xref: /linux/arch/powerpc/perf/core-book3s.c (revision 6af91e3d2cfc8bb579b1aa2d22cd91f8c34acdf6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 #include <asm/hw_irq.h>
21 #include <asm/interrupt.h>
22 
23 #ifdef CONFIG_PPC64
24 #include "internal.h"
25 #endif
26 
27 #define BHRB_MAX_ENTRIES	32
28 #define BHRB_TARGET		0x0000000000000002
29 #define BHRB_PREDICTION		0x0000000000000001
30 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
31 
32 struct cpu_hw_events {
33 	int n_events;
34 	int n_percpu;
35 	int disabled;
36 	int n_added;
37 	int n_limited;
38 	u8  pmcs_enabled;
39 	struct perf_event *event[MAX_HWEVENTS];
40 	u64 events[MAX_HWEVENTS];
41 	unsigned int flags[MAX_HWEVENTS];
42 	struct mmcr_regs mmcr;
43 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
44 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
45 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
47 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 
49 	unsigned int txn_flags;
50 	int n_txn_start;
51 
52 	/* BHRB bits */
53 	u64				bhrb_filter;	/* BHRB HW branch filter */
54 	unsigned int			bhrb_users;
55 	void				*bhrb_context;
56 	struct	perf_branch_stack	bhrb_stack;
57 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
58 	u64				ic_init;
59 
60 	/* Store the PMC values */
61 	unsigned long pmcs[MAX_HWEVENTS];
62 };
63 
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65 
66 static struct power_pmu *ppmu;
67 
68 /*
69  * Normally, to ignore kernel events we set the FCS (freeze counters
70  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71  * hypervisor bit set in the MSR, or if we are running on a processor
72  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73  * then we need to use the FCHV bit to ignore kernel events.
74  */
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
76 
77 /*
78  * 32-bit doesn't have MMCRA but does have an MMCR2,
79  * and a few other names are different.
80  * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
81  * Define them as zero knowing that any code path accessing
82  * these registers (via mtspr/mfspr) are done under ppmu flag
83  * check for PPMU_ARCH_31 and we will not enter that code path
84  * for 32-bit.
85  */
86 #ifdef CONFIG_PPC32
87 
88 #define MMCR0_FCHV		0
89 #define MMCR0_PMCjCE		MMCR0_PMCnCE
90 #define MMCR0_FC56		0
91 #define MMCR0_PMAO		0
92 #define MMCR0_EBE		0
93 #define MMCR0_BHRBA		0
94 #define MMCR0_PMCC		0
95 #define MMCR0_PMCC_U6		0
96 
97 #define SPRN_MMCRA		SPRN_MMCR2
98 #define SPRN_MMCR3		0
99 #define SPRN_SIER2		0
100 #define SPRN_SIER3		0
101 #define MMCRA_SAMPLE_ENABLE	0
102 #define MMCRA_BHRB_DISABLE     0
103 #define MMCR0_PMCCEXT		0
104 
105 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
106 {
107 	return 0;
108 }
109 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
110 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
111 {
112 	return 0;
113 }
114 static inline void perf_read_regs(struct pt_regs *regs)
115 {
116 	regs->result = 0;
117 }
118 
119 static inline int siar_valid(struct pt_regs *regs)
120 {
121 	return 1;
122 }
123 
124 static bool is_ebb_event(struct perf_event *event) { return false; }
125 static int ebb_event_check(struct perf_event *event) { return 0; }
126 static void ebb_event_add(struct perf_event *event) { }
127 static void ebb_switch_out(unsigned long mmcr0) { }
128 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
129 {
130 	return cpuhw->mmcr.mmcr0;
131 }
132 
133 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
134 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
135 static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) {}
136 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
137 static void pmao_restore_workaround(bool ebb) { }
138 #endif /* CONFIG_PPC32 */
139 
140 bool is_sier_available(void)
141 {
142 	if (!ppmu)
143 		return false;
144 
145 	if (ppmu->flags & PPMU_HAS_SIER)
146 		return true;
147 
148 	return false;
149 }
150 
151 /*
152  * Return PMC value corresponding to the
153  * index passed.
154  */
155 unsigned long get_pmcs_ext_regs(int idx)
156 {
157 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
158 
159 	return cpuhw->pmcs[idx];
160 }
161 
162 static bool regs_use_siar(struct pt_regs *regs)
163 {
164 	/*
165 	 * When we take a performance monitor exception the regs are setup
166 	 * using perf_read_regs() which overloads some fields, in particular
167 	 * regs->result to tell us whether to use SIAR.
168 	 *
169 	 * However if the regs are from another exception, eg. a syscall, then
170 	 * they have not been setup using perf_read_regs() and so regs->result
171 	 * is something random.
172 	 */
173 	return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
174 }
175 
176 /*
177  * Things that are specific to 64-bit implementations.
178  */
179 #ifdef CONFIG_PPC64
180 
181 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
182 {
183 	unsigned long mmcra = regs->dsisr;
184 
185 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
186 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
187 		if (slot > 1)
188 			return 4 * (slot - 1);
189 	}
190 
191 	return 0;
192 }
193 
194 /*
195  * The user wants a data address recorded.
196  * If we're not doing instruction sampling, give them the SDAR
197  * (sampled data address).  If we are doing instruction sampling, then
198  * only give them the SDAR if it corresponds to the instruction
199  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
200  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
201  */
202 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
203 {
204 	unsigned long mmcra = regs->dsisr;
205 	bool sdar_valid;
206 
207 	if (ppmu->flags & PPMU_HAS_SIER)
208 		sdar_valid = regs->dar & SIER_SDAR_VALID;
209 	else {
210 		unsigned long sdsync;
211 
212 		if (ppmu->flags & PPMU_SIAR_VALID)
213 			sdsync = POWER7P_MMCRA_SDAR_VALID;
214 		else if (ppmu->flags & PPMU_ALT_SIPR)
215 			sdsync = POWER6_MMCRA_SDSYNC;
216 		else if (ppmu->flags & PPMU_NO_SIAR)
217 			sdsync = MMCRA_SAMPLE_ENABLE;
218 		else
219 			sdsync = MMCRA_SDSYNC;
220 
221 		sdar_valid = mmcra & sdsync;
222 	}
223 
224 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
225 		*addrp = mfspr(SPRN_SDAR);
226 
227 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
228 		*addrp = 0;
229 }
230 
231 static bool regs_sihv(struct pt_regs *regs)
232 {
233 	unsigned long sihv = MMCRA_SIHV;
234 
235 	if (ppmu->flags & PPMU_HAS_SIER)
236 		return !!(regs->dar & SIER_SIHV);
237 
238 	if (ppmu->flags & PPMU_ALT_SIPR)
239 		sihv = POWER6_MMCRA_SIHV;
240 
241 	return !!(regs->dsisr & sihv);
242 }
243 
244 static bool regs_sipr(struct pt_regs *regs)
245 {
246 	unsigned long sipr = MMCRA_SIPR;
247 
248 	if (ppmu->flags & PPMU_HAS_SIER)
249 		return !!(regs->dar & SIER_SIPR);
250 
251 	if (ppmu->flags & PPMU_ALT_SIPR)
252 		sipr = POWER6_MMCRA_SIPR;
253 
254 	return !!(regs->dsisr & sipr);
255 }
256 
257 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
258 {
259 	if (user_mode(regs))
260 		return PERF_RECORD_MISC_USER;
261 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
262 		return PERF_RECORD_MISC_HYPERVISOR;
263 	return PERF_RECORD_MISC_KERNEL;
264 }
265 
266 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
267 {
268 	bool use_siar = regs_use_siar(regs);
269 	unsigned long siar;
270 	unsigned long addr;
271 
272 	if (!use_siar)
273 		return perf_flags_from_msr(regs);
274 
275 	/*
276 	 * If we don't have flags in MMCRA, rather than using
277 	 * the MSR, we intuit the flags from the address in
278 	 * SIAR which should give slightly more reliable
279 	 * results
280 	 */
281 	if (ppmu->flags & PPMU_NO_SIPR) {
282 		siar = mfspr(SPRN_SIAR);
283 		if (is_kernel_addr(siar))
284 			return PERF_RECORD_MISC_KERNEL;
285 		return PERF_RECORD_MISC_USER;
286 	}
287 
288 	/* PR has priority over HV, so order below is important */
289 	if (regs_sipr(regs)) {
290 		if (!(ppmu->flags & PPMU_P10))
291 			return PERF_RECORD_MISC_USER;
292 	} else if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
293 		return PERF_RECORD_MISC_HYPERVISOR;
294 
295 	/*
296 	 * Check the address in SIAR to identify the
297 	 * privilege levels since the SIER[MSR_HV, MSR_PR]
298 	 * bits are not set correctly in power10 sometimes
299 	 */
300 	if (ppmu->flags & PPMU_P10) {
301 		siar = mfspr(SPRN_SIAR);
302 		addr = siar ? siar : regs->nip;
303 		if (!is_kernel_addr(addr))
304 			return PERF_RECORD_MISC_USER;
305 	}
306 
307 	return PERF_RECORD_MISC_KERNEL;
308 }
309 
310 /*
311  * Overload regs->dsisr to store MMCRA so we only need to read it once
312  * on each interrupt.
313  * Overload regs->dar to store SIER if we have it.
314  * Overload regs->result to specify whether we should use the MSR (result
315  * is zero) or the SIAR (result is non zero).
316  */
317 static inline void perf_read_regs(struct pt_regs *regs)
318 {
319 	unsigned long mmcra = mfspr(SPRN_MMCRA);
320 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
321 	int use_siar;
322 
323 	regs->dsisr = mmcra;
324 
325 	if (ppmu->flags & PPMU_HAS_SIER)
326 		regs->dar = mfspr(SPRN_SIER);
327 
328 	/*
329 	 * If this isn't a PMU exception (eg a software event) the SIAR is
330 	 * not valid. Use pt_regs.
331 	 *
332 	 * If it is a marked event use the SIAR.
333 	 *
334 	 * If the PMU doesn't update the SIAR for non marked events use
335 	 * pt_regs.
336 	 *
337 	 * If regs is a kernel interrupt, always use SIAR. Some PMUs have an
338 	 * issue with regs_sipr not being in synch with SIAR in interrupt entry
339 	 * and return sequences, which can result in regs_sipr being true for
340 	 * kernel interrupts and SIAR, which has the effect of causing samples
341 	 * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around
342 	 * interrupt entry/exit.
343 	 *
344 	 * If the PMU has HV/PR flags then check to see if they
345 	 * place the exception in userspace. If so, use pt_regs. In
346 	 * continuous sampling mode the SIAR and the PMU exception are
347 	 * not synchronised, so they may be many instructions apart.
