xref: /linux/arch/powerpc/perf/core-book3s.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * Performance event support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
23 
24 #define BHRB_MAX_ENTRIES	32
25 #define BHRB_TARGET		0x0000000000000002
26 #define BHRB_PREDICTION		0x0000000000000001
27 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28 
29 struct cpu_hw_events {
30 	int n_events;
31 	int n_percpu;
32 	int disabled;
33 	int n_added;
34 	int n_limited;
35 	u8  pmcs_enabled;
36 	struct perf_event *event[MAX_HWEVENTS];
37 	u64 events[MAX_HWEVENTS];
38 	unsigned int flags[MAX_HWEVENTS];
39 	/*
40 	 * The order of the MMCR array is:
41 	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 	 *  - 32-bit, MMCR0, MMCR1, MMCR2
43 	 */
44 	unsigned long mmcr[4];
45 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 
51 	unsigned int group_flag;
52 	int n_txn_start;
53 
54 	/* BHRB bits */
55 	u64				bhrb_filter;	/* BHRB HW branch filter */
56 	int				bhrb_users;
57 	void				*bhrb_context;
58 	struct	perf_branch_stack	bhrb_stack;
59 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
60 };
61 
62 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
63 
64 struct power_pmu *ppmu;
65 
66 /*
67  * Normally, to ignore kernel events we set the FCS (freeze counters
68  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
69  * hypervisor bit set in the MSR, or if we are running on a processor
70  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
71  * then we need to use the FCHV bit to ignore kernel events.
72  */
73 static unsigned int freeze_events_kernel = MMCR0_FCS;
74 
75 /*
76  * 32-bit doesn't have MMCRA but does have an MMCR2,
77  * and a few other names are different.
78  */
79 #ifdef CONFIG_PPC32
80 
81 #define MMCR0_FCHV		0
82 #define MMCR0_PMCjCE		MMCR0_PMCnCE
83 #define MMCR0_FC56		0
84 #define MMCR0_PMAO		0
85 #define MMCR0_EBE		0
86 #define MMCR0_BHRBA		0
87 #define MMCR0_PMCC		0
88 #define MMCR0_PMCC_U6		0
89 
90 #define SPRN_MMCRA		SPRN_MMCR2
91 #define MMCRA_SAMPLE_ENABLE	0
92 
93 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
94 {
95 	return 0;
96 }
97 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
98 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
99 {
100 	return 0;
101 }
102 static inline void perf_read_regs(struct pt_regs *regs)
103 {
104 	regs->result = 0;
105 }
106 static inline int perf_intr_is_nmi(struct pt_regs *regs)
107 {
108 	return 0;
109 }
110 
111 static inline int siar_valid(struct pt_regs *regs)
112 {
113 	return 1;
114 }
115 
116 static bool is_ebb_event(struct perf_event *event) { return false; }
117 static int ebb_event_check(struct perf_event *event) { return 0; }
118 static void ebb_event_add(struct perf_event *event) { }
119 static void ebb_switch_out(unsigned long mmcr0) { }
120 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
121 {
122 	return cpuhw->mmcr[0];
123 }
124 
125 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
126 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
127 void power_pmu_flush_branch_stack(void) {}
128 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
129 static void pmao_restore_workaround(bool ebb) { }
130 #endif /* CONFIG_PPC32 */
131 
132 static bool regs_use_siar(struct pt_regs *regs)
133 {
134 	return !!regs->result;
135 }
136 
137 /*
138  * Things that are specific to 64-bit implementations.
139  */
140 #ifdef CONFIG_PPC64
141 
142 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
143 {
144 	unsigned long mmcra = regs->dsisr;
145 
146 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
147 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
148 		if (slot > 1)
149 			return 4 * (slot - 1);
150 	}
151 
152 	return 0;
153 }
154 
155 /*
156  * The user wants a data address recorded.
157  * If we're not doing instruction sampling, give them the SDAR
158  * (sampled data address).  If we are doing instruction sampling, then
159  * only give them the SDAR if it corresponds to the instruction
160  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
161  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
162  */
163 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
164 {
165 	unsigned long mmcra = regs->dsisr;
166 	bool sdar_valid;
167 
168 	if (ppmu->flags & PPMU_HAS_SIER)
169 		sdar_valid = regs->dar & SIER_SDAR_VALID;
170 	else {
171 		unsigned long sdsync;
172 
173 		if (ppmu->flags & PPMU_SIAR_VALID)
174 			sdsync = POWER7P_MMCRA_SDAR_VALID;
175 		else if (ppmu->flags & PPMU_ALT_SIPR)
176 			sdsync = POWER6_MMCRA_SDSYNC;
177 		else
178 			sdsync = MMCRA_SDSYNC;
179 
180 		sdar_valid = mmcra & sdsync;
181 	}
182 
183 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
184 		*addrp = mfspr(SPRN_SDAR);
185 }
186 
187 static bool regs_sihv(struct pt_regs *regs)
188 {
189 	unsigned long sihv = MMCRA_SIHV;
190 
191 	if (ppmu->flags & PPMU_HAS_SIER)
192 		return !!(regs->dar & SIER_SIHV);
193 
194 	if (ppmu->flags & PPMU_ALT_SIPR)
195 		sihv = POWER6_MMCRA_SIHV;
196 
197 	return !!(regs->dsisr & sihv);
198 }
199 
200 static bool regs_sipr(struct pt_regs *regs)
201 {
202 	unsigned long sipr = MMCRA_SIPR;
203 
204 	if (ppmu->flags & PPMU_HAS_SIER)
205 		return !!(regs->dar & SIER_SIPR);
206 
207 	if (ppmu->flags & PPMU_ALT_SIPR)
208 		sipr = POWER6_MMCRA_SIPR;
209 
210 	return !!(regs->dsisr & sipr);
211 }
212 
213 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
214 {
215 	if (regs->msr & MSR_PR)
216 		return PERF_RECORD_MISC_USER;
217 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
218 		return PERF_RECORD_MISC_HYPERVISOR;
219 	return PERF_RECORD_MISC_KERNEL;
220 }
221 
222 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
223 {
224 	bool use_siar = regs_use_siar(regs);
225 
226 	if (!use_siar)
227 		return perf_flags_from_msr(regs);
228 
229 	/*
230 	 * If we don't have flags in MMCRA, rather than using
231 	 * the MSR, we intuit the flags from the address in
232 	 * SIAR which should give slightly more reliable
233 	 * results
234 	 */
235 	if (ppmu->flags & PPMU_NO_SIPR) {
236 		unsigned long siar = mfspr(SPRN_SIAR);
237 		if (siar >= PAGE_OFFSET)
238 			return PERF_RECORD_MISC_KERNEL;
239 		return PERF_RECORD_MISC_USER;
240 	}
241 
242 	/* PR has priority over HV, so order below is important */
243 	if (regs_sipr(regs))
244 		return PERF_RECORD_MISC_USER;
245 
246 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
247 		return PERF_RECORD_MISC_HYPERVISOR;
248 
249 	return PERF_RECORD_MISC_KERNEL;
250 }
251 
252 /*
253  * Overload regs->dsisr to store MMCRA so we only need to read it once
254  * on each interrupt.
255  * Overload regs->dar to store SIER if we have it.
256  * Overload regs->result to specify whether we should use the MSR (result
257  * is zero) or the SIAR (result is non zero).
258  */
259 static inline void perf_read_regs(struct pt_regs *regs)
260 {
261 	unsigned long mmcra = mfspr(SPRN_MMCRA);
262 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
263 	int use_siar;
264 
265 	regs->dsisr = mmcra;
266 
267 	if (ppmu->flags & PPMU_HAS_SIER)
268 		regs->dar = mfspr(SPRN_SIER);
269 
270 	/*
271 	 * If this isn't a PMU exception (eg a software event) the SIAR is
272 	 * not valid. Use pt_regs.
273 	 *
274 	 * If it is a marked event use the SIAR.
275 	 *
276 	 * If the PMU doesn't update the SIAR for non marked events use
277 	 * pt_regs.
278 	 *
279 	 * If the PMU has HV/PR flags then check to see if they
280 	 * place the exception in userspace. If so, use pt_regs. In
281 	 * continuous sampling mode the SIAR and the PMU exception are
282 	 * not synchronised, so they may be many instructions apart.
283 	 * This can result in confusing backtraces. We still want
284 	 * hypervisor samples as well as samples in the kernel with
285 	 * interrupts off hence the userspace check.
286 	 */
287 	if (TRAP(regs) != 0xf00)
288 		use_siar = 0;
289 	else if (marked)
290 		use_siar = 1;
291 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
292 		use_siar = 0;
293 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
294 		use_siar = 0;
295 	else
296 		use_siar = 1;
297 
298 	regs->result = use_siar;
299 }
300 
301 /*
302  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
303  * it as an NMI.
