xref: /linux/arch/powerpc/perf/core-book3s.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 
21 #ifdef CONFIG_PPC64
22 #include "internal.h"
23 #endif
24 
25 #define BHRB_MAX_ENTRIES	32
26 #define BHRB_TARGET		0x0000000000000002
27 #define BHRB_PREDICTION		0x0000000000000001
28 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
29 
30 struct cpu_hw_events {
31 	int n_events;
32 	int n_percpu;
33 	int disabled;
34 	int n_added;
35 	int n_limited;
36 	u8  pmcs_enabled;
37 	struct perf_event *event[MAX_HWEVENTS];
38 	u64 events[MAX_HWEVENTS];
39 	unsigned int flags[MAX_HWEVENTS];
40 	/*
41 	 * The order of the MMCR array is:
42 	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
43 	 *  - 32-bit, MMCR0, MMCR1, MMCR2
44 	 */
45 	unsigned long mmcr[4];
46 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
47 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
48 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
51 
52 	unsigned int txn_flags;
53 	int n_txn_start;
54 
55 	/* BHRB bits */
56 	u64				bhrb_filter;	/* BHRB HW branch filter */
57 	unsigned int			bhrb_users;
58 	void				*bhrb_context;
59 	struct	perf_branch_stack	bhrb_stack;
60 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
61 	u64				ic_init;
62 };
63 
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65 
66 static struct power_pmu *ppmu;
67 
68 /*
69  * Normally, to ignore kernel events we set the FCS (freeze counters
70  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71  * hypervisor bit set in the MSR, or if we are running on a processor
72  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73  * then we need to use the FCHV bit to ignore kernel events.
74  */
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
76 
77 /*
78  * 32-bit doesn't have MMCRA but does have an MMCR2,
79  * and a few other names are different.
80  */
81 #ifdef CONFIG_PPC32
82 
83 #define MMCR0_FCHV		0
84 #define MMCR0_PMCjCE		MMCR0_PMCnCE
85 #define MMCR0_FC56		0
86 #define MMCR0_PMAO		0
87 #define MMCR0_EBE		0
88 #define MMCR0_BHRBA		0
89 #define MMCR0_PMCC		0
90 #define MMCR0_PMCC_U6		0
91 
92 #define SPRN_MMCRA		SPRN_MMCR2
93 #define MMCRA_SAMPLE_ENABLE	0
94 
95 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
96 {
97 	return 0;
98 }
99 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
100 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
101 {
102 	return 0;
103 }
104 static inline void perf_read_regs(struct pt_regs *regs)
105 {
106 	regs->result = 0;
107 }
108 static inline int perf_intr_is_nmi(struct pt_regs *regs)
109 {
110 	return 0;
111 }
112 
113 static inline int siar_valid(struct pt_regs *regs)
114 {
115 	return 1;
116 }
117 
118 static bool is_ebb_event(struct perf_event *event) { return false; }
119 static int ebb_event_check(struct perf_event *event) { return 0; }
120 static void ebb_event_add(struct perf_event *event) { }
121 static void ebb_switch_out(unsigned long mmcr0) { }
122 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
123 {
124 	return cpuhw->mmcr[0];
125 }
126 
127 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
128 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
129 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
130 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
131 static void pmao_restore_workaround(bool ebb) { }
132 #endif /* CONFIG_PPC32 */
133 
134 bool is_sier_available(void)
135 {
136 	if (ppmu->flags & PPMU_HAS_SIER)
137 		return true;
138 
139 	return false;
140 }
141 
142 static bool regs_use_siar(struct pt_regs *regs)
143 {
144 	/*
145 	 * When we take a performance monitor exception the regs are setup
146 	 * using perf_read_regs() which overloads some fields, in particular
147 	 * regs->result to tell us whether to use SIAR.
148 	 *
149 	 * However if the regs are from another exception, eg. a syscall, then
150 	 * they have not been setup using perf_read_regs() and so regs->result
151 	 * is something random.
152 	 */
153 	return ((TRAP(regs) == 0xf00) && regs->result);
154 }
155 
156 /*
157  * Things that are specific to 64-bit implementations.
158  */
159 #ifdef CONFIG_PPC64
160 
161 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
162 {
163 	unsigned long mmcra = regs->dsisr;
164 
165 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
166 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
167 		if (slot > 1)
168 			return 4 * (slot - 1);
169 	}
170 
171 	return 0;
172 }
173 
174 /*
175  * The user wants a data address recorded.
176  * If we're not doing instruction sampling, give them the SDAR
177  * (sampled data address).  If we are doing instruction sampling, then
178  * only give them the SDAR if it corresponds to the instruction
179  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
180  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
181  */
182 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
183 {
184 	unsigned long mmcra = regs->dsisr;
185 	bool sdar_valid;
186 
187 	if (ppmu->flags & PPMU_HAS_SIER)
188 		sdar_valid = regs->dar & SIER_SDAR_VALID;
189 	else {
190 		unsigned long sdsync;
191 
192 		if (ppmu->flags & PPMU_SIAR_VALID)
193 			sdsync = POWER7P_MMCRA_SDAR_VALID;
194 		else if (ppmu->flags & PPMU_ALT_SIPR)
195 			sdsync = POWER6_MMCRA_SDSYNC;
196 		else if (ppmu->flags & PPMU_NO_SIAR)
197 			sdsync = MMCRA_SAMPLE_ENABLE;
198 		else
199 			sdsync = MMCRA_SDSYNC;
200 
201 		sdar_valid = mmcra & sdsync;
202 	}
203 
204 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
205 		*addrp = mfspr(SPRN_SDAR);
206 
207 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0)
208 		*addrp = 0;
209 }
210 
211 static bool regs_sihv(struct pt_regs *regs)
212 {
213 	unsigned long sihv = MMCRA_SIHV;
214 
215 	if (ppmu->flags & PPMU_HAS_SIER)
216 		return !!(regs->dar & SIER_SIHV);
217 
218 	if (ppmu->flags & PPMU_ALT_SIPR)
219 		sihv = POWER6_MMCRA_SIHV;
220 
221 	return !!(regs->dsisr & sihv);
222 }
223 
224 static bool regs_sipr(struct pt_regs *regs)
225 {
226 	unsigned long sipr = MMCRA_SIPR;
227 
228 	if (ppmu->flags & PPMU_HAS_SIER)
229 		return !!(regs->dar & SIER_SIPR);
230 
231 	if (ppmu->flags & PPMU_ALT_SIPR)
232 		sipr = POWER6_MMCRA_SIPR;
233 
234 	return !!(regs->dsisr & sipr);
235 }
236 
237 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
238 {
239 	if (regs->msr & MSR_PR)
240 		return PERF_RECORD_MISC_USER;
241 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
242 		return PERF_RECORD_MISC_HYPERVISOR;
243 	return PERF_RECORD_MISC_KERNEL;
244 }
245 
246 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
247 {
248 	bool use_siar = regs_use_siar(regs);
249 
250 	if (!use_siar)
251 		return perf_flags_from_msr(regs);
252 
253 	/*
254 	 * If we don't have flags in MMCRA, rather than using
255 	 * the MSR, we intuit the flags from the address in
256 	 * SIAR which should give slightly more reliable
257 	 * results
258 	 */
259 	if (ppmu->flags & PPMU_NO_SIPR) {
260 		unsigned long siar = mfspr(SPRN_SIAR);
261 		if (is_kernel_addr(siar))
262 			return PERF_RECORD_MISC_KERNEL;
263 		return PERF_RECORD_MISC_USER;
264 	}
265 
266 	/* PR has priority over HV, so order below is important */
267 	if (regs_sipr(regs))
268 		return PERF_RECORD_MISC_USER;
269 
270 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
271 		return PERF_RECORD_MISC_HYPERVISOR;
272 
273 	return PERF_RECORD_MISC_KERNEL;
274 }
275 
276 /*
277  * Overload regs->dsisr to store MMCRA so we only need to read it once
278  * on each interrupt.
279  * Overload regs->dar to store SIER if we have it.
280  * Overload regs->result to specify whether we should use the MSR (result
281  * is zero) or the SIAR (result is non zero).
282  */
283 static inline void perf_read_regs(struct pt_regs *regs)
284 {
285 	unsigned long mmcra = mfspr(SPRN_MMCRA);
286 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
287 	int use_siar;
288 
289 	regs->dsisr = mmcra;
290 
291 	if (ppmu->flags & PPMU_HAS_SIER)
292 		regs->dar = mfspr(SPRN_SIER);
293 
294 	/*
295 	 * If this isn't a PMU exception (eg a software event) the SIAR is
296 	 * not valid. Use pt_regs.
297 	 *
298 	 * If it is a marked event use the SIAR.
299 	 *
300 	 * If the PMU doesn't update the SIAR for non marked events use
301 	 * pt_regs.
302 	 *
303 	 * If the PMU has HV/PR flags then check to see if they
304 	 * place the exception in userspace. If so, use pt_regs. In
305 	 * continuous sampling mode the SIAR and the PMU exception are
306 	 * not synchronised, so they may be many instructions apart.
