ev = ppmu->generic_events[ev]; 1867 break; 1868 case PERF_TYPE_HW_CACHE: 1869 err = hw_perf_cache_event(event->attr.config, &ev); 1870 if (err) 1871 return err; 1872 1873 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1874 return -EINVAL; 1875 break; 1876 case PERF_TYPE_RAW: 1877 ev = event->attr.config; 1878 1879 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1880 return -EINVAL; 1881 break; 1882 default: 1883 return -ENOENT; 1884 } 1885 1886 event->hw.config_base = ev; 1887 event->hw.idx = 0; 1888 1889 /* 1890 * If we are not running on a hypervisor, force the 1891 * exclude_hv bit to 0 so that we don't care what 1892 * the user set it to. 1893 */ 1894 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1895 event->attr.exclude_hv = 0; 1896 1897 /* 1898 * If this is a per-task event, then we can use 1899 * PM_RUN_* events interchangeably with their non RUN_* 1900 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1901 * XXX we should check if the task is an idle task. 1902 */ 1903 flags = 0; 1904 if (event->attach_state & PERF_ATTACH_TASK) 1905 flags |= PPMU_ONLY_COUNT_RUN; 1906 1907 /* 1908 * If this machine has limited events, check whether this 1909 * event_id could go on a limited event. 1910 */ 1911 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1912 if (can_go_on_limited_pmc(event, ev, flags)) { 1913 flags |= PPMU_LIMITED_PMC_OK; 1914 } else if (ppmu->limited_pmc_event(ev)) { 1915 /* 1916 * The requested event_id is on a limited PMC, 1917 * but we can't use a limited PMC; see if any 1918 * alternative goes on a normal PMC. 1919 */ 1920 ev = normal_pmc_alternative(ev, flags); 1921 if (!ev) 1922 return -EINVAL; 1923 } 1924 } 1925 1926 /* Extra checks for EBB */ 1927 err = ebb_event_check(event); 1928 if (err) 1929 return err; 1930 1931 /* 1932 * If this is in a group, check if it can go on with all the 1933 * other hardware events in the group. We assume the event 1934 * hasn't been linked into its leader's sibling list at this point. 1935 */ 1936 n = 0; 1937 if (event->group_leader != event) { 1938 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1939 ctrs, events, cflags); 1940 if (n < 0) 1941 return -EINVAL; 1942 } 1943 events[n] = ev; 1944 ctrs[n] = event; 1945 cflags[n] = flags; 1946 if (check_excludes(ctrs, cflags, n, 1)) 1947 return -EINVAL; 1948 1949 cpuhw = &get_cpu_var(cpu_hw_events); 1950 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1951 1952 if (has_branch_stack(event)) { 1953 bhrb_filter = ppmu->bhrb_filter_map( 1954 event->attr.branch_sample_type); 1955 1956 if (bhrb_filter == -1) { 1957 put_cpu_var(cpu_hw_events); 1958 return -EOPNOTSUPP; 1959 } 1960 cpuhw->bhrb_filter = bhrb_filter; 1961 } 1962 1963 put_cpu_var(cpu_hw_events); 1964 if (err) 1965 return -EINVAL; 1966 1967 event->hw.config = events[n]; 1968 event->hw.event_base = cflags[n]; 1969 event->hw.last_period = event->hw.sample_period; 1970 local64_set(&event->hw.period_left, event->hw.last_period); 1971 1972 /* 1973 * For EBB events we just context switch the PMC value, we don't do any 1974 * of the sample_period logic. We use hw.prev_count for this. 1975 */ 1976 if (is_ebb_event(event)) 1977 local64_set(&event->hw.prev_count, 0); 1978 1979 /* 1980 * See if we need to reserve the PMU. 1981 * If no events are currently in use, then we have to take a 1982 * mutex to ensure that we don't race with another task doing 1983 * reserve_pmc_hardware or release_pmc_hardware. 1984 */ 1985 err = 0; 1986 if (!atomic_inc_not_zero(&num_events)) { 1987 mutex_lock(&pmc_reserve_mutex); 1988 if (atomic_read(&num_events) == 0 && 1989 reserve_pmc_hardware(perf_event_interrupt)) 1990 err = -EBUSY; 1991 else 1992 atomic_inc(&num_events); 1993 mutex_unlock(&pmc_reserve_mutex); 1994 } 1995 event->destroy = hw_perf_event_destroy; 1996 1997 return err; 1998 } 1999 2000 static int power_pmu_event_idx(struct perf_event *event) 2001 { 2002 return event->hw.idx; 2003 } 2004 2005 ssize_t power_events_sysfs_show(struct device *dev, 2006 struct device_attribute *attr, char *page) 2007 { 2008 struct perf_pmu_events_attr *pmu_attr; 2009 2010 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 2011 2012 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 2013 } 2014 2015 static struct pmu power_pmu = { 2016 .pmu_enable = power_pmu_enable, 2017 .pmu_disable = power_pmu_disable, 2018 .event_init = power_pmu_event_init, 2019 .add = power_pmu_add, 2020 .del = power_pmu_del, 2021 .start = power_pmu_start, 2022 .stop = power_pmu_stop, 2023 .read = power_pmu_read, 2024 .start_txn = power_pmu_start_txn, 2025 .cancel_txn = power_pmu_cancel_txn, 2026 .commit_txn = power_pmu_commit_txn, 2027 .event_idx = power_pmu_event_idx, 2028 .sched_task = power_pmu_sched_task, 2029 }; 2030 2031 /* 2032 * A counter has overflowed; update its count and record 2033 * things if requested. Note that interrupts are hard-disabled 2034 * here so there is no possibility of being interrupted. 2035 */ 2036 static void record_and_restart(struct perf_event *event, unsigned long val, 2037 struct pt_regs *regs) 2038 { 2039 u64 period = event->hw.sample_period; 2040 s64 prev, delta, left; 2041 int record = 0; 2042 2043 if (event->hw.state & PERF_HES_STOPPED) { 2044 write_pmc(event->hw.idx, 0); 2045 return; 2046 } 2047 2048 /* we don't have to worry about interrupts here */ 2049 prev = local64_read(&event->hw.prev_count); 2050 delta = check_and_compute_delta(prev, val); 2051 local64_add(delta, &event->count); 2052 2053 /* 2054 * See if the total period for this event has expired, 2055 * and update for the next period. 2056 */ 2057 val = 0; 2058 left = local64_read(&event->hw.period_left) - delta; 2059 if (delta == 0) 2060 left++; 2061 if (period) { 2062 if (left <= 0) { 2063 left += period; 2064 if (left <= 0) 2065 left = period; 2066 record = siar_valid(regs); 2067 event->hw.last_period = event->hw.sample_period; 2068 } 2069 if (left < 0x80000000LL) 2070 val = 0x80000000LL - left; 2071 } 2072 2073 write_pmc(event->hw.idx, val); 2074 local64_set(&event->hw.prev_count, val); 2075 local64_set(&event->hw.period_left, left); 2076 perf_event_update_userpage(event); 2077 2078 /* 2079 * Finally record data if requested. 2080 */ 2081 if (record) { 2082 struct perf_sample_data data; 2083 2084 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2085 2086 if (event->attr.sample_type & 2087 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) 2088 perf_get_data_addr(event, regs, &data.addr); 2089 2090 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2091 struct cpu_hw_events *cpuhw; 2092 cpuhw = this_cpu_ptr(&cpu_hw_events); 2093 power_pmu_bhrb_read(event, cpuhw); 2094 data.br_stack = &cpuhw->bhrb_stack; 2095 } 2096 2097 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2098 ppmu->get_mem_data_src) 2099 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2100 2101 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && 2102 ppmu->get_mem_weight) 2103 ppmu->get_mem_weight(&data.weight); 2104 2105 if (perf_event_overflow(event, &data, regs)) 2106 power_pmu_stop(event, 0); 2107 } 2108 } 2109 2110 /* 2111 * Called from generic code to get the misc flags (i.e. processor mode) 2112 * for an event_id. 2113 */ 2114 unsigned long perf_misc_flags(struct pt_regs *regs) 2115 { 2116 u32 flags = perf_get_misc_flags(regs); 2117 2118 if (flags) 2119 return flags; 2120 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2121 PERF_RECORD_MISC_KERNEL; 2122 } 2123 2124 /* 2125 * Called from generic code to get the instruction pointer 2126 * for an event_id. 2127 */ 2128 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2129 { 2130 bool use_siar = regs_use_siar(regs); 2131 2132 if (use_siar && siar_valid(regs)) 2133 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2134 else if (use_siar) 2135 return 0; // no valid instruction pointer 2136 else 2137 return regs->nip; 2138 } 2139 2140 static bool pmc_overflow_power7(unsigned long val) 2141 { 2142 /* 2143 * Events on POWER7 can roll back if a speculative event doesn't 2144 * eventually complete. Unfortunately in some rare cases they will 2145 * raise a performance monitor exception. We need to catch this to 2146 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2147 * cycles from overflow. 