304  */
305 static inline int perf_intr_is_nmi(struct pt_regs *regs)
306 {
307 	return !regs->softe;
308 }
309 
310 /*
311  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
312  * must be sampled only if the SIAR-valid bit is set.
313  *
314  * For unmarked instructions and for processors that don't have the SIAR-Valid
315  * bit, assume that SIAR is valid.
316  */
317 static inline int siar_valid(struct pt_regs *regs)
318 {
319 	unsigned long mmcra = regs->dsisr;
320 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
321 
322 	if (marked) {
323 		if (ppmu->flags & PPMU_HAS_SIER)
324 			return regs->dar & SIER_SIAR_VALID;
325 
326 		if (ppmu->flags & PPMU_SIAR_VALID)
327 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
328 	}
329 
330 	return 1;
331 }
332 
333 
334 /* Reset all possible BHRB entries */
335 static void power_pmu_bhrb_reset(void)
336 {
337 	asm volatile(PPC_CLRBHRB);
338 }
339 
340 static void power_pmu_bhrb_enable(struct perf_event *event)
341 {
342 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
343 
344 	if (!ppmu->bhrb_nr)
345 		return;
346 
347 	/* Clear BHRB if we changed task context to avoid data leaks */
348 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
349 		power_pmu_bhrb_reset();
350 		cpuhw->bhrb_context = event->ctx;
351 	}
352 	cpuhw->bhrb_users++;
353 }
354 
355 static void power_pmu_bhrb_disable(struct perf_event *event)
356 {
357 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
358 
359 	if (!ppmu->bhrb_nr)
360 		return;
361 
362 	cpuhw->bhrb_users--;
363 	WARN_ON_ONCE(cpuhw->bhrb_users < 0);
364 
365 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
366 		/* BHRB cannot be turned off when other
367 		 * events are active on the PMU.
368 		 */
369 
370 		/* avoid stale pointer */
371 		cpuhw->bhrb_context = NULL;
372 	}
373 }
374 
375 /* Called from ctxsw to prevent one process's branch entries to
376  * mingle with the other process's entries during context switch.
377  */
378 void power_pmu_flush_branch_stack(void)
379 {
380 	if (ppmu->bhrb_nr)
381 		power_pmu_bhrb_reset();
382 }
383 /* Calculate the to address for a branch */
384 static __u64 power_pmu_bhrb_to(u64 addr)
385 {
386 	unsigned int instr;
387 	int ret;
388 	__u64 target;
389 
390 	if (is_kernel_addr(addr))
391 		return branch_target((unsigned int *)addr);
392 
393 	/* Userspace: need copy instruction here then translate it */
394 	pagefault_disable();
395 	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
396 	if (ret) {
397 		pagefault_enable();
398 		return 0;
399 	}
400 	pagefault_enable();
401 
402 	target = branch_target(&instr);
403 	if ((!target) || (instr & BRANCH_ABSOLUTE))
404 		return target;
405 
406 	/* Translate relative branch target from kernel to user address */
407 	return target - (unsigned long)&instr + addr;
408 }
409 
410 /* Processing BHRB entries */
411 void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
412 {
413 	u64 val;
414 	u64 addr;
415 	int r_index, u_index, pred;
416 
417 	r_index = 0;
418 	u_index = 0;
419 	while (r_index < ppmu->bhrb_nr) {
420 		/* Assembly read function */
421 		val = read_bhrb(r_index++);
422 		if (!val)
423 			/* Terminal marker: End of valid BHRB entries */
424 			break;
425 		else {
426 			addr = val & BHRB_EA;
427 			pred = val & BHRB_PREDICTION;
428 
429 			if (!addr)
430 				/* invalid entry */
431 				continue;
432 
433 			/* Branches are read most recent first (ie. mfbhrb 0 is
434 			 * the most recent branch).
435 			 * There are two types of valid entries:
436 			 * 1) a target entry which is the to address of a
437 			 *    computed goto like a blr,bctr,btar.  The next
438 			 *    entry read from the bhrb will be branch
439 			 *    corresponding to this target (ie. the actual
440 			 *    blr/bctr/btar instruction).
441 			 * 2) a from address which is an actual branch.  If a
442 			 *    target entry proceeds this, then this is the
443 			 *    matching branch for that target.  If this is not
444 			 *    following a target entry, then this is a branch
445 			 *    where the target is given as an immediate field
446 			 *    in the instruction (ie. an i or b form branch).
447 			 *    In this case we need to read the instruction from
448 			 *    memory to determine the target/to address.
449 			 */
450 
451 			if (val & BHRB_TARGET) {
452 				/* Target branches use two entries
453 				 * (ie. computed gotos/XL form)
454 				 */
455 				cpuhw->bhrb_entries[u_index].to = addr;
456 				cpuhw->bhrb_entries[u_index].mispred = pred;
457 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
458 
459 				/* Get from address in next entry */
460 				val = read_bhrb(r_index++);
461 				addr = val & BHRB_EA;
462 				if (val & BHRB_TARGET) {
463 					/* Shouldn't have two targets in a
464 					   row.. Reset index and try again */
465 					r_index--;
466 					addr = 0;
467 				}
468 				cpuhw->bhrb_entries[u_index].from = addr;
469 			} else {
470 				/* Branches to immediate field
471 				   (ie I or B form) */
472 				cpuhw->bhrb_entries[u_index].from = addr;
473 				cpuhw->bhrb_entries[u_index].to =
474 					power_pmu_bhrb_to(addr);
475 				cpuhw->bhrb_entries[u_index].mispred = pred;
476 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
477 			}
478 			u_index++;
479 
480 		}
481 	}
482 	cpuhw->bhrb_stack.nr = u_index;
483 	return;
484 }
485 
486 static bool is_ebb_event(struct perf_event *event)
487 {
488 	/*
489 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
490 	 * check that the PMU supports EBB, meaning those that don't can still
491 	 * use bit 63 of the event code for something else if they wish.
492 	 */
493 	return (ppmu->flags & PPMU_ARCH_207S) &&
494 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
495 }
496 
497 static int ebb_event_check(struct perf_event *event)
498 {
499 	struct perf_event *leader = event->group_leader;
500 
501 	/* Event and group leader must agree on EBB */
502 	if (is_ebb_event(leader) != is_ebb_event(event))
503 		return -EINVAL;
504 
505 	if (is_ebb_event(event)) {
506 		if (!(event->attach_state & PERF_ATTACH_TASK))
507 			return -EINVAL;
508 
509 		if (!leader->attr.pinned || !leader->attr.exclusive)
510 			return -EINVAL;
511 
512 		if (event->attr.freq ||
513 		    event->attr.inherit ||
514 		    event->attr.sample_type ||
515 		    event->attr.sample_period ||
516 		    event->attr.enable_on_exec)
517 			return -EINVAL;
518 	}
519 
520 	return 0;
521 }
522 
523 static void ebb_event_add(struct perf_event *event)
524 {
525 	if (!is_ebb_event(event) || current->thread.used_ebb)
526 		return;
527 
528 	/*
529 	 * IFF this is the first time we've added an EBB event, set
530 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
531 	 * userspace. We need this so that we can context switch while
532 	 * userspace is in the EBB handler (where PMXE is 0).
533 	 */
534 	current->thread.used_ebb = 1;
535 	current->thread.mmcr0 |= MMCR0_PMXE;
536 }
537 
538 static void ebb_switch_out(unsigned long mmcr0)
539 {
540 	if (!(mmcr0 & MMCR0_EBE))
541 		return;
542 
543 	current->thread.siar  = mfspr(SPRN_SIAR);
544 	current->thread.sier  = mfspr(SPRN_SIER);
545 	current->thread.sdar  = mfspr(SPRN_SDAR);
546 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
547 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
548 }
549 
550 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
551 {
552 	unsigned long mmcr0 = cpuhw->mmcr[0];
553 
554 	if (!ebb)
555 		goto out;
556 
557 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
558 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
559 
560 	/*
561 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
562 	 * with pmao_restore_workaround() because we may add PMAO but we never
563 	 * clear it here.
564 	 */
565 	mmcr0 |= current->thread.mmcr0;
566 
567 	/*
568 	 * Be careful not to set PMXE if userspace had it cleared. This is also
569 	 * compatible with pmao_restore_workaround() because it has already
570 	 * cleared PMXE and we leave PMAO alone.