348 	 * This can result in confusing backtraces. We still want
349 	 * hypervisor samples as well as samples in the kernel with
350 	 * interrupts off hence the userspace check.
351 	 */
352 	if (TRAP(regs) != INTERRUPT_PERFMON)
353 		use_siar = 0;
354 	else if ((ppmu->flags & PPMU_NO_SIAR))
355 		use_siar = 0;
356 	else if (marked)
357 		use_siar = 1;
358 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
359 		use_siar = 0;
360 	else if (!user_mode(regs))
361 		use_siar = 1;
362 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
363 		use_siar = 0;
364 	else
365 		use_siar = 1;
366 
367 	regs->result = use_siar;
368 }
369 
370 /*
371  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
372  * must be sampled only if the SIAR-valid bit is set.
373  *
374  * For unmarked instructions and for processors that don't have the SIAR-Valid
375  * bit, assume that SIAR is valid.
376  */
377 static inline int siar_valid(struct pt_regs *regs)
378 {
379 	unsigned long mmcra = regs->dsisr;
380 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
381 
382 	if (marked) {
383 		/*
384 		 * SIER[SIAR_VALID] is not set for some
385 		 * marked events on power10 DD1, so drop
386 		 * the check for SIER[SIAR_VALID] and return true.
387 		 */
388 		if (ppmu->flags & PPMU_P10_DD1)
389 			return 0x1;
390 		else if (ppmu->flags & PPMU_HAS_SIER)
391 			return regs->dar & SIER_SIAR_VALID;
392 
393 		if (ppmu->flags & PPMU_SIAR_VALID)
394 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
395 	}
396 
397 	return 1;
398 }
399 
400 
401 /* Reset all possible BHRB entries */
402 static void power_pmu_bhrb_reset(void)
403 {
404 	asm volatile(PPC_CLRBHRB);
405 }
406 
407 static void power_pmu_bhrb_enable(struct perf_event *event)
408 {
409 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
410 
411 	if (!ppmu->bhrb_nr)
412 		return;
413 
414 	/* Clear BHRB if we changed task context to avoid data leaks */
415 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
416 		power_pmu_bhrb_reset();
417 		cpuhw->bhrb_context = event->ctx;
418 	}
419 	cpuhw->bhrb_users++;
420 	perf_sched_cb_inc(event->pmu);
421 }
422 
423 static void power_pmu_bhrb_disable(struct perf_event *event)
424 {
425 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
426 
427 	if (!ppmu->bhrb_nr)
428 		return;
429 
430 	WARN_ON_ONCE(!cpuhw->bhrb_users);
431 	cpuhw->bhrb_users--;
432 	perf_sched_cb_dec(event->pmu);
433 
434 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
435 		/* BHRB cannot be turned off when other
436 		 * events are active on the PMU.
437 		 */
438 
439 		/* avoid stale pointer */
440 		cpuhw->bhrb_context = NULL;
441 	}
442 }
443 
444 /* Called from ctxsw to prevent one process's branch entries to
445  * mingle with the other process's entries during context switch.
446  */
447 static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
448 {
449 	if (!ppmu->bhrb_nr)
450 		return;
451 
452 	if (sched_in)
453 		power_pmu_bhrb_reset();
454 }
455 /* Calculate the to address for a branch */
456 static __u64 power_pmu_bhrb_to(u64 addr)
457 {
458 	unsigned int instr;
459 	__u64 target;
460 
461 	if (is_kernel_addr(addr)) {
462 		if (copy_from_kernel_nofault(&instr, (void *)addr,
463 				sizeof(instr)))
464 			return 0;
465 
466 		return branch_target(&instr);
467 	}
468 
469 	/* Userspace: need copy instruction here then translate it */
470 	if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
471 			sizeof(instr)))
472 		return 0;
473 
474 	target = branch_target(&instr);
475 	if ((!target) || (instr & BRANCH_ABSOLUTE))
476 		return target;
477 
478 	/* Translate relative branch target from kernel to user address */
479 	return target - (unsigned long)&instr + addr;
480 }
481 
482 /* Processing BHRB entries */
483 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
484 {
485 	u64 val;
486 	u64 addr;
487 	int r_index, u_index, pred;
488 
489 	r_index = 0;
490 	u_index = 0;
491 	while (r_index < ppmu->bhrb_nr) {
492 		/* Assembly read function */
493 		val = read_bhrb(r_index++);
494 		if (!val)
495 			/* Terminal marker: End of valid BHRB entries */
496 			break;
497 		else {
498 			addr = val & BHRB_EA;
499 			pred = val & BHRB_PREDICTION;
500 
501 			if (!addr)
502 				/* invalid entry */
503 				continue;
504 
505 			/*
506 			 * BHRB rolling buffer could very much contain the kernel
507 			 * addresses at this point. Check the privileges before
508 			 * exporting it to userspace (avoid exposure of regions
509 			 * where we could have speculative execution)
510 			 * Incase of ISA v3.1, BHRB will capture only user-space
511 			 * addresses, hence include a check before filtering code
512 			 */
513 			if (!(ppmu->flags & PPMU_ARCH_31) &&
514 			    is_kernel_addr(addr) && event->attr.exclude_kernel)
515 				continue;
516 
517 			/* Branches are read most recent first (ie. mfbhrb 0 is
518 			 * the most recent branch).
519 			 * There are two types of valid entries:
520 			 * 1) a target entry which is the to address of a
521 			 *    computed goto like a blr,bctr,btar.  The next
522 			 *    entry read from the bhrb will be branch
523 			 *    corresponding to this target (ie. the actual
524 			 *    blr/bctr/btar instruction).
525 			 * 2) a from address which is an actual branch.  If a
526 			 *    target entry proceeds this, then this is the
527 			 *    matching branch for that target.  If this is not
528 			 *    following a target entry, then this is a branch
529 			 *    where the target is given as an immediate field
530 			 *    in the instruction (ie. an i or b form branch).
531 			 *    In this case we need to read the instruction from
532 			 *    memory to determine the target/to address.
533 			 */
534 
535 			if (val & BHRB_TARGET) {
536 				/* Target branches use two entries
537 				 * (ie. computed gotos/XL form)
538 				 */
539 				cpuhw->bhrb_entries[u_index].to = addr;
540 				cpuhw->bhrb_entries[u_index].mispred = pred;
541 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
542 
543 				/* Get from address in next entry */
544 				val = read_bhrb(r_index++);
545 				addr = val & BHRB_EA;
546 				if (val & BHRB_TARGET) {
547 					/* Shouldn't have two targets in a
548 					   row.. Reset index and try again */
549 					r_index--;
550 					addr = 0;
551 				}
552 				cpuhw->bhrb_entries[u_index].from = addr;
553 			} else {
554 				/* Branches to immediate field
555 				   (ie I or B form) */
556 				cpuhw->bhrb_entries[u_index].from = addr;
557 				cpuhw->bhrb_entries[u_index].to =
558 					power_pmu_bhrb_to(addr);
559 				cpuhw->bhrb_entries[u_index].mispred = pred;
560 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
561 			}
562 			u_index++;
563 
564 		}
565 	}
566 	cpuhw->bhrb_stack.nr = u_index;
567 	cpuhw->bhrb_stack.hw_idx = -1ULL;
568 	return;
569 }
570 
571 static bool is_ebb_event(struct perf_event *event)
572 {
573 	/*
574 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
575 	 * check that the PMU supports EBB, meaning those that don't can still
576 	 * use bit 63 of the event code for something else if they wish.
577 	 */
578 	return (ppmu->flags & PPMU_ARCH_207S) &&
579 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
580 }
581 
582 static int ebb_event_check(struct perf_event *event)
583 {
584 	struct perf_event *leader = event->group_leader;
585 
586 	/* Event and group leader must agree on EBB */
587 	if (is_ebb_event(leader) != is_ebb_event(event))
588 		return -EINVAL;
589 
590 	if (is_ebb_event(event)) {
591 		if (!(event->attach_state & PERF_ATTACH_TASK))
592 			return -EINVAL;
593 
594 		if (!leader->attr.pinned || !leader->attr.exclusive)
595 			return -EINVAL;
596 
597 		if (event->attr.freq ||
598 		    event->attr.inherit ||
599 		    event->attr.sample_type ||
600 		    event->attr.sample_period ||
601 		    event->attr.enable_on_exec)
602 			return -EINVAL;
603 	}
604 
605 	return 0;
606 }
607 
608 static void ebb_event_add(struct perf_event *event)
609 {
610 	if (!is_ebb_event(event) || current->thread.used_ebb)
611 		return;
612 
613 	/*
614 	 * IFF this is the first time we've added an EBB event, set
615 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
616 	 * userspace. We need this so that we can context switch while
617 	 * userspace is in the EBB handler (where PMXE is 0).
618 	 */
619 	current->thread.used_ebb = 1;
620 	current->thread.mmcr0 |= MMCR0_PMXE;
621 }
622 
623 static void ebb_switch_out(unsigned long mmcr0)
624 {
625 	if (!(mmcr0 & MMCR0_EBE))
626 		return;
627 
628 	current->thread.siar  = mfspr(SPRN_SIAR);
629 	current->thread.sier  = mfspr(SPRN_SIER);
630 	current->thread.sdar  = mfspr(SPRN_SDAR);
631 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
632 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
633 	if (ppmu->flags & PPMU_ARCH_31) {
634 		current->thread.mmcr3 = mfspr(SPRN_MMCR3);
635 		current->thread.sier2 = mfspr(SPRN_SIER2);
636 		current->thread.sier3 = mfspr(SPRN_SIER3);
637 	}
638 }
639 
640 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
641 {
642 	unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
643 
644 	if (!ebb)
645 		goto out;
646 
647 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
648 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
649 
650 	/*
651 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
652 	 * with pmao_restore_workaround() because we may add PMAO but we never
653 	 * clear it here.
654 	 */
655 	mmcr0 |= current->thread.mmcr0;
656 
657 	/*
658 	 * Be careful not to set PMXE if userspace had it cleared. This is also
659 	 * compatible with pmao_restore_workaround() because it has already
660 	 * cleared PMXE and we leave PMAO alone.
661 	 */
662 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
663 		mmcr0 &= ~MMCR0_PMXE;
664 
665 	mtspr(SPRN_SIAR, current->thread.siar);
666 	mtspr(SPRN_SIER, current->thread.sier);
667 	mtspr(SPRN_SDAR, current->thread.sdar);
668 
669 	/*
670 	 * Merge the kernel & user values of MMCR2. The semantics we implement
671 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
672 	 * but not clear bits. If a task wants to be able to clear bits, ie.
673 	 * unfreeze counters, it should not set exclude_xxx in its events and
674 	 * instead manage the MMCR2 entirely by itself.