307 	 * This can result in confusing backtraces. We still want
308 	 * hypervisor samples as well as samples in the kernel with
309 	 * interrupts off hence the userspace check.
310 	 */
311 	if (TRAP(regs) != 0xf00)
312 		use_siar = 0;
313 	else if ((ppmu->flags & PPMU_NO_SIAR))
314 		use_siar = 0;
315 	else if (marked)
316 		use_siar = 1;
317 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
318 		use_siar = 0;
319 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
320 		use_siar = 0;
321 	else
322 		use_siar = 1;
323 
324 	regs->result = use_siar;
325 }
326 
327 /*
328  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
329  * it as an NMI.
330  */
331 static inline int perf_intr_is_nmi(struct pt_regs *regs)
332 {
333 	return (regs->softe & IRQS_DISABLED);
334 }
335 
336 /*
337  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
338  * must be sampled only if the SIAR-valid bit is set.
339  *
340  * For unmarked instructions and for processors that don't have the SIAR-Valid
341  * bit, assume that SIAR is valid.
342  */
343 static inline int siar_valid(struct pt_regs *regs)
344 {
345 	unsigned long mmcra = regs->dsisr;
346 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
347 
348 	if (marked) {
349 		if (ppmu->flags & PPMU_HAS_SIER)
350 			return regs->dar & SIER_SIAR_VALID;
351 
352 		if (ppmu->flags & PPMU_SIAR_VALID)
353 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
354 	}
355 
356 	return 1;
357 }
358 
359 
360 /* Reset all possible BHRB entries */
361 static void power_pmu_bhrb_reset(void)
362 {
363 	asm volatile(PPC_CLRBHRB);
364 }
365 
366 static void power_pmu_bhrb_enable(struct perf_event *event)
367 {
368 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
369 
370 	if (!ppmu->bhrb_nr)
371 		return;
372 
373 	/* Clear BHRB if we changed task context to avoid data leaks */
374 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
375 		power_pmu_bhrb_reset();
376 		cpuhw->bhrb_context = event->ctx;
377 	}
378 	cpuhw->bhrb_users++;
379 	perf_sched_cb_inc(event->ctx->pmu);
380 }
381 
382 static void power_pmu_bhrb_disable(struct perf_event *event)
383 {
384 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
385 
386 	if (!ppmu->bhrb_nr)
387 		return;
388 
389 	WARN_ON_ONCE(!cpuhw->bhrb_users);
390 	cpuhw->bhrb_users--;
391 	perf_sched_cb_dec(event->ctx->pmu);
392 
393 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
394 		/* BHRB cannot be turned off when other
395 		 * events are active on the PMU.
396 		 */
397 
398 		/* avoid stale pointer */
399 		cpuhw->bhrb_context = NULL;
400 	}
401 }
402 
403 /* Called from ctxsw to prevent one process's branch entries to
404  * mingle with the other process's entries during context switch.
405  */
406 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
407 {
408 	if (!ppmu->bhrb_nr)
409 		return;
410 
411 	if (sched_in)
412 		power_pmu_bhrb_reset();
413 }
414 /* Calculate the to address for a branch */
415 static __u64 power_pmu_bhrb_to(u64 addr)
416 {
417 	unsigned int instr;
418 	int ret;
419 	__u64 target;
420 
421 	if (is_kernel_addr(addr)) {
422 		if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
423 			return 0;
424 
425 		return branch_target(&instr);
426 	}
427 
428 	/* Userspace: need copy instruction here then translate it */
429 	pagefault_disable();
430 	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
431 	if (ret) {
432 		pagefault_enable();
433 		return 0;
434 	}
435 	pagefault_enable();
436 
437 	target = branch_target(&instr);
438 	if ((!target) || (instr & BRANCH_ABSOLUTE))
439 		return target;
440 
441 	/* Translate relative branch target from kernel to user address */
442 	return target - (unsigned long)&instr + addr;
443 }
444 
445 /* Processing BHRB entries */
446 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
447 {
448 	u64 val;
449 	u64 addr;
450 	int r_index, u_index, pred;
451 
452 	r_index = 0;
453 	u_index = 0;
454 	while (r_index < ppmu->bhrb_nr) {
455 		/* Assembly read function */
456 		val = read_bhrb(r_index++);
457 		if (!val)
458 			/* Terminal marker: End of valid BHRB entries */
459 			break;
460 		else {
461 			addr = val & BHRB_EA;
462 			pred = val & BHRB_PREDICTION;
463 
464 			if (!addr)
465 				/* invalid entry */
466 				continue;
467 
468 			/*
469 			 * BHRB rolling buffer could very much contain the kernel
470 			 * addresses at this point. Check the privileges before
471 			 * exporting it to userspace (avoid exposure of regions
472 			 * where we could have speculative execution)
473 			 */
474 			if (is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0)
475 				continue;
476 
477 			/* Branches are read most recent first (ie. mfbhrb 0 is
478 			 * the most recent branch).
479 			 * There are two types of valid entries:
480 			 * 1) a target entry which is the to address of a
481 			 *    computed goto like a blr,bctr,btar.  The next
482 			 *    entry read from the bhrb will be branch
483 			 *    corresponding to this target (ie. the actual
484 			 *    blr/bctr/btar instruction).
485 			 * 2) a from address which is an actual branch.  If a
486 			 *    target entry proceeds this, then this is the
487 			 *    matching branch for that target.  If this is not
488 			 *    following a target entry, then this is a branch
489 			 *    where the target is given as an immediate field
490 			 *    in the instruction (ie. an i or b form branch).
491 			 *    In this case we need to read the instruction from
492 			 *    memory to determine the target/to address.
493 			 */
494 
495 			if (val & BHRB_TARGET) {
496 				/* Target branches use two entries
497 				 * (ie. computed gotos/XL form)
498 				 */
499 				cpuhw->bhrb_entries[u_index].to = addr;
500 				cpuhw->bhrb_entries[u_index].mispred = pred;
501 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
502 
503 				/* Get from address in next entry */
504 				val = read_bhrb(r_index++);
505 				addr = val & BHRB_EA;
506 				if (val & BHRB_TARGET) {
507 					/* Shouldn't have two targets in a
508 					   row.. Reset index and try again */
509 					r_index--;
510 					addr = 0;
511 				}
512 				cpuhw->bhrb_entries[u_index].from = addr;
513 			} else {
514 				/* Branches to immediate field
515 				   (ie I or B form) */
516 				cpuhw->bhrb_entries[u_index].from = addr;
517 				cpuhw->bhrb_entries[u_index].to =
518 					power_pmu_bhrb_to(addr);
519 				cpuhw->bhrb_entries[u_index].mispred = pred;
520 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
521 			}
522 			u_index++;
523 
524 		}
525 	}
526 	cpuhw->bhrb_stack.nr = u_index;
527 	return;
528 }
529 
530 static bool is_ebb_event(struct perf_event *event)
531 {
532 	/*
533 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
534 	 * check that the PMU supports EBB, meaning those that don't can still
535 	 * use bit 63 of the event code for something else if they wish.
536 	 */
537 	return (ppmu->flags & PPMU_ARCH_207S) &&
538 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
539 }
540 
541 static int ebb_event_check(struct perf_event *event)
542 {
543 	struct perf_event *leader = event->group_leader;
544 
545 	/* Event and group leader must agree on EBB */
546 	if (is_ebb_event(leader) != is_ebb_event(event))
547 		return -EINVAL;
548 
549 	if (is_ebb_event(event)) {
550 		if (!(event->attach_state & PERF_ATTACH_TASK))
551 			return -EINVAL;
552 
553 		if (!leader->attr.pinned || !leader->attr.exclusive)
554 			return -EINVAL;
555 
556 		if (event->attr.freq ||
557 		    event->attr.inherit ||
558 		    event->attr.sample_type ||
559 		    event->attr.sample_period ||
560 		    event->attr.enable_on_exec)
561 			return -EINVAL;
562 	}
563 
564 	return 0;
565 }
566 
567 static void ebb_event_add(struct perf_event *event)
568 {
569 	if (!is_ebb_event(event) || current->thread.used_ebb)
570 		return;
571 
572 	/*
573 	 * IFF this is the first time we've added an EBB event, set
574 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
575 	 * userspace. We need this so that we can context switch while
576 	 * userspace is in the EBB handler (where PMXE is 0).
577 	 */
578 	current->thread.used_ebb = 1;
579 	current->thread.mmcr0 |= MMCR0_PMXE;
580 }
581 
582 static void ebb_switch_out(unsigned long mmcr0)
583 {
584 	if (!(mmcr0 & MMCR0_EBE))
585 		return;
586 
587 	current->thread.siar  = mfspr(SPRN_SIAR);
588 	current->thread.sier  = mfspr(SPRN_SIER);
589 	current->thread.sdar  = mfspr(SPRN_SDAR);
590 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
591 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
592 }
593 
594 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
595 {
596 	unsigned long mmcr0 = cpuhw->mmcr[0];
597 
598 	if (!ebb)
599 		goto out;
600 
601 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
602 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
603 
604 	/*
605 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
606 	 * with pmao_restore_workaround() because we may add PMAO but we never
607 	 * clear it here.