571 	 */
572 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
573 		mmcr0 &= ~MMCR0_PMXE;
574 
575 	mtspr(SPRN_SIAR, current->thread.siar);
576 	mtspr(SPRN_SIER, current->thread.sier);
577 	mtspr(SPRN_SDAR, current->thread.sdar);
578 
579 	/*
580 	 * Merge the kernel & user values of MMCR2. The semantics we implement
581 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
582 	 * but not clear bits. If a task wants to be able to clear bits, ie.
583 	 * unfreeze counters, it should not set exclude_xxx in its events and
584 	 * instead manage the MMCR2 entirely by itself.
585 	 */
586 	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
587 out:
588 	return mmcr0;
589 }
590 
591 static void pmao_restore_workaround(bool ebb)
592 {
593 	unsigned pmcs[6];
594 
595 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
596 		return;
597 
598 	/*
599 	 * On POWER8E there is a hardware defect which affects the PMU context
600 	 * switch logic, ie. power_pmu_disable/enable().
601 	 *
602 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
603 	 * by the hardware. Sometime later the actual PMU exception is
604 	 * delivered.
605 	 *
606 	 * If we context switch, or simply disable/enable, the PMU prior to the
607 	 * exception arriving, the exception will be lost when we clear PMAO.
608 	 *
609 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
610 	 * set, and this _should_ generate an exception. However because of the
611 	 * defect no exception is generated when we write PMAO, and we get
612 	 * stuck with no counters counting but no exception delivered.
613 	 *
614 	 * The workaround is to detect this case and tweak the hardware to
615 	 * create another pending PMU exception.
616 	 *
617 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
618 	 * enabling the PMU. That causes a new exception to be generated in the
619 	 * chip, but we don't take it yet because we have interrupts hard
620 	 * disabled. We then write back the PMU state as we want it to be seen
621 	 * by the exception handler. When we reenable interrupts the exception
622 	 * handler will be called and see the correct state.
623 	 *
624 	 * The logic is the same for EBB, except that the exception is gated by
625 	 * us having interrupts hard disabled as well as the fact that we are
626 	 * not in userspace. The exception is finally delivered when we return
627 	 * to userspace.
628 	 */
629 
630 	/* Only if PMAO is set and PMAO_SYNC is clear */
631 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
632 		return;
633 
634 	/* If we're doing EBB, only if BESCR[GE] is set */
635 	if (ebb && !(current->thread.bescr & BESCR_GE))
636 		return;
637 
638 	/*
639 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
640 	 * enable to actually prevent the PMU exception from firing.
641 	 */
642 	hard_irq_disable();
643 
644 	/*
645 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
646 	 * Using read/write_pmc() in a for loop adds 12 function calls and
647 	 * almost doubles our code size.
648 	 */
649 	pmcs[0] = mfspr(SPRN_PMC1);
650 	pmcs[1] = mfspr(SPRN_PMC2);
651 	pmcs[2] = mfspr(SPRN_PMC3);
652 	pmcs[3] = mfspr(SPRN_PMC4);
653 	pmcs[4] = mfspr(SPRN_PMC5);
654 	pmcs[5] = mfspr(SPRN_PMC6);
655 
656 	/* Ensure all freeze bits are unset */
657 	mtspr(SPRN_MMCR2, 0);
658 
659 	/* Set up PMC6 to overflow in one cycle */
660 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
661 
662 	/* Enable exceptions and unfreeze PMC6 */
663 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
664 
665 	/* Now we need to refreeze and restore the PMCs */
666 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
667 
668 	mtspr(SPRN_PMC1, pmcs[0]);
669 	mtspr(SPRN_PMC2, pmcs[1]);
670 	mtspr(SPRN_PMC3, pmcs[2]);
671 	mtspr(SPRN_PMC4, pmcs[3]);
672 	mtspr(SPRN_PMC5, pmcs[4]);
673 	mtspr(SPRN_PMC6, pmcs[5]);
674 }
675 #endif /* CONFIG_PPC64 */
676 
677 static void perf_event_interrupt(struct pt_regs *regs);
678 
679 /*
680  * Read one performance monitor counter (PMC).
681  */
682 static unsigned long read_pmc(int idx)
683 {
684 	unsigned long val;
685 
686 	switch (idx) {
687 	case 1:
688 		val = mfspr(SPRN_PMC1);
689 		break;
690 	case 2:
691 		val = mfspr(SPRN_PMC2);
692 		break;
693 	case 3:
694 		val = mfspr(SPRN_PMC3);
695 		break;
696 	case 4:
697 		val = mfspr(SPRN_PMC4);
698 		break;
699 	case 5:
700 		val = mfspr(SPRN_PMC5);
701 		break;
702 	case 6:
703 		val = mfspr(SPRN_PMC6);
704 		break;
705 #ifdef CONFIG_PPC64
706 	case 7:
707 		val = mfspr(SPRN_PMC7);
708 		break;
709 	case 8:
710 		val = mfspr(SPRN_PMC8);
711 		break;
712 #endif /* CONFIG_PPC64 */
713 	default:
714 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
715 		val = 0;
716 	}
717 	return val;
718 }
719 
720 /*
721  * Write one PMC.
722  */
723 static void write_pmc(int idx, unsigned long val)
724 {
725 	switch (idx) {
726 	case 1:
727 		mtspr(SPRN_PMC1, val);
728 		break;
729 	case 2:
730 		mtspr(SPRN_PMC2, val);
731 		break;
732 	case 3:
733 		mtspr(SPRN_PMC3, val);
734 		break;
735 	case 4:
736 		mtspr(SPRN_PMC4, val);
737 		break;
738 	case 5:
739 		mtspr(SPRN_PMC5, val);
740 		break;
741 	case 6:
742 		mtspr(SPRN_PMC6, val);
743 		break;
744 #ifdef CONFIG_PPC64
745 	case 7:
746 		mtspr(SPRN_PMC7, val);
747 		break;
748 	case 8:
749 		mtspr(SPRN_PMC8, val);
750 		break;
751 #endif /* CONFIG_PPC64 */
752 	default:
753 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
754 	}
755 }
756 
757 /* Called from sysrq_handle_showregs() */
758 void perf_event_print_debug(void)
759 {
760 	unsigned long sdar, sier, flags;
761 	u32 pmcs[MAX_HWEVENTS];
762 	int i;
763 
764 	if (!ppmu->n_counter)
765 		return;
766 
767 	local_irq_save(flags);
768 
769 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
770 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
771 
772 	for (i = 0; i < ppmu->n_counter; i++)
773 		pmcs[i] = read_pmc(i + 1);
774 
775 	for (; i < MAX_HWEVENTS; i++)
776 		pmcs[i] = 0xdeadbeef;
777 
778 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
779 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
780 
781 	if (ppmu->n_counter > 4)
782 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
783 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
784 
785 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
786 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
787 
788 	sdar = sier = 0;
789 #ifdef CONFIG_PPC64
790 	sdar = mfspr(SPRN_SDAR);
791 
792 	if (ppmu->flags & PPMU_HAS_SIER)
793 		sier = mfspr(SPRN_SIER);
794 
795 	if (ppmu->flags & PPMU_ARCH_207S) {
796 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
797 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
798 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
799 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
800 	}
801 #endif
802 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
803 		mfspr(SPRN_SIAR), sdar, sier);
804 
805 	local_irq_restore(flags);
806 }
807 
808 /*
809  * Check if a set of events can all go on the PMU at once.
810  * If they can't, this will look at alternative codes for the events
811  * and see if any combination of alternative codes is feasible.
812  * The feasible set is returned in event_id[].
813  */
814 static int power_check_constraints(struct cpu_hw_events *cpuhw,
815 				   u64 event_id[], unsigned int cflags[],
816 				   int n_ev)
817 {
818 	unsigned long mask, value, nv;
819 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
820 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
821 	int i, j;
822 	unsigned long addf = ppmu->add_fields;
823 	unsigned long tadd = ppmu->test_adder;
824 
825 	if (n_ev > ppmu->n_counter)
826 		return -1;
827 
828 	/* First see if the events will go on as-is */
829 	for (i = 0; i < n_ev; ++i) {
830 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
831 		    && !ppmu->limited_pmc_event(event_id[i])) {
832 			ppmu->get_alternatives(event_id[i], cflags[i],
833 					       cpuhw->alternatives[i]);
834 			event_id[i] = cpuhw->alternatives[i][0];
835 		}
836 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
837 					 &cpuhw->avalues[i][0]))
838 			return -1;
839 	}
840 	value = mask = 0;
841 	for (i = 0; i < n_ev; ++i) {
842 		nv = (value | cpuhw->avalues[i][0]) +
843 			(value & cpuhw->avalues[i][0] & addf);
844 		if ((((nv + tadd) ^ value) & mask) != 0 ||
845 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
846 		     cpuhw->amasks[i][0]) != 0)
847 			break;
848 		value = nv;
849 		mask |= cpuhw->amasks[i][0];
850 	}
851 	if (i == n_ev)
852 		return 0;	/* all OK */
853 
854 	/* doesn't work, gather alternatives... */
855 	if (!ppmu->get_alternatives)
856 		return -1;
857 	for (i = 0; i < n_ev; ++i) {
858 		choice[i] = 0;
859 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
860 						  cpuhw->alternatives[i]);
861 		for (j = 1; j < n_alt[i]; ++j)
862 			ppmu->get_constraint(cpuhw->alternatives[i][j],
863 					     &cpuhw->amasks[i][j],
864 					     &cpuhw->avalues[i][j]);
865 	}
866 
867 	/* enumerate all possibilities and see if any will work */
868 	i = 0;
869 	j = -1;
870 	value = mask = nv = 0;
871 	while (i < n_ev) {
872 		if (j >= 0) {
873 			/* we're backtracking, restore context */
874 			value = svalues[i];
875 			mask = smasks[i];
876 			j = choice[i];
877 		}
878 		/*
879 		 * See if any alternative k for event_id i,
880 		 * where k > j, will satisfy the constraints.