2148 * 2149 * We only do this if the first pass fails to find any overflowing 2150 * PMCs because a user might set a period of less than 256 and we 2151 * don't want to mistakenly reset them. 2152 */ 2153 if ((0x80000000 - val) <= 256) 2154 return true; 2155 2156 return false; 2157 } 2158 2159 static bool pmc_overflow(unsigned long val) 2160 { 2161 if ((int)val < 0) 2162 return true; 2163 2164 return false; 2165 } 2166 2167 /* 2168 * Performance monitor interrupt stuff 2169 */ 2170 static void __perf_event_interrupt(struct pt_regs *regs) 2171 { 2172 int i, j; 2173 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2174 struct perf_event *event; 2175 unsigned long val[8]; 2176 int found, active; 2177 int nmi; 2178 2179 if (cpuhw->n_limited) 2180 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2181 mfspr(SPRN_PMC6)); 2182 2183 perf_read_regs(regs); 2184 2185 nmi = perf_intr_is_nmi(regs); 2186 if (nmi) 2187 nmi_enter(); 2188 else 2189 irq_enter(); 2190 2191 /* Read all the PMCs since we'll need them a bunch of times */ 2192 for (i = 0; i < ppmu->n_counter; ++i) 2193 val[i] = read_pmc(i + 1); 2194 2195 /* Try to find what caused the IRQ */ 2196 found = 0; 2197 for (i = 0; i < ppmu->n_counter; ++i) { 2198 if (!pmc_overflow(val[i])) 2199 continue; 2200 if (is_limited_pmc(i + 1)) 2201 continue; /* these won't generate IRQs */ 2202 /* 2203 * We've found one that's overflowed. For active 2204 * counters we need to log this. For inactive 2205 * counters, we need to reset it anyway 2206 */ 2207 found = 1; 2208 active = 0; 2209 for (j = 0; j < cpuhw->n_events; ++j) { 2210 event = cpuhw->event[j]; 2211 if (event->hw.idx == (i + 1)) { 2212 active = 1; 2213 record_and_restart(event, val[i], regs); 2214 break; 2215 } 2216 } 2217 if (!active) 2218 /* reset non active counters that have overflowed */ 2219 write_pmc(i + 1, 0); 2220 } 2221 if (!found && pvr_version_is(PVR_POWER7)) { 2222 /* check active counters for special buggy p7 overflow */ 2223 for (i = 0; i < cpuhw->n_events; ++i) { 2224 event = cpuhw->event[i]; 2225 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2226 continue; 2227 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2228 /* event has overflowed in a buggy way*/ 2229 found = 1; 2230 record_and_restart(event, 2231 val[event->hw.idx - 1], 2232 regs); 2233 } 2234 } 2235 } 2236 if (!found && !nmi && printk_ratelimit()) 2237 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2238 2239 /* 2240 * Reset MMCR0 to its normal value. This will set PMXE and 2241 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2242 * and thus allow interrupts to occur again. 2243 * XXX might want to use MSR.PM to keep the events frozen until 2244 * we get back out of this interrupt. 2245 */ 2246 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2247 2248 if (nmi) 2249 nmi_exit(); 2250 else 2251 irq_exit(); 2252 } 2253 2254 static void perf_event_interrupt(struct pt_regs *regs) 2255 { 2256 u64 start_clock = sched_clock(); 2257 2258 __perf_event_interrupt(regs); 2259 perf_sample_event_took(sched_clock() - start_clock); 2260 } 2261 2262 static int power_pmu_prepare_cpu(unsigned int cpu) 2263 { 2264 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2265 2266 if (ppmu) { 2267 memset(cpuhw, 0, sizeof(*cpuhw)); 2268 cpuhw->mmcr[0] = MMCR0_FC; 2269 } 2270 return 0; 2271 } 2272 2273 int register_power_pmu(struct power_pmu *pmu) 2274 { 2275 if (ppmu) 2276 return -EBUSY; /* something's already registered */ 2277 2278 ppmu = pmu; 2279 pr_info("%s performance monitor hardware support registered\n", 2280 pmu->name); 2281 2282 power_pmu.attr_groups = ppmu->attr_groups; 2283 2284 #ifdef MSR_HV 2285 /* 2286 * Use FCHV to ignore kernel events if MSR.HV is set. 2287 */ 2288 if (mfmsr() & MSR_HV) 2289 freeze_events_kernel = MMCR0_FCHV; 2290 #endif /* CONFIG_PPC64 */ 2291 2292 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2293 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2294 power_pmu_prepare_cpu, NULL); 2295 return 0; 2296 } 2297 2298 #ifdef CONFIG_PPC64 2299 static int __init init_ppc64_pmu(void) 2300 { 2301 /* run through all the pmu drivers one at a time */ 2302 if (!init_power5_pmu()) 2303 return 0; 2304 else if (!init_power5p_pmu()) 2305 return 0; 2306 else if (!init_power6_pmu()) 2307 return 0; 2308 else if (!init_power7_pmu()) 2309 return 0; 2310 else if (!init_power8_pmu()) 2311 return 0; 2312 else if (!init_power9_pmu()) 2313 return 0; 2314 else if (!init_ppc970_pmu()) 2315 return 0; 2316 else 2317 return init_generic_compat_pmu(); 2318 } 2319 early_initcall(init_ppc64_pmu); 2320 #endif 2321