608 	 */
609 	mmcr0 |= current->thread.mmcr0;
610 
611 	/*
612 	 * Be careful not to set PMXE if userspace had it cleared. This is also
613 	 * compatible with pmao_restore_workaround() because it has already
614 	 * cleared PMXE and we leave PMAO alone.
615 	 */
616 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
617 		mmcr0 &= ~MMCR0_PMXE;
618 
619 	mtspr(SPRN_SIAR, current->thread.siar);
620 	mtspr(SPRN_SIER, current->thread.sier);
621 	mtspr(SPRN_SDAR, current->thread.sdar);
622 
623 	/*
624 	 * Merge the kernel & user values of MMCR2. The semantics we implement
625 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
626 	 * but not clear bits. If a task wants to be able to clear bits, ie.
627 	 * unfreeze counters, it should not set exclude_xxx in its events and
628 	 * instead manage the MMCR2 entirely by itself.
629 	 */
630 	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
631 out:
632 	return mmcr0;
633 }
634 
635 static void pmao_restore_workaround(bool ebb)
636 {
637 	unsigned pmcs[6];
638 
639 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
640 		return;
641 
642 	/*
643 	 * On POWER8E there is a hardware defect which affects the PMU context
644 	 * switch logic, ie. power_pmu_disable/enable().
645 	 *
646 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
647 	 * by the hardware. Sometime later the actual PMU exception is
648 	 * delivered.
649 	 *
650 	 * If we context switch, or simply disable/enable, the PMU prior to the
651 	 * exception arriving, the exception will be lost when we clear PMAO.
652 	 *
653 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
654 	 * set, and this _should_ generate an exception. However because of the
655 	 * defect no exception is generated when we write PMAO, and we get
656 	 * stuck with no counters counting but no exception delivered.
657 	 *
658 	 * The workaround is to detect this case and tweak the hardware to
659 	 * create another pending PMU exception.
660 	 *
661 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
662 	 * enabling the PMU. That causes a new exception to be generated in the
663 	 * chip, but we don't take it yet because we have interrupts hard
664 	 * disabled. We then write back the PMU state as we want it to be seen
665 	 * by the exception handler. When we reenable interrupts the exception
666 	 * handler will be called and see the correct state.
667 	 *
668 	 * The logic is the same for EBB, except that the exception is gated by
669 	 * us having interrupts hard disabled as well as the fact that we are
670 	 * not in userspace. The exception is finally delivered when we return
671 	 * to userspace.
672 	 */
673 
674 	/* Only if PMAO is set and PMAO_SYNC is clear */
675 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
676 		return;
677 
678 	/* If we're doing EBB, only if BESCR[GE] is set */
679 	if (ebb && !(current->thread.bescr & BESCR_GE))
680 		return;
681 
682 	/*
683 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
684 	 * disable to actually prevent the PMU exception from firing.
685 	 */
686 	hard_irq_disable();
687 
688 	/*
689 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
690 	 * Using read/write_pmc() in a for loop adds 12 function calls and
691 	 * almost doubles our code size.
692 	 */
693 	pmcs[0] = mfspr(SPRN_PMC1);
694 	pmcs[1] = mfspr(SPRN_PMC2);
695 	pmcs[2] = mfspr(SPRN_PMC3);
696 	pmcs[3] = mfspr(SPRN_PMC4);
697 	pmcs[4] = mfspr(SPRN_PMC5);
698 	pmcs[5] = mfspr(SPRN_PMC6);
699 
700 	/* Ensure all freeze bits are unset */
701 	mtspr(SPRN_MMCR2, 0);
702 
703 	/* Set up PMC6 to overflow in one cycle */
704 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
705 
706 	/* Enable exceptions and unfreeze PMC6 */
707 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
708 
709 	/* Now we need to refreeze and restore the PMCs */
710 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
711 
712 	mtspr(SPRN_PMC1, pmcs[0]);
713 	mtspr(SPRN_PMC2, pmcs[1]);
714 	mtspr(SPRN_PMC3, pmcs[2]);
715 	mtspr(SPRN_PMC4, pmcs[3]);
716 	mtspr(SPRN_PMC5, pmcs[4]);
717 	mtspr(SPRN_PMC6, pmcs[5]);
718 }
719 
720 #endif /* CONFIG_PPC64 */
721 
722 static void perf_event_interrupt(struct pt_regs *regs);
723 
724 /*
725  * Read one performance monitor counter (PMC).
726  */
727 static unsigned long read_pmc(int idx)
728 {
729 	unsigned long val;
730 
731 	switch (idx) {
732 	case 1:
733 		val = mfspr(SPRN_PMC1);
734 		break;
735 	case 2:
736 		val = mfspr(SPRN_PMC2);
737 		break;
738 	case 3:
739 		val = mfspr(SPRN_PMC3);
740 		break;
741 	case 4:
742 		val = mfspr(SPRN_PMC4);
743 		break;
744 	case 5:
745 		val = mfspr(SPRN_PMC5);
746 		break;
747 	case 6:
748 		val = mfspr(SPRN_PMC6);
749 		break;
750 #ifdef CONFIG_PPC64
751 	case 7:
752 		val = mfspr(SPRN_PMC7);
753 		break;
754 	case 8:
755 		val = mfspr(SPRN_PMC8);
756 		break;
757 #endif /* CONFIG_PPC64 */
758 	default:
759 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
760 		val = 0;
761 	}
762 	return val;
763 }
764 
765 /*
766  * Write one PMC.
767  */
768 static void write_pmc(int idx, unsigned long val)
769 {
770 	switch (idx) {
771 	case 1:
772 		mtspr(SPRN_PMC1, val);
773 		break;
774 	case 2:
775 		mtspr(SPRN_PMC2, val);
776 		break;
777 	case 3:
778 		mtspr(SPRN_PMC3, val);
779 		break;
780 	case 4:
781 		mtspr(SPRN_PMC4, val);
782 		break;
783 	case 5:
784 		mtspr(SPRN_PMC5, val);
785 		break;
786 	case 6:
787 		mtspr(SPRN_PMC6, val);
788 		break;
789 #ifdef CONFIG_PPC64
790 	case 7:
791 		mtspr(SPRN_PMC7, val);
792 		break;
793 	case 8:
794 		mtspr(SPRN_PMC8, val);
795 		break;
796 #endif /* CONFIG_PPC64 */
797 	default:
798 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
799 	}
800 }
801 
802 /* Called from sysrq_handle_showregs() */
803 void perf_event_print_debug(void)
804 {
805 	unsigned long sdar, sier, flags;
806 	u32 pmcs[MAX_HWEVENTS];
807 	int i;
808 
809 	if (!ppmu) {
810 		pr_info("Performance monitor hardware not registered.\n");
811 		return;
812 	}
813 
814 	if (!ppmu->n_counter)
815 		return;
816 
817 	local_irq_save(flags);
818 
819 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
820 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
821 
822 	for (i = 0; i < ppmu->n_counter; i++)
823 		pmcs[i] = read_pmc(i + 1);
824 
825 	for (; i < MAX_HWEVENTS; i++)
826 		pmcs[i] = 0xdeadbeef;
827 
828 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
829 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
830 
831 	if (ppmu->n_counter > 4)
832 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
833 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
834 
835 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
836 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
837 
838 	sdar = sier = 0;
839 #ifdef CONFIG_PPC64
840 	sdar = mfspr(SPRN_SDAR);
841 
842 	if (ppmu->flags & PPMU_HAS_SIER)
843 		sier = mfspr(SPRN_SIER);
844 
845 	if (ppmu->flags & PPMU_ARCH_207S) {
846 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
847 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
848 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
849 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
850 	}
851 #endif
852 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
853 		mfspr(SPRN_SIAR), sdar, sier);
854 
855 	local_irq_restore(flags);
856 }
857 
858 /*
859  * Check if a set of events can all go on the PMU at once.
860  * If they can't, this will look at alternative codes for the events
861  * and see if any combination of alternative codes is feasible.
862  * The feasible set is returned in event_id[].