881 		 */
882 		while (++j < n_alt[i]) {
883 			nv = (value | cpuhw->avalues[i][j]) +
884 				(value & cpuhw->avalues[i][j] & addf);
885 			if ((((nv + tadd) ^ value) & mask) == 0 &&
886 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
887 			     & cpuhw->amasks[i][j]) == 0)
888 				break;
889 		}
890 		if (j >= n_alt[i]) {
891 			/*
892 			 * No feasible alternative, backtrack
893 			 * to event_id i-1 and continue enumerating its
894 			 * alternatives from where we got up to.
895 			 */
896 			if (--i < 0)
897 				return -1;
898 		} else {
899 			/*
900 			 * Found a feasible alternative for event_id i,
901 			 * remember where we got up to with this event_id,
902 			 * go on to the next event_id, and start with
903 			 * the first alternative for it.
904 			 */
905 			choice[i] = j;
906 			svalues[i] = value;
907 			smasks[i] = mask;
908 			value = nv;
909 			mask |= cpuhw->amasks[i][j];
910 			++i;
911 			j = -1;
912 		}
913 	}
914 
915 	/* OK, we have a feasible combination, tell the caller the solution */
916 	for (i = 0; i < n_ev; ++i)
917 		event_id[i] = cpuhw->alternatives[i][choice[i]];
918 	return 0;
919 }
920 
921 /*
922  * Check if newly-added events have consistent settings for
923  * exclude_{user,kernel,hv} with each other and any previously
924  * added events.
925  */
926 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
927 			  int n_prev, int n_new)
928 {
929 	int eu = 0, ek = 0, eh = 0;
930 	int i, n, first;
931 	struct perf_event *event;
932 
933 	/*
934 	 * If the PMU we're on supports per event exclude settings then we
935 	 * don't need to do any of this logic. NB. This assumes no PMU has both
936 	 * per event exclude and limited PMCs.
937 	 */
938 	if (ppmu->flags & PPMU_ARCH_207S)
939 		return 0;
940 
941 	n = n_prev + n_new;
942 	if (n <= 1)
943 		return 0;
944 
945 	first = 1;
946 	for (i = 0; i < n; ++i) {
947 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
948 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
949 			continue;
950 		}
951 		event = ctrs[i];
952 		if (first) {
953 			eu = event->attr.exclude_user;
954 			ek = event->attr.exclude_kernel;
955 			eh = event->attr.exclude_hv;
956 			first = 0;
957 		} else if (event->attr.exclude_user != eu ||
958 			   event->attr.exclude_kernel != ek ||
959 			   event->attr.exclude_hv != eh) {
960 			return -EAGAIN;
961 		}
962 	}
963 
964 	if (eu || ek || eh)
965 		for (i = 0; i < n; ++i)
966 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
967 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
968 
969 	return 0;
970 }
971 
972 static u64 check_and_compute_delta(u64 prev, u64 val)
973 {
974 	u64 delta = (val - prev) & 0xfffffffful;
975 
976 	/*
977 	 * POWER7 can roll back counter values, if the new value is smaller
978 	 * than the previous value it will cause the delta and the counter to
979 	 * have bogus values unless we rolled a counter over.  If a coutner is
980 	 * rolled back, it will be smaller, but within 256, which is the maximum
981 	 * number of events to rollback at once.  If we dectect a rollback
982 	 * return 0.  This can lead to a small lack of precision in the
983 	 * counters.
984 	 */
985 	if (prev > val && (prev - val) < 256)
986 		delta = 0;
987 
988 	return delta;
989 }
990 
991 static void power_pmu_read(struct perf_event *event)
992 {
993 	s64 val, delta, prev;
994 
995 	if (event->hw.state & PERF_HES_STOPPED)
996 		return;
997 
998 	if (!event->hw.idx)
999 		return;
1000 
1001 	if (is_ebb_event(event)) {
1002 		val = read_pmc(event->hw.idx);
1003 		local64_set(&event->hw.prev_count, val);
1004 		return;
1005 	}
1006 
1007 	/*
1008 	 * Performance monitor interrupts come even when interrupts
1009 	 * are soft-disabled, as long as interrupts are hard-enabled.
1010 	 * Therefore we treat them like NMIs.
1011 	 */
1012 	do {
1013 		prev = local64_read(&event->hw.prev_count);
1014 		barrier();
1015 		val = read_pmc(event->hw.idx);
1016 		delta = check_and_compute_delta(prev, val);
1017 		if (!delta)
1018 			return;
1019 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1020 
1021 	local64_add(delta, &event->count);
1022 
1023 	/*
1024 	 * A number of places program the PMC with (0x80000000 - period_left).
1025 	 * We never want period_left to be less than 1 because we will program
1026 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1027 	 * roll around to 0 before taking an exception. We have seen this
1028 	 * on POWER8.
1029 	 *
1030 	 * To fix this, clamp the minimum value of period_left to 1.
1031 	 */
1032 	do {
1033 		prev = local64_read(&event->hw.period_left);
1034 		val = prev - delta;
1035 		if (val < 1)
1036 			val = 1;
1037 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1038 }
1039 
1040 /*
1041  * On some machines, PMC5 and PMC6 can't be written, don't respect
1042  * the freeze conditions, and don't generate interrupts.  This tells
1043  * us if `event' is using such a PMC.
1044  */
1045 static int is_limited_pmc(int pmcnum)
1046 {
1047 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1048 		&& (pmcnum == 5 || pmcnum == 6);
1049 }
1050 
1051 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1052 				    unsigned long pmc5, unsigned long pmc6)
1053 {
1054 	struct perf_event *event;
1055 	u64 val, prev, delta;
1056 	int i;
1057 
1058 	for (i = 0; i < cpuhw->n_limited; ++i) {
1059 		event = cpuhw->limited_counter[i];
1060 		if (!event->hw.idx)
1061 			continue;
1062 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1063 		prev = local64_read(&event->hw.prev_count);
1064 		event->hw.idx = 0;
1065 		delta = check_and_compute_delta(prev, val);
1066 		if (delta)
1067 			local64_add(delta, &event->count);
1068 	}
1069 }
1070 
1071 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1072 				  unsigned long pmc5, unsigned long pmc6)
1073 {
1074 	struct perf_event *event;
1075 	u64 val, prev;
1076 	int i;
1077 
1078 	for (i = 0; i < cpuhw->n_limited; ++i) {
1079 		event = cpuhw->limited_counter[i];
1080 		event->hw.idx = cpuhw->limited_hwidx[i];
1081 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1082 		prev = local64_read(&event->hw.prev_count);
1083 		if (check_and_compute_delta(prev, val))
1084 			local64_set(&event->hw.prev_count, val);
1085 		perf_event_update_userpage(event);
1086 	}
1087 }
1088 
1089 /*
1090  * Since limited events don't respect the freeze conditions, we
1091  * have to read them immediately after freezing or unfreezing the
1092  * other events.  We try to keep the values from the limited
1093  * events as consistent as possible by keeping the delay (in
1094  * cycles and instructions) between freezing/unfreezing and reading
1095  * the limited events as small and consistent as possible.
1096  * Therefore, if any limited events are in use, we read them
1097  * both, and always in the same order, to minimize variability,
1098  * and do it inside the same asm that writes MMCR0.