675 	 */
676 	mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
677 
678 	if (ppmu->flags & PPMU_ARCH_31) {
679 		mtspr(SPRN_MMCR3, current->thread.mmcr3);
680 		mtspr(SPRN_SIER2, current->thread.sier2);
681 		mtspr(SPRN_SIER3, current->thread.sier3);
682 	}
683 out:
684 	return mmcr0;
685 }
686 
687 static void pmao_restore_workaround(bool ebb)
688 {
689 	unsigned pmcs[6];
690 
691 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
692 		return;
693 
694 	/*
695 	 * On POWER8E there is a hardware defect which affects the PMU context
696 	 * switch logic, ie. power_pmu_disable/enable().
697 	 *
698 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
699 	 * by the hardware. Sometime later the actual PMU exception is
700 	 * delivered.
701 	 *
702 	 * If we context switch, or simply disable/enable, the PMU prior to the
703 	 * exception arriving, the exception will be lost when we clear PMAO.
704 	 *
705 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
706 	 * set, and this _should_ generate an exception. However because of the
707 	 * defect no exception is generated when we write PMAO, and we get
708 	 * stuck with no counters counting but no exception delivered.
709 	 *
710 	 * The workaround is to detect this case and tweak the hardware to
711 	 * create another pending PMU exception.
712 	 *
713 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
714 	 * enabling the PMU. That causes a new exception to be generated in the
715 	 * chip, but we don't take it yet because we have interrupts hard
716 	 * disabled. We then write back the PMU state as we want it to be seen
717 	 * by the exception handler. When we reenable interrupts the exception
718 	 * handler will be called and see the correct state.
719 	 *
720 	 * The logic is the same for EBB, except that the exception is gated by
721 	 * us having interrupts hard disabled as well as the fact that we are
722 	 * not in userspace. The exception is finally delivered when we return
723 	 * to userspace.
724 	 */
725 
726 	/* Only if PMAO is set and PMAO_SYNC is clear */
727 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
728 		return;
729 
730 	/* If we're doing EBB, only if BESCR[GE] is set */
731 	if (ebb && !(current->thread.bescr & BESCR_GE))
732 		return;
733 
734 	/*
735 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
736 	 * disable to actually prevent the PMU exception from firing.
737 	 */
738 	hard_irq_disable();
739 
740 	/*
741 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
742 	 * Using read/write_pmc() in a for loop adds 12 function calls and
743 	 * almost doubles our code size.
744 	 */
745 	pmcs[0] = mfspr(SPRN_PMC1);
746 	pmcs[1] = mfspr(SPRN_PMC2);
747 	pmcs[2] = mfspr(SPRN_PMC3);
748 	pmcs[3] = mfspr(SPRN_PMC4);
749 	pmcs[4] = mfspr(SPRN_PMC5);
750 	pmcs[5] = mfspr(SPRN_PMC6);
751 
752 	/* Ensure all freeze bits are unset */
753 	mtspr(SPRN_MMCR2, 0);
754 
755 	/* Set up PMC6 to overflow in one cycle */
756 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
757 
758 	/* Enable exceptions and unfreeze PMC6 */
759 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
760 
761 	/* Now we need to refreeze and restore the PMCs */
762 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
763 
764 	mtspr(SPRN_PMC1, pmcs[0]);
765 	mtspr(SPRN_PMC2, pmcs[1]);
766 	mtspr(SPRN_PMC3, pmcs[2]);
767 	mtspr(SPRN_PMC4, pmcs[3]);
768 	mtspr(SPRN_PMC5, pmcs[4]);
769 	mtspr(SPRN_PMC6, pmcs[5]);
770 }
771 
772 /*
773  * If the perf subsystem wants performance monitor interrupts as soon as
774  * possible (e.g., to sample the instruction address and stack chain),
775  * this should return true. The IRQ masking code can then enable MSR[EE]
776  * in some places (e.g., interrupt handlers) that allows PMI interrupts
777  * through to improve accuracy of profiles, at the cost of some performance.
778  *
779  * The PMU counters can be enabled by other means (e.g., sysfs raw SPR
780  * access), but in that case there is no need for prompt PMI handling.
781  *
782  * This currently returns true if any perf counter is being used. It
783  * could possibly return false if only events are being counted rather than
784  * samples being taken, but for now this is good enough.
785  */
786 bool power_pmu_wants_prompt_pmi(void)
787 {
788 	struct cpu_hw_events *cpuhw;
789 
790 	/*
791 	 * This could simply test local_paca->pmcregs_in_use if that were not
792 	 * under ifdef KVM.
793 	 */
794 	if (!ppmu)
795 		return false;
796 
797 	cpuhw = this_cpu_ptr(&cpu_hw_events);
798 	return cpuhw->n_events;
799 }
800 #endif /* CONFIG_PPC64 */
801 
802 static void perf_event_interrupt(struct pt_regs *regs);
803 
804 /*
805  * Read one performance monitor counter (PMC).
806  */
807 static unsigned long read_pmc(int idx)
808 {
809 	unsigned long val;
810 
811 	switch (idx) {
812 	case 1:
813 		val = mfspr(SPRN_PMC1);
814 		break;
815 	case 2:
816 		val = mfspr(SPRN_PMC2);
817 		break;
818 	case 3:
819 		val = mfspr(SPRN_PMC3);
820 		break;
821 	case 4:
822 		val = mfspr(SPRN_PMC4);
823 		break;
824 	case 5:
825 		val = mfspr(SPRN_PMC5);
826 		break;
827 	case 6:
828 		val = mfspr(SPRN_PMC6);
829 		break;
830 #ifdef CONFIG_PPC64
831 	case 7:
832 		val = mfspr(SPRN_PMC7);
833 		break;
834 	case 8:
835 		val = mfspr(SPRN_PMC8);
836 		break;
837 #endif /* CONFIG_PPC64 */
838 	default:
839 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
840 		val = 0;
841 	}
842 	return val;
843 }
844 
845 /*
846  * Write one PMC.
847  */
848 static void write_pmc(int idx, unsigned long val)
849 {
850 	switch (idx) {
851 	case 1:
852 		mtspr(SPRN_PMC1, val);
853 		break;
854 	case 2:
855 		mtspr(SPRN_PMC2, val);
856 		break;
857 	case 3:
858 		mtspr(SPRN_PMC3, val);
859 		break;
860 	case 4:
861 		mtspr(SPRN_PMC4, val);
862 		break;
863 	case 5:
864 		mtspr(SPRN_PMC5, val);
865 		break;
866 	case 6:
867 		mtspr(SPRN_PMC6, val);
868 		break;
869 #ifdef CONFIG_PPC64
870 	case 7:
871 		mtspr(SPRN_PMC7, val);
872 		break;
873 	case 8:
874 		mtspr(SPRN_PMC8, val);
875 		break;
876 #endif /* CONFIG_PPC64 */
877 	default:
878 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
879 	}
880 }
881 
882 static int any_pmc_overflown(struct cpu_hw_events *cpuhw)
883 {
884 	int i, idx;
885 
886 	for (i = 0; i < cpuhw->n_events; i++) {
887 		idx = cpuhw->event[i]->hw.idx;
888 		if ((idx) && ((int)read_pmc(idx) < 0))
889 			return idx;
890 	}
891 
892 	return 0;
893 }
894 
895 /* Called from sysrq_handle_showregs() */
896 void perf_event_print_debug(void)
897 {
898 	unsigned long sdar, sier, flags;
899 	u32 pmcs[MAX_HWEVENTS];
900 	int i;
901 
902 	if (!ppmu) {
903 		pr_info("Performance monitor hardware not registered.\n");
904 		return;
905 	}
906 
907 	if (!ppmu->n_counter)
908 		return;
909 
910 	local_irq_save(flags);
911 
912 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
913 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
914 
915 	for (i = 0; i < ppmu->n_counter; i++)
916 		pmcs[i] = read_pmc(i + 1);
917 
918 	for (; i < MAX_HWEVENTS; i++)
919 		pmcs[i] = 0xdeadbeef;
920 
921 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
922 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
923 
924 	if (ppmu->n_counter > 4)
925 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
926 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
927 
928 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
929 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
930 
931 	sdar = sier = 0;
932 #ifdef CONFIG_PPC64
933 	sdar = mfspr(SPRN_SDAR);
934 
935 	if (ppmu->flags & PPMU_HAS_SIER)
936 		sier = mfspr(SPRN_SIER);
937 
938 	if (ppmu->flags & PPMU_ARCH_207S) {
939 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
940 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
941 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
942 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
943 	}
944 
945 	if (ppmu->flags & PPMU_ARCH_31) {
946 		pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
947 			mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
948 	}
949 #endif
950 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
951 		mfspr(SPRN_SIAR), sdar, sier);
952 
953 	local_irq_restore(flags);
954 }
955 
956 /*
957  * Check if a set of events can all go on the PMU at once.
958  * If they can't, this will look at alternative codes for the events
959  * and see if any combination of alternative codes is feasible.
960  * The feasible set is returned in event_id[].
961  */
962 static int power_check_constraints(struct cpu_hw_events *cpuhw,
963 				   u64 event_id[], unsigned int cflags[],
964 				   int n_ev, struct perf_event **event)
965 {
966 	unsigned long mask, value, nv;
967 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
968 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
969 	int i, j;
970 	unsigned long addf = ppmu->add_fields;
971 	unsigned long tadd = ppmu->test_adder;
972 	unsigned long grp_mask = ppmu->group_constraint_mask;
973 	unsigned long grp_val = ppmu->group_constraint_val;
974 
975 	if (n_ev > ppmu->n_counter)
976 		return -1;
977 
978 	/* First see if the events will go on as-is */
979 	for (i = 0; i < n_ev; ++i) {
980 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
981 		    && !ppmu->limited_pmc_event(event_id[i])) {
982 			ppmu->get_alternatives(event_id[i], cflags[i],
983 					       cpuhw->alternatives[i]);
984 			event_id[i] = cpuhw->alternatives[i][0];
985 		}
986 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
987 					 &cpuhw->avalues[i][0], event[i]->attr.config1))
988 			return -1;
989 	}
990 	value = mask = 0;
991 	for (i = 0; i < n_ev; ++i) {
992 		nv = (value | cpuhw->avalues[i][0]) +
993 			(value & cpuhw->avalues[i][0] & addf);
994 
995 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
996 			break;
997 
998 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
999 			& (~grp_mask)) != 0)
1000 			break;
1001 
1002 		value = nv;
1003 		mask |= cpuhw->amasks[i][0];
1004 	}
1005 	if (i == n_ev) {
1006 		if ((value & mask & grp_mask) != (mask & grp_val))
1007 			return -1;
1008 		else
1009 			return 0;	/* all OK */
1010 	}
1011 
1012 	/* doesn't work, gather alternatives... */
1013 	if (!ppmu->get_alternatives)
1014 		return -1;
1015 	for (i = 0; i < n_ev; ++i) {
1016 		choice[i] = 0;
1017 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
1018 						  cpuhw->alternatives[i]);
1019 		for (j = 1; j < n_alt[i]; ++j)
1020 			ppmu->get_constraint(cpuhw->alternatives[i][j],
1021 					     &cpuhw->amasks[i][j],
1022 					     &cpuhw->avalues[i][j],
1023 					     event[i]->attr.config1);
1024 	}
1025 
1026 	/* enumerate all possibilities and see if any will work */
1027 	i = 0;
1028 	j = -1;
1029 	value = mask = nv = 0;
1030 	while (i < n_ev) {
1031 		if (j >= 0) {
1032 			/* we're backtracking, restore context */
1033 			value = svalues[i];
1034 			mask = smasks[i];
1035 			j = choice[i];
1036 		}
1037 		/*
1038 		 * See if any alternative k for event_id i,
1039 		 * where k > j, will satisfy the constraints.