863  */
864 static int power_check_constraints(struct cpu_hw_events *cpuhw,
865 				   u64 event_id[], unsigned int cflags[],
866 				   int n_ev)
867 {
868 	unsigned long mask, value, nv;
869 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
870 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
871 	int i, j;
872 	unsigned long addf = ppmu->add_fields;
873 	unsigned long tadd = ppmu->test_adder;
874 	unsigned long grp_mask = ppmu->group_constraint_mask;
875 	unsigned long grp_val = ppmu->group_constraint_val;
876 
877 	if (n_ev > ppmu->n_counter)
878 		return -1;
879 
880 	/* First see if the events will go on as-is */
881 	for (i = 0; i < n_ev; ++i) {
882 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
883 		    && !ppmu->limited_pmc_event(event_id[i])) {
884 			ppmu->get_alternatives(event_id[i], cflags[i],
885 					       cpuhw->alternatives[i]);
886 			event_id[i] = cpuhw->alternatives[i][0];
887 		}
888 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
889 					 &cpuhw->avalues[i][0]))
890 			return -1;
891 	}
892 	value = mask = 0;
893 	for (i = 0; i < n_ev; ++i) {
894 		nv = (value | cpuhw->avalues[i][0]) +
895 			(value & cpuhw->avalues[i][0] & addf);
896 
897 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
898 			break;
899 
900 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
901 			& (~grp_mask)) != 0)
902 			break;
903 
904 		value = nv;
905 		mask |= cpuhw->amasks[i][0];
906 	}
907 	if (i == n_ev) {
908 		if ((value & mask & grp_mask) != (mask & grp_val))
909 			return -1;
910 		else
911 			return 0;	/* all OK */
912 	}
913 
914 	/* doesn't work, gather alternatives... */
915 	if (!ppmu->get_alternatives)
916 		return -1;
917 	for (i = 0; i < n_ev; ++i) {
918 		choice[i] = 0;
919 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
920 						  cpuhw->alternatives[i]);
921 		for (j = 1; j < n_alt[i]; ++j)
922 			ppmu->get_constraint(cpuhw->alternatives[i][j],
923 					     &cpuhw->amasks[i][j],
924 					     &cpuhw->avalues[i][j]);
925 	}
926 
927 	/* enumerate all possibilities and see if any will work */
928 	i = 0;
929 	j = -1;
930 	value = mask = nv = 0;
931 	while (i < n_ev) {
932 		if (j >= 0) {
933 			/* we're backtracking, restore context */
934 			value = svalues[i];
935 			mask = smasks[i];
936 			j = choice[i];
937 		}
938 		/*
939 		 * See if any alternative k for event_id i,
940 		 * where k > j, will satisfy the constraints.
941 		 */
942 		while (++j < n_alt[i]) {
943 			nv = (value | cpuhw->avalues[i][j]) +
944 				(value & cpuhw->avalues[i][j] & addf);
945 			if ((((nv + tadd) ^ value) & mask) == 0 &&
946 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
947 			     & cpuhw->amasks[i][j]) == 0)
948 				break;
949 		}
950 		if (j >= n_alt[i]) {
951 			/*
952 			 * No feasible alternative, backtrack
953 			 * to event_id i-1 and continue enumerating its
954 			 * alternatives from where we got up to.
955 			 */
956 			if (--i < 0)
957 				return -1;
958 		} else {
959 			/*
960 			 * Found a feasible alternative for event_id i,
961 			 * remember where we got up to with this event_id,
962 			 * go on to the next event_id, and start with
963 			 * the first alternative for it.
964 			 */
965 			choice[i] = j;
966 			svalues[i] = value;
967 			smasks[i] = mask;
968 			value = nv;
969 			mask |= cpuhw->amasks[i][j];
970 			++i;
971 			j = -1;
972 		}
973 	}
974 
975 	/* OK, we have a feasible combination, tell the caller the solution */
976 	for (i = 0; i < n_ev; ++i)
977 		event_id[i] = cpuhw->alternatives[i][choice[i]];
978 	return 0;
979 }
980 
981 /*
982  * Check if newly-added events have consistent settings for
983  * exclude_{user,kernel,hv} with each other and any previously
984  * added events.
985  */
986 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
987 			  int n_prev, int n_new)
988 {
989 	int eu = 0, ek = 0, eh = 0;
990 	int i, n, first;
991 	struct perf_event *event;
992 
993 	/*
994 	 * If the PMU we're on supports per event exclude settings then we
995 	 * don't need to do any of this logic. NB. This assumes no PMU has both
996 	 * per event exclude and limited PMCs.
997 	 */
998 	if (ppmu->flags & PPMU_ARCH_207S)
999 		return 0;
1000 
1001 	n = n_prev + n_new;
1002 	if (n <= 1)
1003 		return 0;
1004 
1005 	first = 1;
1006 	for (i = 0; i < n; ++i) {
1007 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1008 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1009 			continue;
1010 		}
1011 		event = ctrs[i];
1012 		if (first) {
1013 			eu = event->attr.exclude_user;
1014 			ek = event->attr.exclude_kernel;
1015 			eh = event->attr.exclude_hv;
1016 			first = 0;
1017 		} else if (event->attr.exclude_user != eu ||
1018 			   event->attr.exclude_kernel != ek ||
1019 			   event->attr.exclude_hv != eh) {
1020 			return -EAGAIN;
1021 		}
1022 	}
1023 
1024 	if (eu || ek || eh)
1025 		for (i = 0; i < n; ++i)
1026 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1027 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1028 
1029 	return 0;
1030 }
1031 
1032 static u64 check_and_compute_delta(u64 prev, u64 val)
1033 {
1034 	u64 delta = (val - prev) & 0xfffffffful;
1035 
1036 	/*
1037 	 * POWER7 can roll back counter values, if the new value is smaller
1038 	 * than the previous value it will cause the delta and the counter to
1039 	 * have bogus values unless we rolled a counter over.  If a coutner is
1040 	 * rolled back, it will be smaller, but within 256, which is the maximum
1041 	 * number of events to rollback at once.  If we detect a rollback
1042 	 * return 0.  This can lead to a small lack of precision in the
1043 	 * counters.
1044 	 */
1045 	if (prev > val && (prev - val) < 256)
1046 		delta = 0;
1047 
1048 	return delta;
1049 }
1050 
1051 static void power_pmu_read(struct perf_event *event)
1052 {
1053 	s64 val, delta, prev;
1054 
1055 	if (event->hw.state & PERF_HES_STOPPED)
1056 		return;
1057 
1058 	if (!event->hw.idx)
1059 		return;
1060 
1061 	if (is_ebb_event(event)) {
1062 		val = read_pmc(event->hw.idx);
1063 		local64_set(&event->hw.prev_count, val);
1064 		return;
1065 	}
1066 
1067 	/*
1068 	 * Performance monitor interrupts come even when interrupts
1069 	 * are soft-disabled, as long as interrupts are hard-enabled.
1070 	 * Therefore we treat them like NMIs.
1071 	 */
1072 	do {
1073 		prev = local64_read(&event->hw.prev_count);
1074 		barrier();
1075 		val = read_pmc(event->hw.idx);
1076 		delta = check_and_compute_delta(prev, val);
1077 		if (!delta)
1078 			return;
1079 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1080 
1081 	local64_add(delta, &event->count);
1082 
1083 	/*
1084 	 * A number of places program the PMC with (0x80000000 - period_left).
1085 	 * We never want period_left to be less than 1 because we will program
1086 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1087 	 * roll around to 0 before taking an exception. We have seen this
1088 	 * on POWER8.
1089 	 *
1090 	 * To fix this, clamp the minimum value of period_left to 1.
1091 	 */
1092 	do {
1093 		prev = local64_read(&event->hw.period_left);
1094 		val = prev - delta;
1095 		if (val < 1)
1096 			val = 1;
1097 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1098 }
1099 
1100 /*
1101  * On some machines, PMC5 and PMC6 can't be written, don't respect
1102  * the freeze conditions, and don't generate interrupts.  This tells
1103  * us if `event' is using such a PMC.
1104  */
1105 static int is_limited_pmc(int pmcnum)
1106 {
1107 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1108 		&& (pmcnum == 5 || pmcnum == 6);
1109 }
1110 
1111 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1112 				    unsigned long pmc5, unsigned long pmc6)
1113 {
1114 	struct perf_event *event;
1115 	u64 val, prev, delta;
1116 	int i;
1117 
1118 	for (i = 0; i < cpuhw->n_limited; ++i) {
1119 		event = cpuhw->limited_counter[i];
1120 		if (!event->hw.idx)
1121 			continue;
1122 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1123 		prev = local64_read(&event->hw.prev_count);
1124 		event->hw.idx = 0;
1125 		delta = check_and_compute_delta(prev, val);
1126 		if (delta)
1127 			local64_add(delta, &event->count);
1128 	}
1129 }
1130 
1131 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1132 				  unsigned long pmc5, unsigned long pmc6)
1133 {
1134 	struct perf_event *event;
1135 	u64 val, prev;
1136 	int i;
1137 
1138 	for (i = 0; i < cpuhw->n_limited; ++i) {
1139 		event = cpuhw->limited_counter[i];
1140 		event->hw.idx = cpuhw->limited_hwidx[i];
1141 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1142 		prev = local64_read(&event->hw.prev_count);
1143 		if (check_and_compute_delta(prev, val))
1144 			local64_set(&event->hw.prev_count, val);
1145 		perf_event_update_userpage(event);
1146 	}
1147 }
1148 
1149 /*
1150  * Since limited events don't respect the freeze conditions, we
1151  * have to read them immediately after freezing or unfreezing the
1152  * other events.  We try to keep the values from the limited
1153  * events as consistent as possible by keeping the delay (in
1154  * cycles and instructions) between freezing/unfreezing and reading
1155  * the limited events as small and consistent as possible.
1156  * Therefore, if any limited events are in use, we read them
1157  * both, and always in the same order, to minimize variability,
1158  * and do it inside the same asm that writes MMCR0.