1099  */
1100 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1101 {
1102 	unsigned long pmc5, pmc6;
1103 
1104 	if (!cpuhw->n_limited) {
1105 		mtspr(SPRN_MMCR0, mmcr0);
1106 		return;
1107 	}
1108 
1109 	/*
1110 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1111 	 * To ensure we don't get a performance monitor interrupt
1112 	 * between writing MMCR0 and freezing/thawing the limited
1113 	 * events, we first write MMCR0 with the event overflow
1114 	 * interrupt enable bits turned off.
1115 	 */
1116 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1117 		     : "=&r" (pmc5), "=&r" (pmc6)
1118 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1119 		       "i" (SPRN_MMCR0),
1120 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1121 
1122 	if (mmcr0 & MMCR0_FC)
1123 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1124 	else
1125 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1126 
1127 	/*
1128 	 * Write the full MMCR0 including the event overflow interrupt
1129 	 * enable bits, if necessary.
1130 	 */
1131 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1132 		mtspr(SPRN_MMCR0, mmcr0);
1133 }
1134 
1135 /*
1136  * Disable all events to prevent PMU interrupts and to allow
1137  * events to be added or removed.
1138  */
1139 static void power_pmu_disable(struct pmu *pmu)
1140 {
1141 	struct cpu_hw_events *cpuhw;
1142 	unsigned long flags, mmcr0, val;
1143 
1144 	if (!ppmu)
1145 		return;
1146 	local_irq_save(flags);
1147 	cpuhw = &__get_cpu_var(cpu_hw_events);
1148 
1149 	if (!cpuhw->disabled) {
1150 		/*
1151 		 * Check if we ever enabled the PMU on this cpu.
1152 		 */
1153 		if (!cpuhw->pmcs_enabled) {
1154 			ppc_enable_pmcs();
1155 			cpuhw->pmcs_enabled = 1;
1156 		}
1157 
1158 		/*
1159 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1160 		 */
1161 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1162 		val |= MMCR0_FC;
1163 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1164 			 MMCR0_FC56);
1165 
1166 		/*
1167 		 * The barrier is to make sure the mtspr has been
1168 		 * executed and the PMU has frozen the events etc.
1169 		 * before we return.
1170 		 */
1171 		write_mmcr0(cpuhw, val);
1172 		mb();
1173 
1174 		/*
1175 		 * Disable instruction sampling if it was enabled
1176 		 */
1177 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1178 			mtspr(SPRN_MMCRA,
1179 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1180 			mb();
1181 		}
1182 
1183 		cpuhw->disabled = 1;
1184 		cpuhw->n_added = 0;
1185 
1186 		ebb_switch_out(mmcr0);
1187 	}
1188 
1189 	local_irq_restore(flags);
1190 }
1191 
1192 /*
1193  * Re-enable all events if disable == 0.
1194  * If we were previously disabled and events were added, then
1195  * put the new config on the PMU.
1196  */
1197 static void power_pmu_enable(struct pmu *pmu)
1198 {
1199 	struct perf_event *event;
1200 	struct cpu_hw_events *cpuhw;
1201 	unsigned long flags;
1202 	long i;
1203 	unsigned long val, mmcr0;
1204 	s64 left;
1205 	unsigned int hwc_index[MAX_HWEVENTS];
1206 	int n_lim;
1207 	int idx;
1208 	bool ebb;
1209 
1210 	if (!ppmu)
1211 		return;
1212 	local_irq_save(flags);
1213 
1214 	cpuhw = &__get_cpu_var(cpu_hw_events);
1215 	if (!cpuhw->disabled)
1216 		goto out;
1217 
1218 	if (cpuhw->n_events == 0) {
1219 		ppc_set_pmu_inuse(0);
1220 		goto out;
1221 	}
1222 
1223 	cpuhw->disabled = 0;
1224 
1225 	/*
1226 	 * EBB requires an exclusive group and all events must have the EBB
1227 	 * flag set, or not set, so we can just check a single event. Also we
1228 	 * know we have at least one event.
1229 	 */
1230 	ebb = is_ebb_event(cpuhw->event[0]);
1231 
1232 	/*
1233 	 * If we didn't change anything, or only removed events,
1234 	 * no need to recalculate MMCR* settings and reset the PMCs.
1235 	 * Just reenable the PMU with the current MMCR* settings
1236 	 * (possibly updated for removal of events).
1237 	 */
1238 	if (!cpuhw->n_added) {
1239 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1240 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1241 		goto out_enable;
1242 	}
1243 
1244 	/*
1245 	 * Clear all MMCR settings and recompute them for the new set of events.
1246 	 */
1247 	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1248 
1249 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1250 			       cpuhw->mmcr, cpuhw->event)) {
1251 		/* shouldn't ever get here */
1252 		printk(KERN_ERR "oops compute_mmcr failed\n");
1253 		goto out;
1254 	}
1255 
1256 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1257 		/*
1258 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1259 		 * bits for the first event. We have already checked that all
1260 		 * events have the same value for these bits as the first event.
1261 		 */
1262 		event = cpuhw->event[0];
1263 		if (event->attr.exclude_user)
1264 			cpuhw->mmcr[0] |= MMCR0_FCP;
1265 		if (event->attr.exclude_kernel)
1266 			cpuhw->mmcr[0] |= freeze_events_kernel;
1267 		if (event->attr.exclude_hv)
1268 			cpuhw->mmcr[0] |= MMCR0_FCHV;
1269 	}
1270 
1271 	/*
1272 	 * Write the new configuration to MMCR* with the freeze
1273 	 * bit set and set the hardware events to their initial values.
1274 	 * Then unfreeze the events.
1275 	 */
1276 	ppc_set_pmu_inuse(1);
1277 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1278 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1279 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1280 				| MMCR0_FC);
1281 	if (ppmu->flags & PPMU_ARCH_207S)
1282 		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1283 
1284 	/*
1285 	 * Read off any pre-existing events that need to move
1286 	 * to another PMC.
1287 	 */
1288 	for (i = 0; i < cpuhw->n_events; ++i) {
1289 		event = cpuhw->event[i];
1290 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1291 			power_pmu_read(event);
1292 			write_pmc(event->hw.idx, 0);
1293 			event->hw.idx = 0;
1294 		}
1295 	}
1296 
1297 	/*
1298 	 * Initialize the PMCs for all the new and moved events.
1299 	 */
1300 	cpuhw->n_limited = n_lim = 0;
1301 	for (i = 0; i < cpuhw->n_events; ++i) {
1302 		event = cpuhw->event[i];
1303 		if (event->hw.idx)
1304 			continue;
1305 		idx = hwc_index[i] + 1;
1306 		if (is_limited_pmc(idx)) {
1307 			cpuhw->limited_counter[n_lim] = event;
1308 			cpuhw->limited_hwidx[n_lim] = idx;
1309 			++n_lim;
1310 			continue;
1311 		}
1312 
1313 		if (ebb)
1314 			val = local64_read(&event->hw.prev_count);
1315 		else {
1316 			val = 0;
1317 			if (event->hw.sample_period) {
1318 				left = local64_read(&event->hw.period_left);
1319 				if (left < 0x80000000L)
1320 					val = 0x80000000L - left;
1321 			}
1322 			local64_set(&event->hw.prev_count, val);
1323 		}
1324 
1325 		event->hw.idx = idx;
1326 		if (event->hw.state & PERF_HES_STOPPED)
1327 			val = 0;
1328 		write_pmc(idx, val);
1329 
1330 		perf_event_update_userpage(event);
1331 	}
1332 	cpuhw->n_limited = n_lim;
1333 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1334 
1335  out_enable:
1336 	pmao_restore_workaround(ebb);
1337 
1338 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1339 
1340 	mb();
1341 	if (cpuhw->bhrb_users)
1342 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1343 
1344 	write_mmcr0(cpuhw, mmcr0);
1345 
1346 	/*
1347 	 * Enable instruction sampling if necessary
1348 	 */
1349 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1350 		mb();
1351 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1352 	}
1353 
1354  out:
1355 
1356 	local_irq_restore(flags);
1357 }
1358 
1359 static int collect_events(struct perf_event *group, int max_count,
1360 			  struct perf_event *ctrs[], u64 *events,
1361 			  unsigned int *flags)
1362 {
1363 	int n = 0;
1364 	struct perf_event *event;
1365 
1366 	if (!is_software_event(group)) {
1367 		if (n >= max_count)
1368 			return -1;
1369 		ctrs[n] = group;
1370 		flags[n] = group->hw.event_base;
1371 		events[n++] = group->hw.config;
1372 	}
1373 	list_for_each_entry(event, &group->sibling_list, group_entry) {
1374 		if (!is_software_event(event) &&
1375 		    event->state != PERF_EVENT_STATE_OFF) {
1376 			if (n >= max_count)
1377 				return -1;
1378 			ctrs[n] = event;
1379 			flags[n] = event->hw.event_base;
1380 			events[n++] = event->hw.config;
1381 		}
1382 	}
1383 	return n;
1384 }
1385 
1386 /*
1387  * Add a event to the PMU.