1040 		 */
1041 		while (++j < n_alt[i]) {
1042 			nv = (value | cpuhw->avalues[i][j]) +
1043 				(value & cpuhw->avalues[i][j] & addf);
1044 			if ((((nv + tadd) ^ value) & mask) == 0 &&
1045 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
1046 			     & cpuhw->amasks[i][j]) == 0)
1047 				break;
1048 		}
1049 		if (j >= n_alt[i]) {
1050 			/*
1051 			 * No feasible alternative, backtrack
1052 			 * to event_id i-1 and continue enumerating its
1053 			 * alternatives from where we got up to.
1054 			 */
1055 			if (--i < 0)
1056 				return -1;
1057 		} else {
1058 			/*
1059 			 * Found a feasible alternative for event_id i,
1060 			 * remember where we got up to with this event_id,
1061 			 * go on to the next event_id, and start with
1062 			 * the first alternative for it.
1063 			 */
1064 			choice[i] = j;
1065 			svalues[i] = value;
1066 			smasks[i] = mask;
1067 			value = nv;
1068 			mask |= cpuhw->amasks[i][j];
1069 			++i;
1070 			j = -1;
1071 		}
1072 	}
1073 
1074 	/* OK, we have a feasible combination, tell the caller the solution */
1075 	for (i = 0; i < n_ev; ++i)
1076 		event_id[i] = cpuhw->alternatives[i][choice[i]];
1077 	return 0;
1078 }
1079 
1080 /*
1081  * Check if newly-added events have consistent settings for
1082  * exclude_{user,kernel,hv} with each other and any previously
1083  * added events.
1084  */
1085 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1086 			  int n_prev, int n_new)
1087 {
1088 	int eu = 0, ek = 0, eh = 0;
1089 	int i, n, first;
1090 	struct perf_event *event;
1091 
1092 	/*
1093 	 * If the PMU we're on supports per event exclude settings then we
1094 	 * don't need to do any of this logic. NB. This assumes no PMU has both
1095 	 * per event exclude and limited PMCs.
1096 	 */
1097 	if (ppmu->flags & PPMU_ARCH_207S)
1098 		return 0;
1099 
1100 	n = n_prev + n_new;
1101 	if (n <= 1)
1102 		return 0;
1103 
1104 	first = 1;
1105 	for (i = 0; i < n; ++i) {
1106 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1107 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1108 			continue;
1109 		}
1110 		event = ctrs[i];
1111 		if (first) {
1112 			eu = event->attr.exclude_user;
1113 			ek = event->attr.exclude_kernel;
1114 			eh = event->attr.exclude_hv;
1115 			first = 0;
1116 		} else if (event->attr.exclude_user != eu ||
1117 			   event->attr.exclude_kernel != ek ||
1118 			   event->attr.exclude_hv != eh) {
1119 			return -EAGAIN;
1120 		}
1121 	}
1122 
1123 	if (eu || ek || eh)
1124 		for (i = 0; i < n; ++i)
1125 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1126 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1127 
1128 	return 0;
1129 }
1130 
1131 static u64 check_and_compute_delta(u64 prev, u64 val)
1132 {
1133 	u64 delta = (val - prev) & 0xfffffffful;
1134 
1135 	/*
1136 	 * POWER7 can roll back counter values, if the new value is smaller
1137 	 * than the previous value it will cause the delta and the counter to
1138 	 * have bogus values unless we rolled a counter over.  If a counter is
1139 	 * rolled back, it will be smaller, but within 256, which is the maximum
1140 	 * number of events to rollback at once.  If we detect a rollback
1141 	 * return 0.  This can lead to a small lack of precision in the
1142 	 * counters.
1143 	 */
1144 	if (prev > val && (prev - val) < 256)
1145 		delta = 0;
1146 
1147 	return delta;
1148 }
1149 
1150 static void power_pmu_read(struct perf_event *event)
1151 {
1152 	s64 val, delta, prev;
1153 
1154 	if (event->hw.state & PERF_HES_STOPPED)
1155 		return;
1156 
1157 	if (!event->hw.idx)
1158 		return;
1159 
1160 	if (is_ebb_event(event)) {
1161 		val = read_pmc(event->hw.idx);
1162 		local64_set(&event->hw.prev_count, val);
1163 		return;
1164 	}
1165 
1166 	/*
1167 	 * Performance monitor interrupts come even when interrupts
1168 	 * are soft-disabled, as long as interrupts are hard-enabled.
1169 	 * Therefore we treat them like NMIs.
1170 	 */
1171 	do {
1172 		prev = local64_read(&event->hw.prev_count);
1173 		barrier();
1174 		val = read_pmc(event->hw.idx);
1175 		delta = check_and_compute_delta(prev, val);
1176 		if (!delta)
1177 			return;
1178 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1179 
1180 	local64_add(delta, &event->count);
1181 
1182 	/*
1183 	 * A number of places program the PMC with (0x80000000 - period_left).
1184 	 * We never want period_left to be less than 1 because we will program
1185 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1186 	 * roll around to 0 before taking an exception. We have seen this
1187 	 * on POWER8.
1188 	 *
1189 	 * To fix this, clamp the minimum value of period_left to 1.
1190 	 */
1191 	do {
1192 		prev = local64_read(&event->hw.period_left);
1193 		val = prev - delta;
1194 		if (val < 1)
1195 			val = 1;
1196 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1197 }
1198 
1199 /*
1200  * On some machines, PMC5 and PMC6 can't be written, don't respect
1201  * the freeze conditions, and don't generate interrupts.  This tells
1202  * us if `event' is using such a PMC.
1203  */
1204 static int is_limited_pmc(int pmcnum)
1205 {
1206 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1207 		&& (pmcnum == 5 || pmcnum == 6);
1208 }
1209 
1210 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1211 				    unsigned long pmc5, unsigned long pmc6)
1212 {
1213 	struct perf_event *event;
1214 	u64 val, prev, delta;
1215 	int i;
1216 
1217 	for (i = 0; i < cpuhw->n_limited; ++i) {
1218 		event = cpuhw->limited_counter[i];
1219 		if (!event->hw.idx)
1220 			continue;
1221 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1222 		prev = local64_read(&event->hw.prev_count);
1223 		event->hw.idx = 0;
1224 		delta = check_and_compute_delta(prev, val);
1225 		if (delta)
1226 			local64_add(delta, &event->count);
1227 	}
1228 }
1229 
1230 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1231 				  unsigned long pmc5, unsigned long pmc6)
1232 {
1233 	struct perf_event *event;
1234 	u64 val, prev;
1235 	int i;
1236 
1237 	for (i = 0; i < cpuhw->n_limited; ++i) {
1238 		event = cpuhw->limited_counter[i];
1239 		event->hw.idx = cpuhw->limited_hwidx[i];
1240 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1241 		prev = local64_read(&event->hw.prev_count);
1242 		if (check_and_compute_delta(prev, val))
1243 			local64_set(&event->hw.prev_count, val);
1244 		perf_event_update_userpage(event);
1245 	}
1246 }
1247 
1248 /*
1249  * Since limited events don't respect the freeze conditions, we
1250  * have to read them immediately after freezing or unfreezing the
1251  * other events.  We try to keep the values from the limited
1252  * events as consistent as possible by keeping the delay (in
1253  * cycles and instructions) between freezing/unfreezing and reading
1254  * the limited events as small and consistent as possible.
1255  * Therefore, if any limited events are in use, we read them
1256  * both, and always in the same order, to minimize variability,
1257  * and do it inside the same asm that writes MMCR0.
1258  */
1259 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1260 {
1261 	unsigned long pmc5, pmc6;
1262 
1263 	if (!cpuhw->n_limited) {
1264 		mtspr(SPRN_MMCR0, mmcr0);
1265 		return;
1266 	}
1267 
1268 	/*
1269 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1270 	 * To ensure we don't get a performance monitor interrupt
1271 	 * between writing MMCR0 and freezing/thawing the limited
1272 	 * events, we first write MMCR0 with the event overflow
1273 	 * interrupt enable bits turned off.
1274 	 */
1275 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1276 		     : "=&r" (pmc5), "=&r" (pmc6)
1277 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1278 		       "i" (SPRN_MMCR0),
1279 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1280 
1281 	if (mmcr0 & MMCR0_FC)
1282 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1283 	else
1284 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1285 
1286 	/*
1287 	 * Write the full MMCR0 including the event overflow interrupt
1288 	 * enable bits, if necessary.
1289 	 */
1290 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1291 		mtspr(SPRN_MMCR0, mmcr0);
1292 }
1293 
1294 /*
1295  * Disable all events to prevent PMU interrupts and to allow
1296  * events to be added or removed.
1297  */
1298 static void power_pmu_disable(struct pmu *pmu)
1299 {
1300 	struct cpu_hw_events *cpuhw;
1301 	unsigned long flags, mmcr0, val, mmcra;
1302 
1303 	if (!ppmu)
1304 		return;
1305 	local_irq_save(flags);
1306 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1307 
1308 	if (!cpuhw->disabled) {
1309 		/*
1310 		 * Check if we ever enabled the PMU on this cpu.
1311 		 */
1312 		if (!cpuhw->pmcs_enabled) {
1313 			ppc_enable_pmcs();
1314 			cpuhw->pmcs_enabled = 1;
1315 		}
1316 
1317 		/*
1318 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1319 		 * Also clear PMXE to disable PMI's getting triggered in some
1320 		 * corner cases during PMU disable.