1159  */
1160 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1161 {
1162 	unsigned long pmc5, pmc6;
1163 
1164 	if (!cpuhw->n_limited) {
1165 		mtspr(SPRN_MMCR0, mmcr0);
1166 		return;
1167 	}
1168 
1169 	/*
1170 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1171 	 * To ensure we don't get a performance monitor interrupt
1172 	 * between writing MMCR0 and freezing/thawing the limited
1173 	 * events, we first write MMCR0 with the event overflow
1174 	 * interrupt enable bits turned off.
1175 	 */
1176 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1177 		     : "=&r" (pmc5), "=&r" (pmc6)
1178 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1179 		       "i" (SPRN_MMCR0),
1180 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1181 
1182 	if (mmcr0 & MMCR0_FC)
1183 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1184 	else
1185 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1186 
1187 	/*
1188 	 * Write the full MMCR0 including the event overflow interrupt
1189 	 * enable bits, if necessary.
1190 	 */
1191 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1192 		mtspr(SPRN_MMCR0, mmcr0);
1193 }
1194 
1195 /*
1196  * Disable all events to prevent PMU interrupts and to allow
1197  * events to be added or removed.
1198  */
1199 static void power_pmu_disable(struct pmu *pmu)
1200 {
1201 	struct cpu_hw_events *cpuhw;
1202 	unsigned long flags, mmcr0, val;
1203 
1204 	if (!ppmu)
1205 		return;
1206 	local_irq_save(flags);
1207 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1208 
1209 	if (!cpuhw->disabled) {
1210 		/*
1211 		 * Check if we ever enabled the PMU on this cpu.
1212 		 */
1213 		if (!cpuhw->pmcs_enabled) {
1214 			ppc_enable_pmcs();
1215 			cpuhw->pmcs_enabled = 1;
1216 		}
1217 
1218 		/*
1219 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1220 		 */
1221 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1222 		val |= MMCR0_FC;
1223 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1224 			 MMCR0_FC56);
1225 
1226 		/*
1227 		 * The barrier is to make sure the mtspr has been
1228 		 * executed and the PMU has frozen the events etc.
1229 		 * before we return.
1230 		 */
1231 		write_mmcr0(cpuhw, val);
1232 		mb();
1233 		isync();
1234 
1235 		/*
1236 		 * Disable instruction sampling if it was enabled
1237 		 */
1238 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1239 			mtspr(SPRN_MMCRA,
1240 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1241 			mb();
1242 			isync();
1243 		}
1244 
1245 		cpuhw->disabled = 1;
1246 		cpuhw->n_added = 0;
1247 
1248 		ebb_switch_out(mmcr0);
1249 
1250 #ifdef CONFIG_PPC64
1251 		/*
1252 		 * These are readable by userspace, may contain kernel
1253 		 * addresses and are not switched by context switch, so clear
1254 		 * them now to avoid leaking anything to userspace in general
1255 		 * including to another process.
1256 		 */
1257 		if (ppmu->flags & PPMU_ARCH_207S) {
1258 			mtspr(SPRN_SDAR, 0);
1259 			mtspr(SPRN_SIAR, 0);
1260 		}
1261 #endif
1262 	}
1263 
1264 	local_irq_restore(flags);
1265 }
1266 
1267 /*
1268  * Re-enable all events if disable == 0.
1269  * If we were previously disabled and events were added, then
1270  * put the new config on the PMU.
1271  */
1272 static void power_pmu_enable(struct pmu *pmu)
1273 {
1274 	struct perf_event *event;
1275 	struct cpu_hw_events *cpuhw;
1276 	unsigned long flags;
1277 	long i;
1278 	unsigned long val, mmcr0;
1279 	s64 left;
1280 	unsigned int hwc_index[MAX_HWEVENTS];
1281 	int n_lim;
1282 	int idx;
1283 	bool ebb;
1284 
1285 	if (!ppmu)
1286 		return;
1287 	local_irq_save(flags);
1288 
1289 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1290 	if (!cpuhw->disabled)
1291 		goto out;
1292 
1293 	if (cpuhw->n_events == 0) {
1294 		ppc_set_pmu_inuse(0);
1295 		goto out;
1296 	}
1297 
1298 	cpuhw->disabled = 0;
1299 
1300 	/*
1301 	 * EBB requires an exclusive group and all events must have the EBB
1302 	 * flag set, or not set, so we can just check a single event. Also we
1303 	 * know we have at least one event.
1304 	 */
1305 	ebb = is_ebb_event(cpuhw->event[0]);
1306 
1307 	/*
1308 	 * If we didn't change anything, or only removed events,
1309 	 * no need to recalculate MMCR* settings and reset the PMCs.
1310 	 * Just reenable the PMU with the current MMCR* settings
1311 	 * (possibly updated for removal of events).
1312 	 */
1313 	if (!cpuhw->n_added) {
1314 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1315 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1316 		goto out_enable;
1317 	}
1318 
1319 	/*
1320 	 * Clear all MMCR settings and recompute them for the new set of events.
1321 	 */
1322 	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1323 
1324 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1325 			       cpuhw->mmcr, cpuhw->event)) {
1326 		/* shouldn't ever get here */
1327 		printk(KERN_ERR "oops compute_mmcr failed\n");
1328 		goto out;
1329 	}
1330 
1331 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1332 		/*
1333 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1334 		 * bits for the first event. We have already checked that all
1335 		 * events have the same value for these bits as the first event.
1336 		 */
1337 		event = cpuhw->event[0];
1338 		if (event->attr.exclude_user)
1339 			cpuhw->mmcr[0] |= MMCR0_FCP;
1340 		if (event->attr.exclude_kernel)
1341 			cpuhw->mmcr[0] |= freeze_events_kernel;
1342 		if (event->attr.exclude_hv)
1343 			cpuhw->mmcr[0] |= MMCR0_FCHV;
1344 	}
1345 
1346 	/*
1347 	 * Write the new configuration to MMCR* with the freeze
1348 	 * bit set and set the hardware events to their initial values.
1349 	 * Then unfreeze the events.
1350 	 */
1351 	ppc_set_pmu_inuse(1);
1352 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1353 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1354 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1355 				| MMCR0_FC);
1356 	if (ppmu->flags & PPMU_ARCH_207S)
1357 		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1358 
1359 	/*
1360 	 * Read off any pre-existing events that need to move
1361 	 * to another PMC.
1362 	 */
1363 	for (i = 0; i < cpuhw->n_events; ++i) {
1364 		event = cpuhw->event[i];
1365 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1366 			power_pmu_read(event);
1367 			write_pmc(event->hw.idx, 0);
1368 			event->hw.idx = 0;
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * Initialize the PMCs for all the new and moved events.
1374 	 */
1375 	cpuhw->n_limited = n_lim = 0;
1376 	for (i = 0; i < cpuhw->n_events; ++i) {
1377 		event = cpuhw->event[i];
1378 		if (event->hw.idx)
1379 			continue;
1380 		idx = hwc_index[i] + 1;
1381 		if (is_limited_pmc(idx)) {
1382 			cpuhw->limited_counter[n_lim] = event;
1383 			cpuhw->limited_hwidx[n_lim] = idx;
1384 			++n_lim;
1385 			continue;
1386 		}
1387 
1388 		if (ebb)
1389 			val = local64_read(&event->hw.prev_count);
1390 		else {
1391 			val = 0;
1392 			if (event->hw.sample_period) {
1393 				left = local64_read(&event->hw.period_left);
1394 				if (left < 0x80000000L)
1395 					val = 0x80000000L - left;
1396 			}
1397 			local64_set(&event->hw.prev_count, val);
1398 		}
1399 
1400 		event->hw.idx = idx;
1401 		if (event->hw.state & PERF_HES_STOPPED)
1402 			val = 0;
1403 		write_pmc(idx, val);
1404 
1405 		perf_event_update_userpage(event);
1406 	}
1407 	cpuhw->n_limited = n_lim;
1408 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1409 
1410  out_enable:
1411 	pmao_restore_workaround(ebb);
1412 
1413 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1414 
1415 	mb();
1416 	if (cpuhw->bhrb_users)
1417 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1418 
1419 	write_mmcr0(cpuhw, mmcr0);
1420 
1421 	/*
1422 	 * Enable instruction sampling if necessary
1423 	 */
1424 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1425 		mb();
1426 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1427 	}
1428 
1429  out:
1430 
1431 	local_irq_restore(flags);
1432 }
1433 
1434 static int collect_events(struct perf_event *group, int max_count,
1435 			  struct perf_event *ctrs[], u64 *events,
1436 			  unsigned int *flags)
1437 {
1438 	int n = 0;
1439 	struct perf_event *event;
1440 
1441 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1442 		if (n >= max_count)
1443 			return -1;
1444 		ctrs[n] = group;
1445 		flags[n] = group->hw.event_base;
1446 		events[n++] = group->hw.config;
1447 	}
1448 	for_each_sibling_event(event, group) {
1449 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1450 		    event->state != PERF_EVENT_STATE_OFF) {
1451 			if (n >= max_count)
1452 				return -1;
1453 			ctrs[n] = event;
1454 			flags[n] = event->hw.event_base;
1455 			events[n++] = event->hw.config;
1456 		}
1457 	}
1458 	return n;
1459 }
1460 
1461 /*
1462  * Add an event to the PMU.