1388  * If all events are not already frozen, then we disable and
1389  * re-enable the PMU in order to get hw_perf_enable to do the
1390  * actual work of reconfiguring the PMU.
1391  */
1392 static int power_pmu_add(struct perf_event *event, int ef_flags)
1393 {
1394 	struct cpu_hw_events *cpuhw;
1395 	unsigned long flags;
1396 	int n0;
1397 	int ret = -EAGAIN;
1398 
1399 	local_irq_save(flags);
1400 	perf_pmu_disable(event->pmu);
1401 
1402 	/*
1403 	 * Add the event to the list (if there is room)
1404 	 * and check whether the total set is still feasible.
1405 	 */
1406 	cpuhw = &__get_cpu_var(cpu_hw_events);
1407 	n0 = cpuhw->n_events;
1408 	if (n0 >= ppmu->n_counter)
1409 		goto out;
1410 	cpuhw->event[n0] = event;
1411 	cpuhw->events[n0] = event->hw.config;
1412 	cpuhw->flags[n0] = event->hw.event_base;
1413 
1414 	/*
1415 	 * This event may have been disabled/stopped in record_and_restart()
1416 	 * because we exceeded the ->event_limit. If re-starting the event,
1417 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1418 	 * notification is re-enabled.
1419 	 */
1420 	if (!(ef_flags & PERF_EF_START))
1421 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1422 	else
1423 		event->hw.state = 0;
1424 
1425 	/*
1426 	 * If group events scheduling transaction was started,
1427 	 * skip the schedulability test here, it will be performed
1428 	 * at commit time(->commit_txn) as a whole
1429 	 */
1430 	if (cpuhw->group_flag & PERF_EVENT_TXN)
1431 		goto nocheck;
1432 
1433 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1434 		goto out;
1435 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1436 		goto out;
1437 	event->hw.config = cpuhw->events[n0];
1438 
1439 nocheck:
1440 	ebb_event_add(event);
1441 
1442 	++cpuhw->n_events;
1443 	++cpuhw->n_added;
1444 
1445 	ret = 0;
1446  out:
1447 	if (has_branch_stack(event)) {
1448 		power_pmu_bhrb_enable(event);
1449 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1450 					event->attr.branch_sample_type);
1451 	}
1452 
1453 	perf_pmu_enable(event->pmu);
1454 	local_irq_restore(flags);
1455 	return ret;
1456 }
1457 
1458 /*
1459  * Remove a event from the PMU.
1460  */
1461 static void power_pmu_del(struct perf_event *event, int ef_flags)
1462 {
1463 	struct cpu_hw_events *cpuhw;
1464 	long i;
1465 	unsigned long flags;
1466 
1467 	local_irq_save(flags);
1468 	perf_pmu_disable(event->pmu);
1469 
1470 	power_pmu_read(event);
1471 
1472 	cpuhw = &__get_cpu_var(cpu_hw_events);
1473 	for (i = 0; i < cpuhw->n_events; ++i) {
1474 		if (event == cpuhw->event[i]) {
1475 			while (++i < cpuhw->n_events) {
1476 				cpuhw->event[i-1] = cpuhw->event[i];
1477 				cpuhw->events[i-1] = cpuhw->events[i];
1478 				cpuhw->flags[i-1] = cpuhw->flags[i];
1479 			}
1480 			--cpuhw->n_events;
1481 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1482 			if (event->hw.idx) {
1483 				write_pmc(event->hw.idx, 0);
1484 				event->hw.idx = 0;
1485 			}
1486 			perf_event_update_userpage(event);
1487 			break;
1488 		}
1489 	}
1490 	for (i = 0; i < cpuhw->n_limited; ++i)
1491 		if (event == cpuhw->limited_counter[i])
1492 			break;
1493 	if (i < cpuhw->n_limited) {
1494 		while (++i < cpuhw->n_limited) {
1495 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1496 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1497 		}
1498 		--cpuhw->n_limited;
1499 	}
1500 	if (cpuhw->n_events == 0) {
1501 		/* disable exceptions if no events are running */
1502 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1503 	}
1504 
1505 	if (has_branch_stack(event))
1506 		power_pmu_bhrb_disable(event);
1507 
1508 	perf_pmu_enable(event->pmu);
1509 	local_irq_restore(flags);
1510 }
1511 
1512 /*
1513  * POWER-PMU does not support disabling individual counters, hence
1514  * program their cycle counter to their max value and ignore the interrupts.
1515  */
1516 
1517 static void power_pmu_start(struct perf_event *event, int ef_flags)
1518 {
1519 	unsigned long flags;
1520 	s64 left;
1521 	unsigned long val;
1522 
1523 	if (!event->hw.idx || !event->hw.sample_period)
1524 		return;
1525 
1526 	if (!(event->hw.state & PERF_HES_STOPPED))
1527 		return;
1528 
1529 	if (ef_flags & PERF_EF_RELOAD)
1530 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1531 
1532 	local_irq_save(flags);
1533 	perf_pmu_disable(event->pmu);
1534 
1535 	event->hw.state = 0;
1536 	left = local64_read(&event->hw.period_left);
1537 
1538 	val = 0;
1539 	if (left < 0x80000000L)
1540 		val = 0x80000000L - left;
1541 
1542 	write_pmc(event->hw.idx, val);
1543 
1544 	perf_event_update_userpage(event);
1545 	perf_pmu_enable(event->pmu);
1546 	local_irq_restore(flags);
1547 }
1548 
1549 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1550 {
1551 	unsigned long flags;
1552 
1553 	if (!event->hw.idx || !event->hw.sample_period)
1554 		return;
1555 
1556 	if (event->hw.state & PERF_HES_STOPPED)
1557 		return;
1558 
1559 	local_irq_save(flags);
1560 	perf_pmu_disable(event->pmu);
1561 
1562 	power_pmu_read(event);
1563 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1564 	write_pmc(event->hw.idx, 0);
1565 
1566 	perf_event_update_userpage(event);
1567 	perf_pmu_enable(event->pmu);
1568 	local_irq_restore(flags);
1569 }
1570 
1571 /*
1572  * Start group events scheduling transaction
1573  * Set the flag to make pmu::enable() not perform the
1574  * schedulability test, it will be performed at commit time
1575  */
1576 void power_pmu_start_txn(struct pmu *pmu)
1577 {
1578 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1579 
1580 	perf_pmu_disable(pmu);
1581 	cpuhw->group_flag |= PERF_EVENT_TXN;
1582 	cpuhw->n_txn_start = cpuhw->n_events;
1583 }
1584 
1585 /*
1586  * Stop group events scheduling transaction
1587  * Clear the flag and pmu::enable() will perform the
1588  * schedulability test.
1589  */
1590 void power_pmu_cancel_txn(struct pmu *pmu)
1591 {
1592 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1593 
1594 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1595 	perf_pmu_enable(pmu);
1596 }
1597 
1598 /*
1599  * Commit group events scheduling transaction
1600  * Perform the group schedulability test as a whole
1601  * Return 0 if success
1602  */
1603 int power_pmu_commit_txn(struct pmu *pmu)
1604 {
1605 	struct cpu_hw_events *cpuhw;
1606 	long i, n;
1607 
1608 	if (!ppmu)
1609 		return -EAGAIN;
1610 	cpuhw = &__get_cpu_var(cpu_hw_events);
1611 	n = cpuhw->n_events;
1612 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1613 		return -EAGAIN;
1614 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1615 	if (i < 0)
1616 		return -EAGAIN;
1617 
1618 	for (i = cpuhw->n_txn_start; i < n; ++i)
1619 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1620 
1621 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1622 	perf_pmu_enable(pmu);
1623 	return 0;
1624 }
1625 
1626 /*
1627  * Return 1 if we might be able to put event on a limited PMC,
1628  * or 0 if not.
1629  * A event can only go on a limited PMC if it counts something
1630  * that a limited PMC can count, doesn't require interrupts, and
1631  * doesn't exclude any processor mode.
1632  */
1633 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1634 				 unsigned int flags)
1635 {
1636 	int n;
1637 	u64 alt[MAX_EVENT_ALTERNATIVES];
1638 
1639 	if (event->attr.exclude_user
1640 	    || event->attr.exclude_kernel
1641 	    || event->attr.exclude_hv
1642 	    || event->attr.sample_period)
1643 		return 0;
1644 
1645 	if (ppmu->limited_pmc_event(ev))
1646 		return 1;
1647 
1648 	/*
1649 	 * The requested event_id isn't on a limited PMC already;
1650 	 * see if any alternative code goes on a limited PMC.