1321 		 */
1322 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1323 		val |= MMCR0_FC;
1324 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1325 			 MMCR0_PMXE | MMCR0_FC56);
1326 		/* Set mmcr0 PMCCEXT for p10 */
1327 		if (ppmu->flags & PPMU_ARCH_31)
1328 			val |= MMCR0_PMCCEXT;
1329 
1330 		/*
1331 		 * The barrier is to make sure the mtspr has been
1332 		 * executed and the PMU has frozen the events etc.
1333 		 * before we return.
1334 		 */
1335 		write_mmcr0(cpuhw, val);
1336 		mb();
1337 		isync();
1338 
1339 		/*
1340 		 * Some corner cases could clear the PMU counter overflow
1341 		 * while a masked PMI is pending. One such case is when
1342 		 * a PMI happens during interrupt replay and perf counter
1343 		 * values are cleared by PMU callbacks before replay.
1344 		 *
1345 		 * Disable the interrupt by clearing the paca bit for PMI
1346 		 * since we are disabling the PMU now. Otherwise provide a
1347 		 * warning if there is PMI pending, but no counter is found
1348 		 * overflown.
1349 		 *
1350 		 * Since power_pmu_disable runs under local_irq_save, it
1351 		 * could happen that code hits a PMC overflow without PMI
1352 		 * pending in paca. Hence only clear PMI pending if it was
1353 		 * set.
1354 		 *
1355 		 * If a PMI is pending, then MSR[EE] must be disabled (because
1356 		 * the masked PMI handler disabling EE). So it is safe to
1357 		 * call clear_pmi_irq_pending().
1358 		 */
1359 		if (pmi_irq_pending())
1360 			clear_pmi_irq_pending();
1361 
1362 		val = mmcra = cpuhw->mmcr.mmcra;
1363 
1364 		/*
1365 		 * Disable instruction sampling if it was enabled
1366 		 */
1367 		val &= ~MMCRA_SAMPLE_ENABLE;
1368 
1369 		/* Disable BHRB via mmcra (BHRBRD) for p10 */
1370 		if (ppmu->flags & PPMU_ARCH_31)
1371 			val |= MMCRA_BHRB_DISABLE;
1372 
1373 		/*
1374 		 * Write SPRN_MMCRA if mmcra has either disabled
1375 		 * instruction sampling or BHRB.
1376 		 */
1377 		if (val != mmcra) {
1378 			mtspr(SPRN_MMCRA, val);
1379 			mb();
1380 			isync();
1381 		}
1382 
1383 		cpuhw->disabled = 1;
1384 		cpuhw->n_added = 0;
1385 
1386 		ebb_switch_out(mmcr0);
1387 
1388 #ifdef CONFIG_PPC64
1389 		/*
1390 		 * These are readable by userspace, may contain kernel
1391 		 * addresses and are not switched by context switch, so clear
1392 		 * them now to avoid leaking anything to userspace in general
1393 		 * including to another process.
1394 		 */
1395 		if (ppmu->flags & PPMU_ARCH_207S) {
1396 			mtspr(SPRN_SDAR, 0);
1397 			mtspr(SPRN_SIAR, 0);
1398 		}
1399 #endif
1400 	}
1401 
1402 	local_irq_restore(flags);
1403 }
1404 
1405 /*
1406  * Re-enable all events if disable == 0.
1407  * If we were previously disabled and events were added, then
1408  * put the new config on the PMU.
1409  */
1410 static void power_pmu_enable(struct pmu *pmu)
1411 {
1412 	struct perf_event *event;
1413 	struct cpu_hw_events *cpuhw;
1414 	unsigned long flags;
1415 	long i;
1416 	unsigned long val, mmcr0;
1417 	s64 left;
1418 	unsigned int hwc_index[MAX_HWEVENTS];
1419 	int n_lim;
1420 	int idx;
1421 	bool ebb;
1422 
1423 	if (!ppmu)
1424 		return;
1425 	local_irq_save(flags);
1426 
1427 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1428 	if (!cpuhw->disabled)
1429 		goto out;
1430 
1431 	if (cpuhw->n_events == 0) {
1432 		ppc_set_pmu_inuse(0);
1433 		goto out;
1434 	}
1435 
1436 	cpuhw->disabled = 0;
1437 
1438 	/*
1439 	 * EBB requires an exclusive group and all events must have the EBB
1440 	 * flag set, or not set, so we can just check a single event. Also we
1441 	 * know we have at least one event.
1442 	 */
1443 	ebb = is_ebb_event(cpuhw->event[0]);
1444 
1445 	/*
1446 	 * If we didn't change anything, or only removed events,
1447 	 * no need to recalculate MMCR* settings and reset the PMCs.
1448 	 * Just reenable the PMU with the current MMCR* settings
1449 	 * (possibly updated for removal of events).
1450 	 */
1451 	if (!cpuhw->n_added) {
1452 		/*
1453 		 * If there is any active event with an overflown PMC
1454 		 * value, set back PACA_IRQ_PMI which would have been
1455 		 * cleared in power_pmu_disable().
1456 		 */
1457 		hard_irq_disable();
1458 		if (any_pmc_overflown(cpuhw))
1459 			set_pmi_irq_pending();
1460 
1461 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1462 		mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1463 		if (ppmu->flags & PPMU_ARCH_31)
1464 			mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1465 		goto out_enable;
1466 	}
1467 
1468 	/*
1469 	 * Clear all MMCR settings and recompute them for the new set of events.
1470 	 */
1471 	memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1472 
1473 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1474 			       &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
1475 		/* shouldn't ever get here */
1476 		printk(KERN_ERR "oops compute_mmcr failed\n");
1477 		goto out;
1478 	}
1479 
1480 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1481 		/*
1482 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1483 		 * bits for the first event. We have already checked that all
1484 		 * events have the same value for these bits as the first event.
1485 		 */
1486 		event = cpuhw->event[0];
1487 		if (event->attr.exclude_user)
1488 			cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1489 		if (event->attr.exclude_kernel)
1490 			cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1491 		if (event->attr.exclude_hv)
1492 			cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1493 	}
1494 
1495 	/*
1496 	 * Write the new configuration to MMCR* with the freeze
1497 	 * bit set and set the hardware events to their initial values.
1498 	 * Then unfreeze the events.
1499 	 */
1500 	ppc_set_pmu_inuse(1);
1501 	mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1502 	mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1503 	mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1504 				| MMCR0_FC);
1505 	if (ppmu->flags & PPMU_ARCH_207S)
1506 		mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1507 
1508 	if (ppmu->flags & PPMU_ARCH_31)
1509 		mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1510 
1511 	/*
1512 	 * Read off any pre-existing events that need to move
1513 	 * to another PMC.
1514 	 */
1515 	for (i = 0; i < cpuhw->n_events; ++i) {
1516 		event = cpuhw->event[i];
1517 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1518 			power_pmu_read(event);
1519 			write_pmc(event->hw.idx, 0);
1520 			event->hw.idx = 0;
1521 		}
1522 	}
1523 
1524 	/*
1525 	 * Initialize the PMCs for all the new and moved events.
1526 	 */
1527 	cpuhw->n_limited = n_lim = 0;
1528 	for (i = 0; i < cpuhw->n_events; ++i) {
1529 		event = cpuhw->event[i];
1530 		if (event->hw.idx)
1531 			continue;
1532 		idx = hwc_index[i] + 1;
1533 		if (is_limited_pmc(idx)) {
1534 			cpuhw->limited_counter[n_lim] = event;
1535 			cpuhw->limited_hwidx[n_lim] = idx;
1536 			++n_lim;
1537 			continue;
1538 		}
1539 
1540 		if (ebb)
1541 			val = local64_read(&event->hw.prev_count);
1542 		else {
1543 			val = 0;
1544 			if (event->hw.sample_period) {
1545 				left = local64_read(&event->hw.period_left);
1546 				if (left < 0x80000000L)
1547 					val = 0x80000000L - left;
1548 			}
1549 			local64_set(&event->hw.prev_count, val);
1550 		}
1551 
1552 		event->hw.idx = idx;
1553 		if (event->hw.state & PERF_HES_STOPPED)
1554 			val = 0;
1555 		write_pmc(idx, val);
1556 
1557 		perf_event_update_userpage(event);
1558 	}
1559 	cpuhw->n_limited = n_lim;
1560 	cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1561 
1562  out_enable:
1563 	pmao_restore_workaround(ebb);
1564 
1565 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1566 
1567 	mb();
1568 	if (cpuhw->bhrb_users)
1569 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1570 
1571 	write_mmcr0(cpuhw, mmcr0);
1572 
1573 	/*
1574 	 * Enable instruction sampling if necessary
1575 	 */
1576 	if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1577 		mb();
1578 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1579 	}
1580 
1581  out:
1582 
1583 	local_irq_restore(flags);
1584 }
1585 
1586 static int collect_events(struct perf_event *group, int max_count,
1587 			  struct perf_event *ctrs[], u64 *events,
1588 			  unsigned int *flags)
1589 {
1590 	int n = 0;
1591 	struct perf_event *event;
1592 
1593 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1594 		if (n >= max_count)
1595 			return -1;
1596 		ctrs[n] = group;
1597 		flags[n] = group->hw.event_base;
1598 		events[n++] = group->hw.config;
1599 	}
1600 	for_each_sibling_event(event, group) {
1601 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1602 		    event->state != PERF_EVENT_STATE_OFF) {
1603 			if (n >= max_count)
1604 				return -1;
1605 			ctrs[n] = event;
1606 			flags[n] = event->hw.event_base;
1607 			events[n++] = event->hw.config;
1608 		}
1609 	}
1610 	return n;
1611 }
1612 
1613 /*
1614  * Add an event to the PMU.
1615  * If all events are not already frozen, then we disable and
1616  * re-enable the PMU in order to get hw_perf_enable to do the
1617  * actual work of reconfiguring the PMU.
1618  */
1619 static int power_pmu_add(struct perf_event *event, int ef_flags)
1620 {
1621 	struct cpu_hw_events *cpuhw;
1622 	unsigned long flags;
1623 	int n0;
1624 	int ret = -EAGAIN;
1625 
1626 	local_irq_save(flags);
1627 	perf_pmu_disable(event->pmu);
1628 
1629 	/*
1630 	 * Add the event to the list (if there is room)
1631 	 * and check whether the total set is still feasible.
1632 	 */
1633 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1634 	n0 = cpuhw->n_events;
1635 	if (n0 >= ppmu->n_counter)
1636 		goto out;
1637 	cpuhw->event[n0] = event;
1638 	cpuhw->events[n0] = event->hw.config;
1639 	cpuhw->flags[n0] = event->hw.event_base;
1640 
1641 	/*
1642 	 * This event may have been disabled/stopped in record_and_restart()
1643 	 * because we exceeded the ->event_limit. If re-starting the event,
1644 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1645 	 * notification is re-enabled.