1463  * If all events are not already frozen, then we disable and
1464  * re-enable the PMU in order to get hw_perf_enable to do the
1465  * actual work of reconfiguring the PMU.
1466  */
1467 static int power_pmu_add(struct perf_event *event, int ef_flags)
1468 {
1469 	struct cpu_hw_events *cpuhw;
1470 	unsigned long flags;
1471 	int n0;
1472 	int ret = -EAGAIN;
1473 
1474 	local_irq_save(flags);
1475 	perf_pmu_disable(event->pmu);
1476 
1477 	/*
1478 	 * Add the event to the list (if there is room)
1479 	 * and check whether the total set is still feasible.
1480 	 */
1481 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1482 	n0 = cpuhw->n_events;
1483 	if (n0 >= ppmu->n_counter)
1484 		goto out;
1485 	cpuhw->event[n0] = event;
1486 	cpuhw->events[n0] = event->hw.config;
1487 	cpuhw->flags[n0] = event->hw.event_base;
1488 
1489 	/*
1490 	 * This event may have been disabled/stopped in record_and_restart()
1491 	 * because we exceeded the ->event_limit. If re-starting the event,
1492 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1493 	 * notification is re-enabled.
1494 	 */
1495 	if (!(ef_flags & PERF_EF_START))
1496 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1497 	else
1498 		event->hw.state = 0;
1499 
1500 	/*
1501 	 * If group events scheduling transaction was started,
1502 	 * skip the schedulability test here, it will be performed
1503 	 * at commit time(->commit_txn) as a whole
1504 	 */
1505 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1506 		goto nocheck;
1507 
1508 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1509 		goto out;
1510 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1511 		goto out;
1512 	event->hw.config = cpuhw->events[n0];
1513 
1514 nocheck:
1515 	ebb_event_add(event);
1516 
1517 	++cpuhw->n_events;
1518 	++cpuhw->n_added;
1519 
1520 	ret = 0;
1521  out:
1522 	if (has_branch_stack(event)) {
1523 		power_pmu_bhrb_enable(event);
1524 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1525 					event->attr.branch_sample_type);
1526 	}
1527 
1528 	perf_pmu_enable(event->pmu);
1529 	local_irq_restore(flags);
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Remove an event from the PMU.
1535  */
1536 static void power_pmu_del(struct perf_event *event, int ef_flags)
1537 {
1538 	struct cpu_hw_events *cpuhw;
1539 	long i;
1540 	unsigned long flags;
1541 
1542 	local_irq_save(flags);
1543 	perf_pmu_disable(event->pmu);
1544 
1545 	power_pmu_read(event);
1546 
1547 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1548 	for (i = 0; i < cpuhw->n_events; ++i) {
1549 		if (event == cpuhw->event[i]) {
1550 			while (++i < cpuhw->n_events) {
1551 				cpuhw->event[i-1] = cpuhw->event[i];
1552 				cpuhw->events[i-1] = cpuhw->events[i];
1553 				cpuhw->flags[i-1] = cpuhw->flags[i];
1554 			}
1555 			--cpuhw->n_events;
1556 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1557 			if (event->hw.idx) {
1558 				write_pmc(event->hw.idx, 0);
1559 				event->hw.idx = 0;
1560 			}
1561 			perf_event_update_userpage(event);
1562 			break;
1563 		}
1564 	}
1565 	for (i = 0; i < cpuhw->n_limited; ++i)
1566 		if (event == cpuhw->limited_counter[i])
1567 			break;
1568 	if (i < cpuhw->n_limited) {
1569 		while (++i < cpuhw->n_limited) {
1570 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1571 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1572 		}
1573 		--cpuhw->n_limited;
1574 	}
1575 	if (cpuhw->n_events == 0) {
1576 		/* disable exceptions if no events are running */
1577 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1578 	}
1579 
1580 	if (has_branch_stack(event))
1581 		power_pmu_bhrb_disable(event);
1582 
1583 	perf_pmu_enable(event->pmu);
1584 	local_irq_restore(flags);
1585 }
1586 
1587 /*
1588  * POWER-PMU does not support disabling individual counters, hence
1589  * program their cycle counter to their max value and ignore the interrupts.
1590  */
1591 
1592 static void power_pmu_start(struct perf_event *event, int ef_flags)
1593 {
1594 	unsigned long flags;
1595 	s64 left;
1596 	unsigned long val;
1597 
1598 	if (!event->hw.idx || !event->hw.sample_period)
1599 		return;
1600 
1601 	if (!(event->hw.state & PERF_HES_STOPPED))
1602 		return;
1603 
1604 	if (ef_flags & PERF_EF_RELOAD)
1605 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1606 
1607 	local_irq_save(flags);
1608 	perf_pmu_disable(event->pmu);
1609 
1610 	event->hw.state = 0;
1611 	left = local64_read(&event->hw.period_left);
1612 
1613 	val = 0;
1614 	if (left < 0x80000000L)
1615 		val = 0x80000000L - left;
1616 
1617 	write_pmc(event->hw.idx, val);
1618 
1619 	perf_event_update_userpage(event);
1620 	perf_pmu_enable(event->pmu);
1621 	local_irq_restore(flags);
1622 }
1623 
1624 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1625 {
1626 	unsigned long flags;
1627 
1628 	if (!event->hw.idx || !event->hw.sample_period)
1629 		return;
1630 
1631 	if (event->hw.state & PERF_HES_STOPPED)
1632 		return;
1633 
1634 	local_irq_save(flags);
1635 	perf_pmu_disable(event->pmu);
1636 
1637 	power_pmu_read(event);
1638 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1639 	write_pmc(event->hw.idx, 0);
1640 
1641 	perf_event_update_userpage(event);
1642 	perf_pmu_enable(event->pmu);
1643 	local_irq_restore(flags);
1644 }
1645 
1646 /*
1647  * Start group events scheduling transaction
1648  * Set the flag to make pmu::enable() not perform the
1649  * schedulability test, it will be performed at commit time
1650  *
1651  * We only support PERF_PMU_TXN_ADD transactions. Save the
1652  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1653  * transactions.
1654  */
1655 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1656 {
1657 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1658 
1659 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1660 
1661 	cpuhw->txn_flags = txn_flags;
1662 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1663 		return;
1664 
1665 	perf_pmu_disable(pmu);
1666 	cpuhw->n_txn_start = cpuhw->n_events;
1667 }
1668 
1669 /*
1670  * Stop group events scheduling transaction
1671  * Clear the flag and pmu::enable() will perform the
1672  * schedulability test.
1673  */
1674 static void power_pmu_cancel_txn(struct pmu *pmu)
1675 {
1676 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1677 	unsigned int txn_flags;
1678 
1679 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1680 
1681 	txn_flags = cpuhw->txn_flags;
1682 	cpuhw->txn_flags = 0;
1683 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1684 		return;
1685 
1686 	perf_pmu_enable(pmu);
1687 }
1688 
1689 /*
1690  * Commit group events scheduling transaction
1691  * Perform the group schedulability test as a whole
1692  * Return 0 if success
1693  */
1694 static int power_pmu_commit_txn(struct pmu *pmu)
1695 {
1696 	struct cpu_hw_events *cpuhw;
1697 	long i, n;
1698 
1699 	if (!ppmu)
1700 		return -EAGAIN;
1701 
1702 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1703 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1704 
1705 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1706 		cpuhw->txn_flags = 0;
1707 		return 0;
1708 	}
1709 
1710 	n = cpuhw->n_events;
1711 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1712 		return -EAGAIN;
1713 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1714 	if (i < 0)
1715 		return -EAGAIN;
1716 
1717 	for (i = cpuhw->n_txn_start; i < n; ++i)
1718 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1719 
1720 	cpuhw->txn_flags = 0;
1721 	perf_pmu_enable(pmu);
1722 	return 0;
1723 }
1724 
1725 /*
1726  * Return 1 if we might be able to put event on a limited PMC,
1727  * or 0 if not.
1728  * An event can only go on a limited PMC if it counts something
1729  * that a limited PMC can count, doesn't require interrupts, and
1730  * doesn't exclude any processor mode.
1731  */
1732 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1733 				 unsigned int flags)
1734 {
1735 	int n;
1736 	u64 alt[MAX_EVENT_ALTERNATIVES];
1737 
1738 	if (event->attr.exclude_user
1739 	    || event->attr.exclude_kernel
1740 	    || event->attr.exclude_hv
1741 	    || event->attr.sample_period)
1742 		return 0;
1743 
1744 	if (ppmu->limited_pmc_event(ev))
1745 		return 1;
1746 
1747 	/*
1748 	 * The requested event_id isn't on a limited PMC already;
1749 	 * see if any alternative code goes on a limited PMC.
1750 	 */
1751 	if (!ppmu->get_alternatives)
1752 		return 0;
1753 
1754 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1755 	n = ppmu->get_alternatives(ev, flags, alt);
1756 
1757 	return n > 0;
1758 }
1759 
1760 /*
1761  * Find an alternative event_id that goes on a normal PMC, if possible,
1762  * and return the event_id code, or 0 if there is no such alternative.
1763  * (Note: event_id code 0 is "don't count" on all machines.)