1651 	 */
1652 	if (!ppmu->get_alternatives)
1653 		return 0;
1654 
1655 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1656 	n = ppmu->get_alternatives(ev, flags, alt);
1657 
1658 	return n > 0;
1659 }
1660 
1661 /*
1662  * Find an alternative event_id that goes on a normal PMC, if possible,
1663  * and return the event_id code, or 0 if there is no such alternative.
1664  * (Note: event_id code 0 is "don't count" on all machines.)
1665  */
1666 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1667 {
1668 	u64 alt[MAX_EVENT_ALTERNATIVES];
1669 	int n;
1670 
1671 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1672 	n = ppmu->get_alternatives(ev, flags, alt);
1673 	if (!n)
1674 		return 0;
1675 	return alt[0];
1676 }
1677 
1678 /* Number of perf_events counting hardware events */
1679 static atomic_t num_events;
1680 /* Used to avoid races in calling reserve/release_pmc_hardware */
1681 static DEFINE_MUTEX(pmc_reserve_mutex);
1682 
1683 /*
1684  * Release the PMU if this is the last perf_event.
1685  */
1686 static void hw_perf_event_destroy(struct perf_event *event)
1687 {
1688 	if (!atomic_add_unless(&num_events, -1, 1)) {
1689 		mutex_lock(&pmc_reserve_mutex);
1690 		if (atomic_dec_return(&num_events) == 0)
1691 			release_pmc_hardware();
1692 		mutex_unlock(&pmc_reserve_mutex);
1693 	}
1694 }
1695 
1696 /*
1697  * Translate a generic cache event_id config to a raw event_id code.
1698  */
1699 static int hw_perf_cache_event(u64 config, u64 *eventp)
1700 {
1701 	unsigned long type, op, result;
1702 	int ev;
1703 
1704 	if (!ppmu->cache_events)
1705 		return -EINVAL;
1706 
1707 	/* unpack config */
1708 	type = config & 0xff;
1709 	op = (config >> 8) & 0xff;
1710 	result = (config >> 16) & 0xff;
1711 
1712 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1713 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1714 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1715 		return -EINVAL;
1716 
1717 	ev = (*ppmu->cache_events)[type][op][result];
1718 	if (ev == 0)
1719 		return -EOPNOTSUPP;
1720 	if (ev == -1)
1721 		return -EINVAL;
1722 	*eventp = ev;
1723 	return 0;
1724 }
1725 
1726 static int power_pmu_event_init(struct perf_event *event)
1727 {
1728 	u64 ev;
1729 	unsigned long flags;
1730 	struct perf_event *ctrs[MAX_HWEVENTS];
1731 	u64 events[MAX_HWEVENTS];
1732 	unsigned int cflags[MAX_HWEVENTS];
1733 	int n;
1734 	int err;
1735 	struct cpu_hw_events *cpuhw;
1736 
1737 	if (!ppmu)
1738 		return -ENOENT;
1739 
1740 	if (has_branch_stack(event)) {
1741 	        /* PMU has BHRB enabled */
1742 		if (!(ppmu->flags & PPMU_ARCH_207S))
1743 			return -EOPNOTSUPP;
1744 	}
1745 
1746 	switch (event->attr.type) {
1747 	case PERF_TYPE_HARDWARE:
1748 		ev = event->attr.config;
1749 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1750 			return -EOPNOTSUPP;
1751 		ev = ppmu->generic_events[ev];
1752 		break;
1753 	case PERF_TYPE_HW_CACHE:
1754 		err = hw_perf_cache_event(event->attr.config, &ev);
1755 		if (err)
1756 			return err;
1757 		break;
1758 	case PERF_TYPE_RAW:
1759 		ev = event->attr.config;
1760 		break;
1761 	default:
1762 		return -ENOENT;
1763 	}
1764 
1765 	event->hw.config_base = ev;
1766 	event->hw.idx = 0;
1767 
1768 	/*
1769 	 * If we are not running on a hypervisor, force the
1770 	 * exclude_hv bit to 0 so that we don't care what
1771 	 * the user set it to.
1772 	 */
1773 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1774 		event->attr.exclude_hv = 0;
1775 
1776 	/*
1777 	 * If this is a per-task event, then we can use
1778 	 * PM_RUN_* events interchangeably with their non RUN_*
1779 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1780 	 * XXX we should check if the task is an idle task.
1781 	 */
1782 	flags = 0;
1783 	if (event->attach_state & PERF_ATTACH_TASK)
1784 		flags |= PPMU_ONLY_COUNT_RUN;
1785 
1786 	/*
1787 	 * If this machine has limited events, check whether this
1788 	 * event_id could go on a limited event.
1789 	 */
1790 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1791 		if (can_go_on_limited_pmc(event, ev, flags)) {
1792 			flags |= PPMU_LIMITED_PMC_OK;
1793 		} else if (ppmu->limited_pmc_event(ev)) {
1794 			/*
1795 			 * The requested event_id is on a limited PMC,
1796 			 * but we can't use a limited PMC; see if any
1797 			 * alternative goes on a normal PMC.
1798 			 */
1799 			ev = normal_pmc_alternative(ev, flags);
1800 			if (!ev)
1801 				return -EINVAL;
1802 		}
1803 	}
1804 
1805 	/* Extra checks for EBB */
1806 	err = ebb_event_check(event);
1807 	if (err)
1808 		return err;
1809 
1810 	/*
1811 	 * If this is in a group, check if it can go on with all the
1812 	 * other hardware events in the group.  We assume the event
1813 	 * hasn't been linked into its leader's sibling list at this point.
1814 	 */
1815 	n = 0;
1816 	if (event->group_leader != event) {
1817 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1818 				   ctrs, events, cflags);
1819 		if (n < 0)
1820 			return -EINVAL;
1821 	}
1822 	events[n] = ev;
1823 	ctrs[n] = event;
1824 	cflags[n] = flags;
1825 	if (check_excludes(ctrs, cflags, n, 1))
1826 		return -EINVAL;
1827 
1828 	cpuhw = &get_cpu_var(cpu_hw_events);
1829 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1830 
1831 	if (has_branch_stack(event)) {
1832 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1833 					event->attr.branch_sample_type);
1834 
1835 		if(cpuhw->bhrb_filter == -1)
1836 			return -EOPNOTSUPP;
1837 	}
1838 
1839 	put_cpu_var(cpu_hw_events);
1840 	if (err)
1841 		return -EINVAL;
1842 
1843 	event->hw.config = events[n];
1844 	event->hw.event_base = cflags[n];
1845 	event->hw.last_period = event->hw.sample_period;
1846 	local64_set(&event->hw.period_left, event->hw.last_period);
1847 
1848 	/*
1849 	 * For EBB events we just context switch the PMC value, we don't do any
1850 	 * of the sample_period logic. We use hw.prev_count for this.
1851 	 */
1852 	if (is_ebb_event(event))
1853 		local64_set(&event->hw.prev_count, 0);
1854 
1855 	/*
1856 	 * See if we need to reserve the PMU.
1857 	 * If no events are currently in use, then we have to take a
1858 	 * mutex to ensure that we don't race with another task doing
1859 	 * reserve_pmc_hardware or release_pmc_hardware.
1860 	 */
1861 	err = 0;
1862 	if (!atomic_inc_not_zero(&num_events)) {
1863 		mutex_lock(&pmc_reserve_mutex);
1864 		if (atomic_read(&num_events) == 0 &&
1865 		    reserve_pmc_hardware(perf_event_interrupt))
1866 			err = -EBUSY;
1867 		else
1868 			atomic_inc(&num_events);
1869 		mutex_unlock(&pmc_reserve_mutex);
1870 	}
1871 	event->destroy = hw_perf_event_destroy;
1872 
1873 	return err;
1874 }
1875 
1876 static int power_pmu_event_idx(struct perf_event *event)
1877 {
1878 	return event->hw.idx;
1879 }
1880 
1881 ssize_t power_events_sysfs_show(struct device *dev,
1882 				struct device_attribute *attr, char *page)
1883 {
1884 	struct perf_pmu_events_attr *pmu_attr;
1885 
1886 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1887 
1888 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1889 }
1890 
1891 struct pmu power_pmu = {
1892 	.pmu_enable	= power_pmu_enable,
1893 	.pmu_disable	= power_pmu_disable,
1894 	.event_init	= power_pmu_event_init,
1895 	.add		= power_pmu_add,
1896 	.del		= power_pmu_del,
1897 	.start		= power_pmu_start,
1898 	.stop		= power_pmu_stop,
1899 	.read		= power_pmu_read,
1900 	.start_txn	= power_pmu_start_txn,
1901 	.cancel_txn	= power_pmu_cancel_txn,
1902 	.commit_txn	= power_pmu_commit_txn,
1903 	.event_idx	= power_pmu_event_idx,
1904 	.flush_branch_stack = power_pmu_flush_branch_stack,
1905 };
1906 
1907 /*
1908  * A counter has overflowed; update its count and record
1909  * things if requested.  Note that interrupts are hard-disabled
1910  * here so there is no possibility of being interrupted.