1646 	 */
1647 	if (!(ef_flags & PERF_EF_START))
1648 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1649 	else
1650 		event->hw.state = 0;
1651 
1652 	/*
1653 	 * If group events scheduling transaction was started,
1654 	 * skip the schedulability test here, it will be performed
1655 	 * at commit time(->commit_txn) as a whole
1656 	 */
1657 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1658 		goto nocheck;
1659 
1660 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1661 		goto out;
1662 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
1663 		goto out;
1664 	event->hw.config = cpuhw->events[n0];
1665 
1666 nocheck:
1667 	ebb_event_add(event);
1668 
1669 	++cpuhw->n_events;
1670 	++cpuhw->n_added;
1671 
1672 	ret = 0;
1673  out:
1674 	if (has_branch_stack(event)) {
1675 		u64 bhrb_filter = -1;
1676 
1677 		if (ppmu->bhrb_filter_map)
1678 			bhrb_filter = ppmu->bhrb_filter_map(
1679 				event->attr.branch_sample_type);
1680 
1681 		if (bhrb_filter != -1) {
1682 			cpuhw->bhrb_filter = bhrb_filter;
1683 			power_pmu_bhrb_enable(event);
1684 		}
1685 	}
1686 
1687 	perf_pmu_enable(event->pmu);
1688 	local_irq_restore(flags);
1689 	return ret;
1690 }
1691 
1692 /*
1693  * Remove an event from the PMU.
1694  */
1695 static void power_pmu_del(struct perf_event *event, int ef_flags)
1696 {
1697 	struct cpu_hw_events *cpuhw;
1698 	long i;
1699 	unsigned long flags;
1700 
1701 	local_irq_save(flags);
1702 	perf_pmu_disable(event->pmu);
1703 
1704 	power_pmu_read(event);
1705 
1706 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1707 	for (i = 0; i < cpuhw->n_events; ++i) {
1708 		if (event == cpuhw->event[i]) {
1709 			while (++i < cpuhw->n_events) {
1710 				cpuhw->event[i-1] = cpuhw->event[i];
1711 				cpuhw->events[i-1] = cpuhw->events[i];
1712 				cpuhw->flags[i-1] = cpuhw->flags[i];
1713 			}
1714 			--cpuhw->n_events;
1715 			ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1716 			if (event->hw.idx) {
1717 				write_pmc(event->hw.idx, 0);
1718 				event->hw.idx = 0;
1719 			}
1720 			perf_event_update_userpage(event);
1721 			break;
1722 		}
1723 	}
1724 	for (i = 0; i < cpuhw->n_limited; ++i)
1725 		if (event == cpuhw->limited_counter[i])
1726 			break;
1727 	if (i < cpuhw->n_limited) {
1728 		while (++i < cpuhw->n_limited) {
1729 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1730 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1731 		}
1732 		--cpuhw->n_limited;
1733 	}
1734 	if (cpuhw->n_events == 0) {
1735 		/* disable exceptions if no events are running */
1736 		cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1737 	}
1738 
1739 	if (has_branch_stack(event))
1740 		power_pmu_bhrb_disable(event);
1741 
1742 	perf_pmu_enable(event->pmu);
1743 	local_irq_restore(flags);
1744 }
1745 
1746 /*
1747  * POWER-PMU does not support disabling individual counters, hence
1748  * program their cycle counter to their max value and ignore the interrupts.
1749  */
1750 
1751 static void power_pmu_start(struct perf_event *event, int ef_flags)
1752 {
1753 	unsigned long flags;
1754 	s64 left;
1755 	unsigned long val;
1756 
1757 	if (!event->hw.idx || !event->hw.sample_period)
1758 		return;
1759 
1760 	if (!(event->hw.state & PERF_HES_STOPPED))
1761 		return;
1762 
1763 	if (ef_flags & PERF_EF_RELOAD)
1764 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1765 
1766 	local_irq_save(flags);
1767 	perf_pmu_disable(event->pmu);
1768 
1769 	event->hw.state = 0;
1770 	left = local64_read(&event->hw.period_left);
1771 
1772 	val = 0;
1773 	if (left < 0x80000000L)
1774 		val = 0x80000000L - left;
1775 
1776 	write_pmc(event->hw.idx, val);
1777 
1778 	perf_event_update_userpage(event);
1779 	perf_pmu_enable(event->pmu);
1780 	local_irq_restore(flags);
1781 }
1782 
1783 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1784 {
1785 	unsigned long flags;
1786 
1787 	if (!event->hw.idx || !event->hw.sample_period)
1788 		return;
1789 
1790 	if (event->hw.state & PERF_HES_STOPPED)
1791 		return;
1792 
1793 	local_irq_save(flags);
1794 	perf_pmu_disable(event->pmu);
1795 
1796 	power_pmu_read(event);
1797 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1798 	write_pmc(event->hw.idx, 0);
1799 
1800 	perf_event_update_userpage(event);
1801 	perf_pmu_enable(event->pmu);
1802 	local_irq_restore(flags);
1803 }
1804 
1805 /*
1806  * Start group events scheduling transaction
1807  * Set the flag to make pmu::enable() not perform the
1808  * schedulability test, it will be performed at commit time
1809  *
1810  * We only support PERF_PMU_TXN_ADD transactions. Save the
1811  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1812  * transactions.
1813  */
1814 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1815 {
1816 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1817 
1818 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1819 
1820 	cpuhw->txn_flags = txn_flags;
1821 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1822 		return;
1823 
1824 	perf_pmu_disable(pmu);
1825 	cpuhw->n_txn_start = cpuhw->n_events;
1826 }
1827 
1828 /*
1829  * Stop group events scheduling transaction
1830  * Clear the flag and pmu::enable() will perform the
1831  * schedulability test.
1832  */
1833 static void power_pmu_cancel_txn(struct pmu *pmu)
1834 {
1835 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1836 	unsigned int txn_flags;
1837 
1838 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1839 
1840 	txn_flags = cpuhw->txn_flags;
1841 	cpuhw->txn_flags = 0;
1842 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1843 		return;
1844 
1845 	perf_pmu_enable(pmu);
1846 }
1847 
1848 /*
1849  * Commit group events scheduling transaction
1850  * Perform the group schedulability test as a whole
1851  * Return 0 if success
1852  */
1853 static int power_pmu_commit_txn(struct pmu *pmu)
1854 {
1855 	struct cpu_hw_events *cpuhw;
1856 	long i, n;
1857 
1858 	if (!ppmu)
1859 		return -EAGAIN;
1860 
1861 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1862 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1863 
1864 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1865 		cpuhw->txn_flags = 0;
1866 		return 0;
1867 	}
1868 
1869 	n = cpuhw->n_events;
1870 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1871 		return -EAGAIN;
1872 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
1873 	if (i < 0)
1874 		return -EAGAIN;
1875 
1876 	for (i = cpuhw->n_txn_start; i < n; ++i)
1877 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1878 
1879 	cpuhw->txn_flags = 0;
1880 	perf_pmu_enable(pmu);
1881 	return 0;
1882 }
1883 
1884 /*
1885  * Return 1 if we might be able to put event on a limited PMC,
1886  * or 0 if not.
1887  * An event can only go on a limited PMC if it counts something
1888  * that a limited PMC can count, doesn't require interrupts, and
1889  * doesn't exclude any processor mode.
1890  */
1891 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1892 				 unsigned int flags)
1893 {
1894 	int n;
1895 	u64 alt[MAX_EVENT_ALTERNATIVES];
1896 
1897 	if (event->attr.exclude_user
1898 	    || event->attr.exclude_kernel
1899 	    || event->attr.exclude_hv
1900 	    || event->attr.sample_period)
1901 		return 0;
1902 
1903 	if (ppmu->limited_pmc_event(ev))
1904 		return 1;
1905 
1906 	/*
1907 	 * The requested event_id isn't on a limited PMC already;
1908 	 * see if any alternative code goes on a limited PMC.
1909 	 */
1910 	if (!ppmu->get_alternatives)
1911 		return 0;
1912 
1913 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1914 	n = ppmu->get_alternatives(ev, flags, alt);
1915 
1916 	return n > 0;
1917 }
1918 
1919 /*
1920  * Find an alternative event_id that goes on a normal PMC, if possible,
1921  * and return the event_id code, or 0 if there is no such alternative.
1922  * (Note: event_id code 0 is "don't count" on all machines.)
1923  */
1924 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1925 {
1926 	u64 alt[MAX_EVENT_ALTERNATIVES];
1927 	int n;
1928 
1929 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1930 	n = ppmu->get_alternatives(ev, flags, alt);
1931 	if (!n)
1932 		return 0;
1933 	return alt[0];
1934 }
1935 
1936 /* Number of perf_events counting hardware events */
1937 static atomic_t num_events;
1938 /* Used to avoid races in calling reserve/release_pmc_hardware */
1939 static DEFINE_MUTEX(pmc_reserve_mutex);
1940 
1941 /*
1942  * Release the PMU if this is the last perf_event.
1943  */
1944 static void hw_perf_event_destroy(struct perf_event *event)
1945 {
1946 	if (!atomic_add_unless(&num_events, -1, 1)) {
1947 		mutex_lock(&pmc_reserve_mutex);
1948 		if (atomic_dec_return(&num_events) == 0)
1949 			release_pmc_hardware();
1950 		mutex_unlock(&pmc_reserve_mutex);
1951 	}
1952 }
1953 
1954 /*
1955  * Translate a generic cache event_id config to a raw event_id code.
1956  */
1957 static int hw_perf_cache_event(u64 config, u64 *eventp)
1958 {
1959 	unsigned long type, op, result;
1960 	u64 ev;
1961 
1962 	if (!ppmu->cache_events)
1963 		return -EINVAL;
1964 
1965 	/* unpack config */
1966 	type = config & 0xff;
1967 	op = (config >> 8) & 0xff;
1968 	result = (config >> 16) & 0xff;
1969 
1970 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1971 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1972 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1973 		return -EINVAL;
1974 
1975 	ev = (*ppmu->cache_events)[type][op][result];
1976 	if (ev == 0)
1977 		return -EOPNOTSUPP;
1978 	if (ev == -1)
1979 		return -EINVAL;
1980 	*eventp = ev;
1981 	return 0;
1982 }
1983 
1984 static bool is_event_blacklisted(u64 ev)
1985 {
1986 	int i;
1987 
1988 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1989 		if (ppmu->blacklist_ev[i] == ev)
1990 			return true;
1991 	}
1992 
1993 	return false;
1994 }
1995 
1996 static int power_pmu_event_init(struct perf_event *event)
1997 {
1998 	u64 ev;
1999 	unsigned long flags, irq_flags;
2000 	struct perf_event *ctrs[MAX_HWEVENTS];
2001 	u64 events[MAX_HWEVENTS];
2002 	unsigned int cflags[MAX_HWEVENTS];
2003 	int n;
2004 	int err;
2005 	struct cpu_hw_events *cpuhw;
2006 
2007 	if (!ppmu)
2008 		return -ENOENT;
2009 
2010 	if (has_branch_stack(event)) {
2011 	        /* PMU has BHRB enabled */
2012 		if (!(ppmu->flags & PPMU_ARCH_207S))
2013 			return -EOPNOTSUPP;
2014 	}
2015 
2016 	switch (event->attr.type) {
2017 	case PERF_TYPE_HARDWARE:
2018 		ev = event->attr.config;
2019 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
2020 			return -EOPNOTSUPP;
2021 
2022 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2023 			return -EINVAL;
2024 		ev = ppmu->generic_events[ev];
2025 		break;
2026 	case PERF_TYPE_HW_CACHE:
2027 		err = hw_perf_cache_event(event->attr.config, &ev);
2028 		if (err)
2029 			return err;
2030 
2031 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2032 			return -EINVAL;
2033 		break;
2034 	case PERF_TYPE_RAW:
2035 		ev = event->attr.config;
2036 
2037 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2038 			return -EINVAL;
2039 		break;
2040 	default:
2041 		return -ENOENT;
2042 	}
2043 
2044 	/*
2045 	 * PMU config registers have fields that are
2046 	 * reserved and some specific values for bit fields are reserved.