1764  */
1765 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1766 {
1767 	u64 alt[MAX_EVENT_ALTERNATIVES];
1768 	int n;
1769 
1770 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1771 	n = ppmu->get_alternatives(ev, flags, alt);
1772 	if (!n)
1773 		return 0;
1774 	return alt[0];
1775 }
1776 
1777 /* Number of perf_events counting hardware events */
1778 static atomic_t num_events;
1779 /* Used to avoid races in calling reserve/release_pmc_hardware */
1780 static DEFINE_MUTEX(pmc_reserve_mutex);
1781 
1782 /*
1783  * Release the PMU if this is the last perf_event.
1784  */
1785 static void hw_perf_event_destroy(struct perf_event *event)
1786 {
1787 	if (!atomic_add_unless(&num_events, -1, 1)) {
1788 		mutex_lock(&pmc_reserve_mutex);
1789 		if (atomic_dec_return(&num_events) == 0)
1790 			release_pmc_hardware();
1791 		mutex_unlock(&pmc_reserve_mutex);
1792 	}
1793 }
1794 
1795 /*
1796  * Translate a generic cache event_id config to a raw event_id code.
1797  */
1798 static int hw_perf_cache_event(u64 config, u64 *eventp)
1799 {
1800 	unsigned long type, op, result;
1801 	int ev;
1802 
1803 	if (!ppmu->cache_events)
1804 		return -EINVAL;
1805 
1806 	/* unpack config */
1807 	type = config & 0xff;
1808 	op = (config >> 8) & 0xff;
1809 	result = (config >> 16) & 0xff;
1810 
1811 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1812 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1813 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1814 		return -EINVAL;
1815 
1816 	ev = (*ppmu->cache_events)[type][op][result];
1817 	if (ev == 0)
1818 		return -EOPNOTSUPP;
1819 	if (ev == -1)
1820 		return -EINVAL;
1821 	*eventp = ev;
1822 	return 0;
1823 }
1824 
1825 static bool is_event_blacklisted(u64 ev)
1826 {
1827 	int i;
1828 
1829 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1830 		if (ppmu->blacklist_ev[i] == ev)
1831 			return true;
1832 	}
1833 
1834 	return false;
1835 }
1836 
1837 static int power_pmu_event_init(struct perf_event *event)
1838 {
1839 	u64 ev;
1840 	unsigned long flags;
1841 	struct perf_event *ctrs[MAX_HWEVENTS];
1842 	u64 events[MAX_HWEVENTS];
1843 	unsigned int cflags[MAX_HWEVENTS];
1844 	int n;
1845 	int err;
1846 	struct cpu_hw_events *cpuhw;
1847 	u64 bhrb_filter;
1848 
1849 	if (!ppmu)
1850 		return -ENOENT;
1851 
1852 	if (has_branch_stack(event)) {
1853 	        /* PMU has BHRB enabled */
1854 		if (!(ppmu->flags & PPMU_ARCH_207S))
1855 			return -EOPNOTSUPP;
1856 	}
1857 
1858 	switch (event->attr.type) {
1859 	case PERF_TYPE_HARDWARE:
1860 		ev = event->attr.config;
1861 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1862 			return -EOPNOTSUPP;
1863 
1864 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1865 			return -EINVAL;
1866 		ev = ppmu->generic_events[ev];
1867 		break;
1868 	case PERF_TYPE_HW_CACHE:
1869 		err = hw_perf_cache_event(event->attr.config, &ev);
1870 		if (err)
1871 			return err;
1872 
1873 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1874 			return -EINVAL;
1875 		break;
1876 	case PERF_TYPE_RAW:
1877 		ev = event->attr.config;
1878 
1879 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1880 			return -EINVAL;
1881 		break;
1882 	default:
1883 		return -ENOENT;
1884 	}
1885 
1886 	event->hw.config_base = ev;
1887 	event->hw.idx = 0;
1888 
1889 	/*
1890 	 * If we are not running on a hypervisor, force the
1891 	 * exclude_hv bit to 0 so that we don't care what
1892 	 * the user set it to.
1893 	 */
1894 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1895 		event->attr.exclude_hv = 0;
1896 
1897 	/*
1898 	 * If this is a per-task event, then we can use
1899 	 * PM_RUN_* events interchangeably with their non RUN_*
1900 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1901 	 * XXX we should check if the task is an idle task.
1902 	 */
1903 	flags = 0;
1904 	if (event->attach_state & PERF_ATTACH_TASK)
1905 		flags |= PPMU_ONLY_COUNT_RUN;
1906 
1907 	/*
1908 	 * If this machine has limited events, check whether this
1909 	 * event_id could go on a limited event.
1910 	 */
1911 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1912 		if (can_go_on_limited_pmc(event, ev, flags)) {
1913 			flags |= PPMU_LIMITED_PMC_OK;
1914 		} else if (ppmu->limited_pmc_event(ev)) {
1915 			/*
1916 			 * The requested event_id is on a limited PMC,
1917 			 * but we can't use a limited PMC; see if any
1918 			 * alternative goes on a normal PMC.
1919 			 */
1920 			ev = normal_pmc_alternative(ev, flags);
1921 			if (!ev)
1922 				return -EINVAL;
1923 		}
1924 	}
1925 
1926 	/* Extra checks for EBB */
1927 	err = ebb_event_check(event);
1928 	if (err)
1929 		return err;
1930 
1931 	/*
1932 	 * If this is in a group, check if it can go on with all the
1933 	 * other hardware events in the group.  We assume the event
1934 	 * hasn't been linked into its leader's sibling list at this point.
1935 	 */
1936 	n = 0;
1937 	if (event->group_leader != event) {
1938 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1939 				   ctrs, events, cflags);
1940 		if (n < 0)
1941 			return -EINVAL;
1942 	}
1943 	events[n] = ev;
1944 	ctrs[n] = event;
1945 	cflags[n] = flags;
1946 	if (check_excludes(ctrs, cflags, n, 1))
1947 		return -EINVAL;
1948 
1949 	cpuhw = &get_cpu_var(cpu_hw_events);
1950 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1951 
1952 	if (has_branch_stack(event)) {
1953 		bhrb_filter = ppmu->bhrb_filter_map(
1954 					event->attr.branch_sample_type);
1955 
1956 		if (bhrb_filter == -1) {
1957 			put_cpu_var(cpu_hw_events);
1958 			return -EOPNOTSUPP;
1959 		}
1960 		cpuhw->bhrb_filter = bhrb_filter;
1961 	}
1962 
1963 	put_cpu_var(cpu_hw_events);
1964 	if (err)
1965 		return -EINVAL;
1966 
1967 	event->hw.config = events[n];
1968 	event->hw.event_base = cflags[n];
1969 	event->hw.last_period = event->hw.sample_period;
1970 	local64_set(&event->hw.period_left, event->hw.last_period);
1971 
1972 	/*
1973 	 * For EBB events we just context switch the PMC value, we don't do any
1974 	 * of the sample_period logic. We use hw.prev_count for this.
1975 	 */
1976 	if (is_ebb_event(event))
1977 		local64_set(&event->hw.prev_count, 0);
1978 
1979 	/*
1980 	 * See if we need to reserve the PMU.
1981 	 * If no events are currently in use, then we have to take a
1982 	 * mutex to ensure that we don't race with another task doing
1983 	 * reserve_pmc_hardware or release_pmc_hardware.
1984 	 */
1985 	err = 0;
1986 	if (!atomic_inc_not_zero(&num_events)) {
1987 		mutex_lock(&pmc_reserve_mutex);
1988 		if (atomic_read(&num_events) == 0 &&
1989 		    reserve_pmc_hardware(perf_event_interrupt))
1990 			err = -EBUSY;
1991 		else
1992 			atomic_inc(&num_events);
1993 		mutex_unlock(&pmc_reserve_mutex);
1994 	}
1995 	event->destroy = hw_perf_event_destroy;
1996 
1997 	return err;
1998 }
1999 
2000 static int power_pmu_event_idx(struct perf_event *event)
2001 {
2002 	return event->hw.idx;
2003 }
2004 
2005 ssize_t power_events_sysfs_show(struct device *dev,
2006 				struct device_attribute *attr, char *page)
2007 {
2008 	struct perf_pmu_events_attr *pmu_attr;
2009 
2010 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2011 
2012 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2013 }
2014 
2015 static struct pmu power_pmu = {
2016 	.pmu_enable	= power_pmu_enable,
2017 	.pmu_disable	= power_pmu_disable,
2018 	.event_init	= power_pmu_event_init,
2019 	.add		= power_pmu_add,
2020 	.del		= power_pmu_del,
2021 	.start		= power_pmu_start,
2022 	.stop		= power_pmu_stop,
2023 	.read		= power_pmu_read,
2024 	.start_txn	= power_pmu_start_txn,
2025 	.cancel_txn	= power_pmu_cancel_txn,
2026 	.commit_txn	= power_pmu_commit_txn,
2027 	.event_idx	= power_pmu_event_idx,
2028 	.sched_task	= power_pmu_sched_task,
2029 };
2030 
2031 /*
2032  * A counter has overflowed; update its count and record
2033  * things if requested.  Note that interrupts are hard-disabled
2034  * here so there is no possibility of being interrupted.