1911  */
1912 static void record_and_restart(struct perf_event *event, unsigned long val,
1913 			       struct pt_regs *regs)
1914 {
1915 	u64 period = event->hw.sample_period;
1916 	s64 prev, delta, left;
1917 	int record = 0;
1918 
1919 	if (event->hw.state & PERF_HES_STOPPED) {
1920 		write_pmc(event->hw.idx, 0);
1921 		return;
1922 	}
1923 
1924 	/* we don't have to worry about interrupts here */
1925 	prev = local64_read(&event->hw.prev_count);
1926 	delta = check_and_compute_delta(prev, val);
1927 	local64_add(delta, &event->count);
1928 
1929 	/*
1930 	 * See if the total period for this event has expired,
1931 	 * and update for the next period.
1932 	 */
1933 	val = 0;
1934 	left = local64_read(&event->hw.period_left) - delta;
1935 	if (delta == 0)
1936 		left++;
1937 	if (period) {
1938 		if (left <= 0) {
1939 			left += period;
1940 			if (left <= 0)
1941 				left = period;
1942 			record = siar_valid(regs);
1943 			event->hw.last_period = event->hw.sample_period;
1944 		}
1945 		if (left < 0x80000000LL)
1946 			val = 0x80000000LL - left;
1947 	}
1948 
1949 	write_pmc(event->hw.idx, val);
1950 	local64_set(&event->hw.prev_count, val);
1951 	local64_set(&event->hw.period_left, left);
1952 	perf_event_update_userpage(event);
1953 
1954 	/*
1955 	 * Finally record data if requested.
1956 	 */
1957 	if (record) {
1958 		struct perf_sample_data data;
1959 
1960 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1961 
1962 		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1963 			perf_get_data_addr(regs, &data.addr);
1964 
1965 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1966 			struct cpu_hw_events *cpuhw;
1967 			cpuhw = &__get_cpu_var(cpu_hw_events);
1968 			power_pmu_bhrb_read(cpuhw);
1969 			data.br_stack = &cpuhw->bhrb_stack;
1970 		}
1971 
1972 		if (perf_event_overflow(event, &data, regs))
1973 			power_pmu_stop(event, 0);
1974 	}
1975 }
1976 
1977 /*
1978  * Called from generic code to get the misc flags (i.e. processor mode)
1979  * for an event_id.
1980  */
1981 unsigned long perf_misc_flags(struct pt_regs *regs)
1982 {
1983 	u32 flags = perf_get_misc_flags(regs);
1984 
1985 	if (flags)
1986 		return flags;
1987 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
1988 		PERF_RECORD_MISC_KERNEL;
1989 }
1990 
1991 /*
1992  * Called from generic code to get the instruction pointer
1993  * for an event_id.
1994  */
1995 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1996 {
1997 	bool use_siar = regs_use_siar(regs);
1998 
1999 	if (use_siar && siar_valid(regs))
2000 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2001 	else if (use_siar)
2002 		return 0;		// no valid instruction pointer
2003 	else
2004 		return regs->nip;
2005 }
2006 
2007 static bool pmc_overflow_power7(unsigned long val)
2008 {
2009 	/*
2010 	 * Events on POWER7 can roll back if a speculative event doesn't
2011 	 * eventually complete. Unfortunately in some rare cases they will
2012 	 * raise a performance monitor exception. We need to catch this to
2013 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2014 	 * cycles from overflow.
2015 	 *
2016 	 * We only do this if the first pass fails to find any overflowing
2017 	 * PMCs because a user might set a period of less than 256 and we
2018 	 * don't want to mistakenly reset them.
2019 	 */
2020 	if ((0x80000000 - val) <= 256)
2021 		return true;
2022 
2023 	return false;
2024 }
2025 
2026 static bool pmc_overflow(unsigned long val)
2027 {
2028 	if ((int)val < 0)
2029 		return true;
2030 
2031 	return false;
2032 }
2033 
2034 /*
2035  * Performance monitor interrupt stuff
2036  */
2037 static void perf_event_interrupt(struct pt_regs *regs)
2038 {
2039 	int i, j;
2040 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
2041 	struct perf_event *event;
2042 	unsigned long val[8];
2043 	int found, active;
2044 	int nmi;
2045 
2046 	if (cpuhw->n_limited)
2047 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2048 					mfspr(SPRN_PMC6));
2049 
2050 	perf_read_regs(regs);
2051 
2052 	nmi = perf_intr_is_nmi(regs);
2053 	if (nmi)
2054 		nmi_enter();
2055 	else
2056 		irq_enter();
2057 
2058 	/* Read all the PMCs since we'll need them a bunch of times */
2059 	for (i = 0; i < ppmu->n_counter; ++i)
2060 		val[i] = read_pmc(i + 1);
2061 
2062 	/* Try to find what caused the IRQ */
2063 	found = 0;
2064 	for (i = 0; i < ppmu->n_counter; ++i) {
2065 		if (!pmc_overflow(val[i]))
2066 			continue;
2067 		if (is_limited_pmc(i + 1))
2068 			continue; /* these won't generate IRQs */
2069 		/*
2070 		 * We've found one that's overflowed.  For active
2071 		 * counters we need to log this.  For inactive
2072 		 * counters, we need to reset it anyway
2073 		 */
2074 		found = 1;
2075 		active = 0;
2076 		for (j = 0; j < cpuhw->n_events; ++j) {
2077 			event = cpuhw->event[j];
2078 			if (event->hw.idx == (i + 1)) {
2079 				active = 1;
2080 				record_and_restart(event, val[i], regs);
2081 				break;
2082 			}
2083 		}
2084 		if (!active)
2085 			/* reset non active counters that have overflowed */
2086 			write_pmc(i + 1, 0);
2087 	}
2088 	if (!found && pvr_version_is(PVR_POWER7)) {
2089 		/* check active counters for special buggy p7 overflow */
2090 		for (i = 0; i < cpuhw->n_events; ++i) {
2091 			event = cpuhw->event[i];
2092 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2093 				continue;
2094 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2095 				/* event has overflowed in a buggy way*/
2096 				found = 1;
2097 				record_and_restart(event,
2098 						   val[event->hw.idx - 1],
2099 						   regs);
2100 			}
2101 		}
2102 	}
2103 	if (!found && !nmi && printk_ratelimit())
2104 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2105 
2106 	/*
2107 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2108 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2109 	 * and thus allow interrupts to occur again.
2110 	 * XXX might want to use MSR.PM to keep the events frozen until
2111 	 * we get back out of this interrupt.
2112 	 */
2113 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2114 
2115 	if (nmi)
2116 		nmi_exit();
2117 	else
2118 		irq_exit();
2119 }
2120 
2121 static void power_pmu_setup(int cpu)
2122 {
2123 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2124 
2125 	if (!ppmu)
2126 		return;
2127 	memset(cpuhw, 0, sizeof(*cpuhw));
2128 	cpuhw->mmcr[0] = MMCR0_FC;
2129 }
2130 
2131 static int
2132 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2133 {
2134 	unsigned int cpu = (long)hcpu;
2135 
2136 	switch (action & ~CPU_TASKS_FROZEN) {
2137 	case CPU_UP_PREPARE:
2138 		power_pmu_setup(cpu);
2139 		break;
2140 
2141 	default:
2142 		break;
2143 	}
2144 
2145 	return NOTIFY_OK;
2146 }
2147 
2148 int register_power_pmu(struct power_pmu *pmu)
2149 {
2150 	if (ppmu)
2151 		return -EBUSY;		/* something's already registered */
2152 
2153 	ppmu = pmu;
2154 	pr_info("%s performance monitor hardware support registered\n",
2155 		pmu->name);
2156 
2157 	power_pmu.attr_groups = ppmu->attr_groups;
2158 
2159 #ifdef MSR_HV
2160 	/*
2161 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2162 	 */
2163 	if (mfmsr() & MSR_HV)
2164 		freeze_events_kernel = MMCR0_FCHV;
2165 #endif /* CONFIG_PPC64 */
2166 
2167 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2168 	perf_cpu_notifier(power_pmu_notifier);
2169 
2170 	return 0;
2171 }
2172