2047 	 * For ex., MMCRA[61:62] is Random Sampling Mode (SM)
2048 	 * and value of 0b11 to this field is reserved.
2049 	 * Check for invalid values in attr.config.
2050 	 */
2051 	if (ppmu->check_attr_config &&
2052 	    ppmu->check_attr_config(event))
2053 		return -EINVAL;
2054 
2055 	event->hw.config_base = ev;
2056 	event->hw.idx = 0;
2057 
2058 	/*
2059 	 * If we are not running on a hypervisor, force the
2060 	 * exclude_hv bit to 0 so that we don't care what
2061 	 * the user set it to.
2062 	 */
2063 	if (!firmware_has_feature(FW_FEATURE_LPAR))
2064 		event->attr.exclude_hv = 0;
2065 
2066 	/*
2067 	 * If this is a per-task event, then we can use
2068 	 * PM_RUN_* events interchangeably with their non RUN_*
2069 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
2070 	 * XXX we should check if the task is an idle task.
2071 	 */
2072 	flags = 0;
2073 	if (event->attach_state & PERF_ATTACH_TASK)
2074 		flags |= PPMU_ONLY_COUNT_RUN;
2075 
2076 	/*
2077 	 * If this machine has limited events, check whether this
2078 	 * event_id could go on a limited event.
2079 	 */
2080 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
2081 		if (can_go_on_limited_pmc(event, ev, flags)) {
2082 			flags |= PPMU_LIMITED_PMC_OK;
2083 		} else if (ppmu->limited_pmc_event(ev)) {
2084 			/*
2085 			 * The requested event_id is on a limited PMC,
2086 			 * but we can't use a limited PMC; see if any
2087 			 * alternative goes on a normal PMC.
2088 			 */
2089 			ev = normal_pmc_alternative(ev, flags);
2090 			if (!ev)
2091 				return -EINVAL;
2092 		}
2093 	}
2094 
2095 	/* Extra checks for EBB */
2096 	err = ebb_event_check(event);
2097 	if (err)
2098 		return err;
2099 
2100 	/*
2101 	 * If this is in a group, check if it can go on with all the
2102 	 * other hardware events in the group.  We assume the event
2103 	 * hasn't been linked into its leader's sibling list at this point.
2104 	 */
2105 	n = 0;
2106 	if (event->group_leader != event) {
2107 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
2108 				   ctrs, events, cflags);
2109 		if (n < 0)
2110 			return -EINVAL;
2111 	}
2112 	events[n] = ev;
2113 	ctrs[n] = event;
2114 	cflags[n] = flags;
2115 	if (check_excludes(ctrs, cflags, n, 1))
2116 		return -EINVAL;
2117 
2118 	local_irq_save(irq_flags);
2119 	cpuhw = this_cpu_ptr(&cpu_hw_events);
2120 
2121 	err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);
2122 
2123 	if (has_branch_stack(event)) {
2124 		u64 bhrb_filter = -1;
2125 
2126 		/*
2127 		 * Currently no PMU supports having multiple branch filters
2128 		 * at the same time. Branch filters are set via MMCRA IFM[32:33]
2129 		 * bits for Power8 and above. Return EOPNOTSUPP when multiple
2130 		 * branch filters are requested in the event attr.
2131 		 *
2132 		 * When opening event via perf_event_open(), branch_sample_type
2133 		 * gets adjusted in perf_copy_attr(). Kernel will automatically
2134 		 * adjust the branch_sample_type based on the event modifier
2135 		 * settings to include PERF_SAMPLE_BRANCH_PLM_ALL. Hence drop
2136 		 * the check for PERF_SAMPLE_BRANCH_PLM_ALL.
2137 		 */
2138 		if (hweight64(event->attr.branch_sample_type & ~PERF_SAMPLE_BRANCH_PLM_ALL) > 1) {
2139 			local_irq_restore(irq_flags);
2140 			return -EOPNOTSUPP;
2141 		}
2142 
2143 		if (ppmu->bhrb_filter_map)
2144 			bhrb_filter = ppmu->bhrb_filter_map(
2145 					event->attr.branch_sample_type);
2146 
2147 		if (bhrb_filter == -1) {
2148 			local_irq_restore(irq_flags);
2149 			return -EOPNOTSUPP;
2150 		}
2151 		cpuhw->bhrb_filter = bhrb_filter;
2152 	}
2153 
2154 	local_irq_restore(irq_flags);
2155 	if (err)
2156 		return -EINVAL;
2157 
2158 	event->hw.config = events[n];
2159 	event->hw.event_base = cflags[n];
2160 	event->hw.last_period = event->hw.sample_period;
2161 	local64_set(&event->hw.period_left, event->hw.last_period);
2162 
2163 	/*
2164 	 * For EBB events we just context switch the PMC value, we don't do any
2165 	 * of the sample_period logic. We use hw.prev_count for this.
2166 	 */
2167 	if (is_ebb_event(event))
2168 		local64_set(&event->hw.prev_count, 0);
2169 
2170 	/*
2171 	 * See if we need to reserve the PMU.
2172 	 * If no events are currently in use, then we have to take a
2173 	 * mutex to ensure that we don't race with another task doing
2174 	 * reserve_pmc_hardware or release_pmc_hardware.
2175 	 */
2176 	err = 0;
2177 	if (!atomic_inc_not_zero(&num_events)) {
2178 		mutex_lock(&pmc_reserve_mutex);
2179 		if (atomic_read(&num_events) == 0 &&
2180 		    reserve_pmc_hardware(perf_event_interrupt))
2181 			err = -EBUSY;
2182 		else
2183 			atomic_inc(&num_events);
2184 		mutex_unlock(&pmc_reserve_mutex);
2185 	}
2186 	event->destroy = hw_perf_event_destroy;
2187 
2188 	return err;
2189 }
2190 
2191 static int power_pmu_event_idx(struct perf_event *event)
2192 {
2193 	return event->hw.idx;
2194 }
2195 
2196 ssize_t power_events_sysfs_show(struct device *dev,
2197 				struct device_attribute *attr, char *page)
2198 {
2199 	struct perf_pmu_events_attr *pmu_attr;
2200 
2201 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2202 
2203 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2204 }
2205 
2206 static struct pmu power_pmu = {
2207 	.pmu_enable	= power_pmu_enable,
2208 	.pmu_disable	= power_pmu_disable,
2209 	.event_init	= power_pmu_event_init,
2210 	.add		= power_pmu_add,
2211 	.del		= power_pmu_del,
2212 	.start		= power_pmu_start,
2213 	.stop		= power_pmu_stop,
2214 	.read		= power_pmu_read,
2215 	.start_txn	= power_pmu_start_txn,
2216 	.cancel_txn	= power_pmu_cancel_txn,
2217 	.commit_txn	= power_pmu_commit_txn,
2218 	.event_idx	= power_pmu_event_idx,
2219 	.sched_task	= power_pmu_sched_task,
2220 };
2221 
2222 #define PERF_SAMPLE_ADDR_TYPE  (PERF_SAMPLE_ADDR |		\
2223 				PERF_SAMPLE_PHYS_ADDR |		\
2224 				PERF_SAMPLE_DATA_PAGE_SIZE)
2225 /*
2226  * A counter has overflowed; update its count and record
2227  * things if requested.  Note that interrupts are hard-disabled
2228  * here so there is no possibility of being interrupted.
2229  */
2230 static void record_and_restart(struct perf_event *event, unsigned long val,
2231 			       struct pt_regs *regs)
2232 {
2233 	u64 period = event->hw.sample_period;
2234 	s64 prev, delta, left;
2235 	int record = 0;
2236 
2237 	if (event->hw.state & PERF_HES_STOPPED) {
2238 		write_pmc(event->hw.idx, 0);
2239 		return;
2240 	}
2241 
2242 	/* we don't have to worry about interrupts here */
2243 	prev = local64_read(&event->hw.prev_count);
2244 	delta = check_and_compute_delta(prev, val);
2245 	local64_add(delta, &event->count);
2246 
2247 	/*
2248 	 * See if the total period for this event has expired,
2249 	 * and update for the next period.
2250 	 */
2251 	val = 0;
2252 	left = local64_read(&event->hw.period_left) - delta;
2253 	if (delta == 0)
2254 		left++;
2255 	if (period) {
2256 		if (left <= 0) {
2257 			left += period;
2258 			if (left <= 0)
2259 				left = period;
2260 
2261 			/*
2262 			 * If address is not requested in the sample via
2263 			 * PERF_SAMPLE_IP, just record that sample irrespective
2264 			 * of SIAR valid check.
2265 			 */
2266 			if (event->attr.sample_type & PERF_SAMPLE_IP)
2267 				record = siar_valid(regs);
2268 			else
2269 				record = 1;
2270 
2271 			event->hw.last_period = event->hw.sample_period;
2272 		}
2273 		if (left < 0x80000000LL)
2274 			val = 0x80000000LL - left;
2275 	}
2276 
2277 	write_pmc(event->hw.idx, val);
2278 	local64_set(&event->hw.prev_count, val);
2279 	local64_set(&event->hw.period_left, left);
2280 	perf_event_update_userpage(event);
2281 
2282 	/*
2283 	 * Due to hardware limitation, sometimes SIAR could sample a kernel
2284 	 * address even when freeze on supervisor state (kernel) is set in
2285 	 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2286 	 * these cases.