2035  */
2036 static void record_and_restart(struct perf_event *event, unsigned long val,
2037 			       struct pt_regs *regs)
2038 {
2039 	u64 period = event->hw.sample_period;
2040 	s64 prev, delta, left;
2041 	int record = 0;
2042 
2043 	if (event->hw.state & PERF_HES_STOPPED) {
2044 		write_pmc(event->hw.idx, 0);
2045 		return;
2046 	}
2047 
2048 	/* we don't have to worry about interrupts here */
2049 	prev = local64_read(&event->hw.prev_count);
2050 	delta = check_and_compute_delta(prev, val);
2051 	local64_add(delta, &event->count);
2052 
2053 	/*
2054 	 * See if the total period for this event has expired,
2055 	 * and update for the next period.
2056 	 */
2057 	val = 0;
2058 	left = local64_read(&event->hw.period_left) - delta;
2059 	if (delta == 0)
2060 		left++;
2061 	if (period) {
2062 		if (left <= 0) {
2063 			left += period;
2064 			if (left <= 0)
2065 				left = period;
2066 			record = siar_valid(regs);
2067 			event->hw.last_period = event->hw.sample_period;
2068 		}
2069 		if (left < 0x80000000LL)
2070 			val = 0x80000000LL - left;
2071 	}
2072 
2073 	write_pmc(event->hw.idx, val);
2074 	local64_set(&event->hw.prev_count, val);
2075 	local64_set(&event->hw.period_left, left);
2076 	perf_event_update_userpage(event);
2077 
2078 	/*
2079 	 * Finally record data if requested.
2080 	 */
2081 	if (record) {
2082 		struct perf_sample_data data;
2083 
2084 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2085 
2086 		if (event->attr.sample_type &
2087 		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2088 			perf_get_data_addr(event, regs, &data.addr);
2089 
2090 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2091 			struct cpu_hw_events *cpuhw;
2092 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2093 			power_pmu_bhrb_read(event, cpuhw);
2094 			data.br_stack = &cpuhw->bhrb_stack;
2095 		}
2096 
2097 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2098 						ppmu->get_mem_data_src)
2099 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2100 
2101 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2102 						ppmu->get_mem_weight)
2103 			ppmu->get_mem_weight(&data.weight);
2104 
2105 		if (perf_event_overflow(event, &data, regs))
2106 			power_pmu_stop(event, 0);
2107 	}
2108 }
2109 
2110 /*
2111  * Called from generic code to get the misc flags (i.e. processor mode)
2112  * for an event_id.
2113  */
2114 unsigned long perf_misc_flags(struct pt_regs *regs)
2115 {
2116 	u32 flags = perf_get_misc_flags(regs);
2117 
2118 	if (flags)
2119 		return flags;
2120 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2121 		PERF_RECORD_MISC_KERNEL;
2122 }
2123 
2124 /*
2125  * Called from generic code to get the instruction pointer
2126  * for an event_id.
2127  */
2128 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2129 {
2130 	bool use_siar = regs_use_siar(regs);
2131 
2132 	if (use_siar && siar_valid(regs))
2133 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2134 	else if (use_siar)
2135 		return 0;		// no valid instruction pointer
2136 	else
2137 		return regs->nip;
2138 }
2139 
2140 static bool pmc_overflow_power7(unsigned long val)
2141 {
2142 	/*
2143 	 * Events on POWER7 can roll back if a speculative event doesn't
2144 	 * eventually complete. Unfortunately in some rare cases they will
2145 	 * raise a performance monitor exception. We need to catch this to
2146 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2147 	 * cycles from overflow.
2148 	 *
2149 	 * We only do this if the first pass fails to find any overflowing
2150 	 * PMCs because a user might set a period of less than 256 and we
2151 	 * don't want to mistakenly reset them.
2152 	 */
2153 	if ((0x80000000 - val) <= 256)
2154 		return true;
2155 
2156 	return false;
2157 }
2158 
2159 static bool pmc_overflow(unsigned long val)
2160 {
2161 	if ((int)val < 0)
2162 		return true;
2163 
2164 	return false;
2165 }
2166 
2167 /*
2168  * Performance monitor interrupt stuff
2169  */
2170 static void __perf_event_interrupt(struct pt_regs *regs)
2171 {
2172 	int i, j;
2173 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2174 	struct perf_event *event;
2175 	unsigned long val[8];
2176 	int found, active;
2177 	int nmi;
2178 
2179 	if (cpuhw->n_limited)
2180 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2181 					mfspr(SPRN_PMC6));
2182 
2183 	perf_read_regs(regs);
2184 
2185 	nmi = perf_intr_is_nmi(regs);
2186 	if (nmi)
2187 		nmi_enter();
2188 	else
2189 		irq_enter();
2190 
2191 	/* Read all the PMCs since we'll need them a bunch of times */
2192 	for (i = 0; i < ppmu->n_counter; ++i)
2193 		val[i] = read_pmc(i + 1);
2194 
2195 	/* Try to find what caused the IRQ */
2196 	found = 0;
2197 	for (i = 0; i < ppmu->n_counter; ++i) {
2198 		if (!pmc_overflow(val[i]))
2199 			continue;
2200 		if (is_limited_pmc(i + 1))
2201 			continue; /* these won't generate IRQs */
2202 		/*
2203 		 * We've found one that's overflowed.  For active
2204 		 * counters we need to log this.  For inactive
2205 		 * counters, we need to reset it anyway
2206 		 */
2207 		found = 1;
2208 		active = 0;
2209 		for (j = 0; j < cpuhw->n_events; ++j) {
2210 			event = cpuhw->event[j];
2211 			if (event->hw.idx == (i + 1)) {
2212 				active = 1;
2213 				record_and_restart(event, val[i], regs);
2214 				break;
2215 			}
2216 		}
2217 		if (!active)
2218 			/* reset non active counters that have overflowed */
2219 			write_pmc(i + 1, 0);
2220 	}
2221 	if (!found && pvr_version_is(PVR_POWER7)) {
2222 		/* check active counters for special buggy p7 overflow */
2223 		for (i = 0; i < cpuhw->n_events; ++i) {
2224 			event = cpuhw->event[i];
2225 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2226 				continue;
2227 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2228 				/* event has overflowed in a buggy way*/
2229 				found = 1;
2230 				record_and_restart(event,
2231 						   val[event->hw.idx - 1],
2232 						   regs);
2233 			}
2234 		}
2235 	}
2236 	if (!found && !nmi && printk_ratelimit())
2237 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2238 
2239 	/*
2240 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2241 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2242 	 * and thus allow interrupts to occur again.
2243 	 * XXX might want to use MSR.PM to keep the events frozen until
2244 	 * we get back out of this interrupt.
2245 	 */
2246 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2247 
2248 	if (nmi)
2249 		nmi_exit();
2250 	else
2251 		irq_exit();
2252 }
2253 
2254 static void perf_event_interrupt(struct pt_regs *regs)
2255 {
2256 	u64 start_clock = sched_clock();
2257 
2258 	__perf_event_interrupt(regs);
2259 	perf_sample_event_took(sched_clock() - start_clock);
2260 }
2261 
2262 static int power_pmu_prepare_cpu(unsigned int cpu)
2263 {
2264 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2265 
2266 	if (ppmu) {
2267 		memset(cpuhw, 0, sizeof(*cpuhw));
2268 		cpuhw->mmcr[0] = MMCR0_FC;
2269 	}
2270 	return 0;
2271 }
2272 
2273 int register_power_pmu(struct power_pmu *pmu)
2274 {
2275 	if (ppmu)
2276 		return -EBUSY;		/* something's already registered */
2277 
2278 	ppmu = pmu;
2279 	pr_info("%s performance monitor hardware support registered\n",
2280 		pmu->name);
2281 
2282 	power_pmu.attr_groups = ppmu->attr_groups;
2283 
2284 #ifdef MSR_HV
2285 	/*
2286 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2287 	 */
2288 	if (mfmsr() & MSR_HV)
2289 		freeze_events_kernel = MMCR0_FCHV;
2290 #endif /* CONFIG_PPC64 */
2291 
2292 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2293 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2294 			  power_pmu_prepare_cpu, NULL);
2295 	return 0;
2296 }
2297 
2298 #ifdef CONFIG_PPC64
2299 static int __init init_ppc64_pmu(void)
2300 {
2301 	/* run through all the pmu drivers one at a time */
2302 	if (!init_power5_pmu())
2303 		return 0;
2304 	else if (!init_power5p_pmu())
2305 		return 0;
2306 	else if (!init_power6_pmu())
2307 		return 0;
2308 	else if (!init_power7_pmu())
2309 		return 0;
2310 	else if (!init_power8_pmu())
2311 		return 0;
2312 	else if (!init_power9_pmu())
2313 		return 0;
2314 	else if (!init_ppc970_pmu())
2315 		return 0;
2316 	else
2317 		return init_generic_compat_pmu();
2318 }
2319 early_initcall(init_ppc64_pmu);
2320 #endif
2321