2287 	 */
2288 	if (event->attr.exclude_kernel &&
2289 	    (event->attr.sample_type & PERF_SAMPLE_IP) &&
2290 	    is_kernel_addr(mfspr(SPRN_SIAR)))
2291 		record = 0;
2292 
2293 	/*
2294 	 * Finally record data if requested.
2295 	 */
2296 	if (record) {
2297 		struct perf_sample_data data;
2298 
2299 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2300 
2301 		if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2302 			perf_get_data_addr(event, regs, &data.addr);
2303 
2304 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2305 			struct cpu_hw_events *cpuhw;
2306 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2307 			power_pmu_bhrb_read(event, cpuhw);
2308 			perf_sample_save_brstack(&data, event, &cpuhw->bhrb_stack, NULL);
2309 		}
2310 
2311 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2312 						ppmu->get_mem_data_src) {
2313 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2314 			data.sample_flags |= PERF_SAMPLE_DATA_SRC;
2315 		}
2316 
2317 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
2318 						ppmu->get_mem_weight) {
2319 			ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
2320 			data.sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2321 		}
2322 		if (perf_event_overflow(event, &data, regs))
2323 			power_pmu_stop(event, 0);
2324 	} else if (period) {
2325 		/* Account for interrupt in case of invalid SIAR */
2326 		if (perf_event_account_interrupt(event))
2327 			power_pmu_stop(event, 0);
2328 	}
2329 }
2330 
2331 /*
2332  * Called from generic code to get the misc flags (i.e. processor mode)
2333  * for an event_id.
2334  */
2335 unsigned long perf_misc_flags(struct pt_regs *regs)
2336 {
2337 	u32 flags = perf_get_misc_flags(regs);
2338 
2339 	if (flags)
2340 		return flags;
2341 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2342 		PERF_RECORD_MISC_KERNEL;
2343 }
2344 
2345 /*
2346  * Called from generic code to get the instruction pointer
2347  * for an event_id.
2348  */
2349 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2350 {
2351 	unsigned long siar = mfspr(SPRN_SIAR);
2352 
2353 	if (regs_use_siar(regs) && siar_valid(regs) && siar)
2354 		return siar + perf_ip_adjust(regs);
2355 	else
2356 		return regs->nip;
2357 }
2358 
2359 static bool pmc_overflow_power7(unsigned long val)
2360 {
2361 	/*
2362 	 * Events on POWER7 can roll back if a speculative event doesn't
2363 	 * eventually complete. Unfortunately in some rare cases they will
2364 	 * raise a performance monitor exception. We need to catch this to
2365 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2366 	 * cycles from overflow.
2367 	 *
2368 	 * We only do this if the first pass fails to find any overflowing
2369 	 * PMCs because a user might set a period of less than 256 and we
2370 	 * don't want to mistakenly reset them.
2371 	 */
2372 	if ((0x80000000 - val) <= 256)
2373 		return true;
2374 
2375 	return false;
2376 }
2377 
2378 static bool pmc_overflow(unsigned long val)
2379 {
2380 	if ((int)val < 0)
2381 		return true;
2382 
2383 	return false;
2384 }
2385 
2386 /*
2387  * Performance monitor interrupt stuff
2388  */
2389 static void __perf_event_interrupt(struct pt_regs *regs)
2390 {
2391 	int i, j;
2392 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2393 	struct perf_event *event;
2394 	int found, active;
2395 
2396 	if (cpuhw->n_limited)
2397 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2398 					mfspr(SPRN_PMC6));
2399 
2400 	perf_read_regs(regs);
2401 
2402 	/* Read all the PMCs since we'll need them a bunch of times */
2403 	for (i = 0; i < ppmu->n_counter; ++i)
2404 		cpuhw->pmcs[i] = read_pmc(i + 1);
2405 
2406 	/* Try to find what caused the IRQ */
2407 	found = 0;
2408 	for (i = 0; i < ppmu->n_counter; ++i) {
2409 		if (!pmc_overflow(cpuhw->pmcs[i]))
2410 			continue;
2411 		if (is_limited_pmc(i + 1))
2412 			continue; /* these won't generate IRQs */
2413 		/*
2414 		 * We've found one that's overflowed.  For active
2415 		 * counters we need to log this.  For inactive
2416 		 * counters, we need to reset it anyway
2417 		 */
2418 		found = 1;
2419 		active = 0;
2420 		for (j = 0; j < cpuhw->n_events; ++j) {
2421 			event = cpuhw->event[j];
2422 			if (event->hw.idx == (i + 1)) {
2423 				active = 1;
2424 				record_and_restart(event, cpuhw->pmcs[i], regs);
2425 				break;
2426 			}
2427 		}
2428 
2429 		/*
2430 		 * Clear PACA_IRQ_PMI in case it was set by
2431 		 * set_pmi_irq_pending() when PMU was enabled
2432 		 * after accounting for interrupts.
2433 		 */
2434 		clear_pmi_irq_pending();
2435 
2436 		if (!active)
2437 			/* reset non active counters that have overflowed */
2438 			write_pmc(i + 1, 0);
2439 	}
2440 	if (!found && pvr_version_is(PVR_POWER7)) {
2441 		/* check active counters for special buggy p7 overflow */
2442 		for (i = 0; i < cpuhw->n_events; ++i) {
2443 			event = cpuhw->event[i];
2444 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2445 				continue;
2446 			if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
2447 				/* event has overflowed in a buggy way*/
2448 				found = 1;
2449 				record_and_restart(event,
2450 						   cpuhw->pmcs[event->hw.idx - 1],
2451 						   regs);
2452 			}
2453 		}
2454 	}
2455 
2456 	/*
2457 	 * During system wide profiling or while specific CPU is monitored for an
2458 	 * event, some corner cases could cause PMC to overflow in idle path. This
2459 	 * will trigger a PMI after waking up from idle. Since counter values are _not_
2460 	 * saved/restored in idle path, can lead to below "Can't find PMC" message.
2461 	 */
2462 	if (unlikely(!found) && !arch_irq_disabled_regs(regs))
2463 		printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
2464 
2465 	/*
2466 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2467 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2468 	 * and thus allow interrupts to occur again.
2469 	 * XXX might want to use MSR.PM to keep the events frozen until
2470 	 * we get back out of this interrupt.
2471 	 */
2472 	write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2473 
2474 	/* Clear the cpuhw->pmcs */
2475 	memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
2476 
2477 }
2478 
2479 static void perf_event_interrupt(struct pt_regs *regs)
2480 {
2481 	u64 start_clock = sched_clock();
2482 
2483 	__perf_event_interrupt(regs);
2484 	perf_sample_event_took(sched_clock() - start_clock);
2485 }
2486 
2487 static int power_pmu_prepare_cpu(unsigned int cpu)
2488 {
2489 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2490 
2491 	if (ppmu) {
2492 		memset(cpuhw, 0, sizeof(*cpuhw));
2493 		cpuhw->mmcr.mmcr0 = MMCR0_FC;
2494 	}
2495 	return 0;
2496 }
2497 
2498 static ssize_t pmu_name_show(struct device *cdev,
2499 		struct device_attribute *attr,
2500 		char *buf)
2501 {
2502 	if (ppmu)
2503 		return sysfs_emit(buf, "%s", ppmu->name);
2504 
2505 	return 0;
2506 }
2507 
2508 static DEVICE_ATTR_RO(pmu_name);
2509 
2510 static struct attribute *pmu_caps_attrs[] = {
2511 	&dev_attr_pmu_name.attr,
2512 	NULL
2513 };
2514 
2515 static const struct attribute_group pmu_caps_group = {
2516 	.name  = "caps",
2517 	.attrs = pmu_caps_attrs,
2518 };
2519 
2520 static const struct attribute_group *pmu_caps_groups[] = {
2521 	&pmu_caps_group,
2522 	NULL,
2523 };
2524 
2525 int __init register_power_pmu(struct power_pmu *pmu)
2526 {
2527 	if (ppmu)
2528 		return -EBUSY;		/* something's already registered */
2529 
2530 	ppmu = pmu;
2531 	pr_info("%s performance monitor hardware support registered\n",
2532 		pmu->name);
2533 
2534 	power_pmu.attr_groups = ppmu->attr_groups;
2535 
2536 	if (ppmu->flags & PPMU_ARCH_207S)
2537 		power_pmu.attr_update = pmu_caps_groups;
2538 
2539 	power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2540 
2541 #ifdef MSR_HV
2542 	/*
2543 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2544 	 */
2545 	if (mfmsr() & MSR_HV)
2546 		freeze_events_kernel = MMCR0_FCHV;
2547 #endif /* CONFIG_PPC64 */
2548 
2549 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2550 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2551 			  power_pmu_prepare_cpu, NULL);
2552 	return 0;
2553 }
2554 
2555 #ifdef CONFIG_PPC64
2556 static bool pmu_override = false;
2557 static unsigned long pmu_override_val;
2558 static void do_pmu_override(void *data)
2559 {
2560 	ppc_set_pmu_inuse(1);
2561 	if (pmu_override_val)
2562 		mtspr(SPRN_MMCR1, pmu_override_val);
2563 	mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC);
2564 }
2565 
2566 static int __init init_ppc64_pmu(void)
2567 {
2568 	if (cpu_has_feature(CPU_FTR_HVMODE) && pmu_override) {
2569 		pr_warn("disabling perf due to pmu_override= command line option.\n");
2570 		on_each_cpu(do_pmu_override, NULL, 1);
2571 		return 0;
2572 	}
2573 
2574 	/* run through all the pmu drivers one at a time */
2575 	if (!init_power5_pmu())
2576 		return 0;
2577 	else if (!init_power5p_pmu())
2578 		return 0;
2579 	else if (!init_power6_pmu())
2580 		return 0;
2581 	else if (!init_power7_pmu())
2582 		return 0;
2583 	else if (!init_power8_pmu())
2584 		return 0;
2585 	else if (!init_power9_pmu())
2586 		return 0;
2587 	else if (!init_power10_pmu())
2588 		return 0;
2589 	else if (!init_power11_pmu())
2590 		return 0;
2591 	else if (!init_ppc970_pmu())
2592 		return 0;
2593 	else
2594 		return init_generic_compat_pmu();
2595 }
2596 early_initcall(init_ppc64_pmu);
2597 
2598 static int __init pmu_setup(char *str)
2599 {
2600 	unsigned long val;
2601 
2602 	if (!early_cpu_has_feature(CPU_FTR_HVMODE))
2603 		return 0;
2604 
2605 	pmu_override = true;
2606 
2607 	if (kstrtoul(str, 0, &val))
2608 		val = 0;
2609 
2610 	pmu_override_val = val;
2611 
2612 	return 1;
2613 }
2614 __setup("pmu_override=", pmu_setup);
2615 
2616 #endif
2617